
Mathematical model of COVID-19 spread in Turkey and South
Africa

Abdon ATANGANA1,∗, Seda İĞRET ARAZ
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Abstract
A comprehensive study about the spread of COVID-19 cases in Turkey and South Africa has been

presented in this paper . An exhaustive statistical analysis encompassing arithmetic, geometric, harmonic
means, standard deviation, skewness, variance, Pearson and Spearman correlation was derived from the data
collected from Turkey and South Africa within the period of 11 March 2020 to 3 May 2020 and 05 March and
3 of May respectively. It was observed that in the case of Turkey, a negative Spearman correlation for the
number of infected class and a positive Spearman correlation for both the number of deaths and recoveries
were obtained. This implied that the daily infections could decrease, while the daily deaths and number of
recovered people could increase under current conditions. In the case of South Africa, a negative Spearman
correlation for both daily deaths and daily infected people was obtained, indicating that these numbers may
decrease if the current conditions are maintained. The utilization of a statistical technique predicted the
daily number of infected, recovered and dead people for each country; and three results were obtained for
Turkey, namely an upper boundary, a prediction from current situation and lower boundary. The prediction
shows that Turkey may register in the near future approximately more than 6000 new infections in a day
as worst case scenario; and less than 300 cases in the perfect scenario. However, the country could register
in the near future a daily number of 27000 people recovered from COVID-19 in the perfect scenario; and
less than 5000 people in a worst scenario. Moreover, Turkey in a worst-case scenario could record a high
number of approximately 200 deaths per day; and less than 150 deaths in a perfect scenario. Similarly,
in the case of South Africa, the prediction results show that in the near future the country could register
about 500 new infected cases daily and more than 25 deaths in the worst scenario; while in a perfect
scenario less than 50 new infected and zero death cases could be recorded. The histograms of the daily
number of newly infected, recovered and death showed a sign of lognormal and normal distribution, which
is presented using the Bell curving method parameters estimation. A new mathematical model COVID-19
comprised of nine classes was suggested; of which a formula of the reproductive number, well-poseness of the
solutions and the stability analysis were presented in details. The suggested model was further extended to
the scope of nonlocal operators for each case; whereby the Atangana-Seda numerical method was used to
provide numerical solutions, and simulations were performed for different non-integer numbers. Additionally,
sections devoted to control optimal and others dedicated to compare cases between Turkey and South Africa
with the aim to comprehend why there are less numbers of deaths and infected people in South Africa than
Turkey were presented in details.

Keywords: Statistical analysis, Bell curve, prediction, new COVID-19 model, non-local operators, optimal
control, Turkey vs South Africa.

1 Introduction

It is a Thursday morning, 5 March in South Africa, everybody is busy with his daily routine, when the National
Institute for Communicable Diseases confirmed the first positive case of COVID-19. A situation that was
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known for other countries now has become true and real in South Africa. How did we get here? The outbreak of
COVID-19 started in China, Wuhan City, around December 2019; but within a short period the spread crossed
over to some countries in Europe like United Kingdom, Italy, Spain and France. The first confirmed patient
was a 38-year old male who visited Italy and arrived back in South Africa on March 1, 2020. The patient, after
noticing symptoms of fever, malaise, a sore throat, cough and headache consulted a private general practitioner
on March 3. From the 5 March to 15 March 2020 the number of infected people increased significantly, as a
result on 15 March 2020, a national state of disaster was declared by the President of South Africa to mitigate
the spread of COVID-19. This announcement was followed by measures including immediate travel restrictions
and closure of schools from 18 March 2020. On 23 March, the South African government announced a country
lockdown with effect on 26 March 2020. By the end of April, South Africa offi cially had 5647 confirmed cases.
To date, South Africa is offi cially confirmed an African country with more confirmed cases, with 3471 active
confirmed cases, 2073 recovered and 103 deaths due to COVID-19. In the case of Turkey, the first case of
COVID-19 was confirmed and recorded on the 11 March 2020. Four days later, Turkey registered its first death
caused by COVID-19. COVID-19 spread like wildfire in Turkey; in which by the 21 st of April the country had
confirmed approximately 95591 cases of infected people, with 14918 number of recovered people and 2259 deaths
recorded. The rapid spreading of COVID-19, has raised the total number of confirmed cases to 120200, of which
48900 have recovered and 3200 have died by the end of April 2020. In comparison to other European countries
such as Iran, it is recorded that the total number of confirmed cases in Turkey surpassed it exceedingly; resulting
in Turkey to be categorized as the most affected country in terms of numbers of confirmed cases within the
settlement of the Middle East. Furthermore, Turkey’s total number of confirmed cases by the 20 April was also
recorded to exceed that of China; even though there were some raised concerns that the total confirmed cases in
China could have been underestimated. The consideration of these statistics prompted researchers from Turkey
and South Africa to undertake research in different fields of science, technology and engineering in the last 3
months, since their future is left uncertain. As the virologists are focusing their attention in developing a vaccine
that could be used to prevent the spread of the deadly virus; mathematicians rely on modelling techniques to
produce multi-scenarios models that could be utilized to foresee the future [1-6]. Therefore, as mathematicians
our role is to use and apply mathematical tools, particularly mathematical models, on suggested scenarios that
could be helpful in predicting the future. In this paper, we present a detailed analysis of spread in both countries
and structured the paper as follows: Section 2 presents a detailed statistical analysis of COVID-19 spread in
Turkey. Then we present a detailed statistical analysis of COVID-19 spread in South Africa. Also after using
the inverse problem approach and the Bell curving approach we present the parameter’s estimation, we present
a comparative analysis between Turkey and South Africa. In Section 3, we suggest a new mathematical model
of COVID-19 that takes into account nine classes, including, susceptible, infected with 5 sub-classes, recovered
class, death and vaccinated. Then presents the positivity of solutions of the model as well as the reproduction
number; and also deals with local and global asymptotic stability of disease free equilibrium and endemic points.
In Section 4 we present an analysis of the suggested model with non-local operators. In section 5, we present
numerical the suggested mathematical model for COVID-19 using Atangana-Seda scheme for fractional and
fractal-fractional operators. In section 6, we present the optimal control of the disease. Finally we present a
discussion, recommendations and conclusion respectively.

2 Statistical analysis of COVID-19 spread in Turkey and South

Africa

To understand the impact of COVID-19, collection of numbers of daily new infected, recovered and deaths
are performed all over the globe, such process follows a discrete approach. Thus, to understand and predict
the impact of the Covid-19 on humans, statistics is associated with such collection, analysis, interpretation,
organization and presentation. We shall recall that, this mathematical branch is wider applicable in numerous
academic fields for example, natural and social science, business and government. Some important and useful
statistical formula are means, variance, skewness, correlation, linear regression, Pearson’s correlation coeffi cient,
Spearman’s rank correlation test and many order. In this section, we present some formulas that will be used
in this work for interpretation and prediction purposes. We define a data set whose values can be chosen as
x1, x2,..., xn. We start with the arithmetic mean, x, which states the mean of the x1, x2,..., xn. The arithmetic
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mean can be computed as

Arithmetic mean =
1

n

n∑
i=1

xi. (2.1)

The formula of the geometric mean is

Geometric mean =

(
n∏
i=1

xi

)1/n

. (2.2)

The formula of the harmonic mean is

Harmonic mean =

(∑n
i=1

1
xi

n

)−1

. (2.3)

The formula of the standard deviation is

Standard deviation =

(
1

n− 1

n∑
i=1

(xi − x)
2

)1/2

. (2.4)

The formula of the skewness is

Skewness =
1
n

∑n
i=1 (xi − x)

3(
1

n−1

∑n
i=1 (xi − x)

2
)3/2

. (2.5)

The formula of the variance is

Variance =
1

n

n∑
i=1

(xi − x)
2 . (2.6)

The formula of the covariance is

Covariance =
n∑
i=1

(xi − x) (yi − y) . (2.7)

The formula of the Pearson correlation is

Pearson correlation =

∑n
i=1 (xi − x) (yi − y)

xy
. (2.8)

The formula of the Spearman correlation is

Spearman correlation = 1− 6
∑n
i=1 (rankxi − rankyi)2

n (n2 − 1)
(2.9)

where rank enables to compared a numeric value with other values in the same list.

2.1 Statistical analysis for Turkey

In this section, we aim to provide a detailed statistical analysis of the collected data from Turkey. These data
include, daily number of new infected, daily numbers of deaths, daily numbers of recovered and finally daily
numbers of tested individuals. The collected data are from 11 March 2020 to 3 May 2020. The main aim of this
section is to predict what could possibly happen in the near future using the reliability level method, additionally,
to find which distribution each class follows. With the collected data, we will first present histogram, pie chart
and nonlinear graphs for each class. The histograms will help identify the density of probability associated
to each set of collected data. Additionally, we provide a polynomial fitting against collected. The results are
presented in Figure 1 to 16. For each case, we present arithmetic, geometric, harmonic means respectively,
skewness, variance, covariance, Pearson correlation and Spearman correlation and their results are presented in
Table 1.

In Figure 1, 2 and 3, we present some statistical simulation about number of infected people due to COVID-19
in Turkey from 11 March 2020 to 3 May 2020.
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Figure 1. Number of infected people in Turkey from 11 March 2020 to 3 May 2020.

Figure 2. Number of infected people in Turkey from 11 March 2020 to 3 May 2020.
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Figure 3. Number of infected people in Turkey from 11 March 2020 to 3 May 2020.

In Figure 4,5 and 6, we present some statistical simulation about number of recovered people due to COVID-19
in Turkey from 11 March 2020 to 3 May 2020.

Figure 4. Number of recovered people in Turkey from 11 March 2020 to 3 May 2020.
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Figure 5. Number of recovered people in Turkey from 11 March 2020 to 3 May 2020.

Figure 6. Number of recovered people in Turkey from 11 March 2020 to 3 May 2020.

In Figure 7, 8 and 9, we present some statistical simulation about number of died people due to COVID-19 in
Turkey from 11 March 2020 to 3 May 2020.
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Figure 7. Number of death people in Turkey from 11 March 2020 to 3 May 2020.

Figure 8. Number of death people in Turkey from 11 March 2020 to 3 May 2020.
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Figure 9. Number of death people in Turkey from 11 March 2020 to 3 May 2020.

In Figure 10, 11 and 12, we present some statistical simulation about number of tested people due to COVID-19
in Turkey from 11 March 2020 to 3 May 2020.

Figure 10. Number of tested people in Turkey from 11 March 2020 to 3 May 2020.
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Figure 11. Number of tested people in Turkey from 11 March 2020 to 3 May 2020.

Figure 12. Number of tested people in Turkey from 11 March 2020 to 3 May 2020.

2.1.1 Regression analysis

Regression analysis which is also used in epidemiologic research enables us to examine amongst a set of variables.
Here aim is to estimate outcomes benefitting from this set of variables. To do this, we find a prediction model in
which we obtain model that fits best to the considered data and explains the response variable. We can utilize
all possible independent variables, interactions, transformations with these models. To evaluate goodness of fit
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for the obtained model, we can utilize R square ability which is one of the different techniques used in regression
diagnostics.
Linear regression models are given by

y = β0 + βixi + ei (2.10)

where β0, βi are the unknown constants, xi are the independent variables, y is the dependent variable and ei
are the error terms in given data. If the value of R square is close to zero, this means that the significance of
fit for model is unsuitable to predict outcomes. In other words, the obtained model used is not suitable for the
given data and the obtained model should be left aside and another model should be found.
If the value of R square is close to one, this means that the significance of fit for model is suitable to predict

outcomes. In this case, it can be passed to the other step of control analysis.
We firstly present a predictive analysis for infected people. According to the results obtained, we obtain a

linear regression which is calculated as

y = −29772.4 + 2786.833x. (2.11)

F − test was calculated as 1.94× 10−32. R square was calculated as 0.93445. We can conclude from these data
that the significance of fit for the obtained model is suitable for the considered data. Also we present polynomial
regression which is calculated as

y = −0.0551x4 + 9682.6x3 − 0.6× 10−8x2 + 0.2× 10−13x− 0.2× 10−17. (2.12)

For this polynomial, R square was calculated as 0.9993. We present polynomial fitting data for infected people
from 11 March to 3 May 2020.

Figure 13. Polynomial fitting data for infected people in Turkey from 11 March 2020 to 3 May 2020.

We present a predictive analysis for recovered people. According to the results obtained, we get a linear
regression which can be calculated as

y = −13029.8 + 845.9233x. (2.13)

F − test was calculated as 1.39× 10−12. R square was calculated as 0.622381. We can say that the significance
of fit for model is not enough suitable for the considered data. To overcome this case, we can suggest another
regression model

y = 0.028x4 − 4922x3 + 0.3× 10−8x2 − 0.9× 10−12x+ 0.1× 10−17 (2.14)

10

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.08.20095588doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.08.20095588
http://creativecommons.org/licenses/by-nd/4.0/


which is polynomial. For this polynomial, R square was calculated as 0.9987. We present a simulation about
polynomial fitting data for recovered people from 11 March to 3 May 2020.

Figure 14. Polynomial fitting data for recovered people in Turkey from 11 March 2020 to 3 May 2020.

We present a predictive analysis for died people. According to the results obtained, we get a linear regression
which can be calculated as

y = −822.246 + 70.72746x. (2.15)

F − test was calculated as 1.75× 10−28. R square was calculated as 0.907007. We can say that the significance
of fit for model is suitable for the considered data. Also, we can present regression model

y = −0.0266x3 + 3512.1x2 − 0.2× 10−8x+ 0.2× 10−12 (2.16)

which is polynomial of third order. For this polynomial, R square was calculated as 0.9971. We present a
simulation about polynomial fitting data for died people from 11 March to 3 May 2020.
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Figure 15. Polynomial fitting data for died people in Turkey from 11 March 2020 to 3 May 2020.

We firstly present a predictive analysis for tested people. According to the results obtained, we get a linear
regression which can be calculated as

y = −257388 + 22572.98x. (2.17)

F − test was calculated as 5.17× 10−28. R square was calculated as 0.903051. We can say that the significance
of fit for model is suitable for the considered data. Also, we give polynomial regression model

y = 520.26x2 − 0.5× 10−7x+ 0.1× 10−12 (2.18)

which is polynomial of second order. For this polynomial, R square was calculated as 0.9962. We present a
simulation about polynomial fitting data for tested people from 11 March to 3 May 2020.
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Figure 16. Polynomial fitting data for tested people in Turkey from 11 March 2020 to 3 May 2020.

We present some statistical data about corona in Turkey in Table 1.

Table 1. Some data about corona in Turkey.
Infected Recovered Death

Arithmetic mean 2334.166667 1169.462963 56.63636364
Geometric mean 1029.876948 592.2822821 41.57620243
Harmonic mean 21.75203938 142.4039454 8.182426471

Standard deviation 1641.461139 1701.397957 48.05766445
Skewness −0.07519891 1.416616957 0.100241163
Variance 2644498.472 2841148.434 2045.624143
Covariance 17324.10185 21927.12037 607.7037037

Pearson Correlation 0.683518717 0.834653045 0.862085432
Spearman Correlation −17.9276729 0.188679245 −8.39622641

We now present lognormal distribution for all cases in Turkey from 11 March to 03 May 2020.
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Figure 17. Lognormal distribution for all cases in Turkey from 11 March 2020 to 3 May 2020.

2.1.2 Prediction about corona data in Turkey

In this section, we aim at performing prediction using existing data and reliability level method. The collected
data will be considered from 11 March 2020 to 3 May 2020. The future prediction will start from 3 May 2020
to 15 of June 2020. This will help us give a prediction on numbers of new daily infected class, recovered, daily
numbers of deaths in Turkey within this period. The prediction will consist of three different graphs comprising
upper boundaries, middle lines and low boundaries. The upper boundaries represent the worse cases scenario,
of course a scenario that is not needed for deaths class and infected but an ideal one for recovered class, and the
lower boundaries representing perfect scenarios ( A scenario that is needed) for Turkey to get rid of the infection.
These results of prediction for future daily new infected, recovered and deaths are represented graphically in
Figure 18, 19 and 20 respectively.

(1)

Figure 18. Prediction of daily number of infected in Turkey using Forecast Sheet.
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Figure 19. Prediction of daily number of recovered in Turkey using Forecast Sheet.

Figure 20. Prediction of daily number of deaths in Turkey using Forecast Sheet.

2.2 Detailed Statistical Analysis for South Africa

In this section, we aim to provide a detailed statistical analysis of the collected data representing the evolution
COVID-19 spread within the republic of South Africa. These data include, daily number of new infected and
daily numbers of deaths. The collected data are from 5 March 2020 to 3 May 2020 [7]. The main aim of this
section is to predict what could possibly happen in the near future using the reliability level method, additionally,
to find which distribution each class follows. With the collected data, we will first present histogram, pie chart
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and nonlinear graphs for each class. The histograms will help identify the density of probability associated
to each set of collected data. Additionally, we provide a polynomial fitting against collected. The results are
presented in Figure 21 to 30. For each case, we present arithmetic, geometric, harmonic means respectively,
skewness, variance, covariance, Pearson correlation and Spearman correlation and their results are presented in
Table 2.

In Figure 21, 22 and 23, we present some statistical simulation about number of infected people due to
COVID-19 in South Africa from 5 March 2020 to 3 May 2020.

Figure 21. Number of infected people in South Africa from 5 March 2020 to 3 May 2020.

Figure 22. Number of infected people in South Africa from 5 March 2020 to 3 May 2020.
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Figure 23. Number of infected people in South Africa from 5 March 2020 to 3 May 2020.

In Figure 24, 25 and 26, we present some statistical simulation about number of died people due to COVID-19
in South Africa from 15 March 2020 to 3 May 2020.

Figure 24. Number of death in South Africa from 15 March 2020 to 3 May 2020.
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Figure 25. Number of death in South Africa from 15 March 2020 to 3 May 2020.

Figure 26. Number of death in South Africa from 15 March 2020 to 3 May 2020.

Now we present regression analysis about COVID-19 in South Africa from 5 March 2020 to 3 May 2020.
We firstly present a predictive analysis for infected people. According to the results obtained, we get a linear
regression which can be calculated as

y = −4488415 + 102.2293x. (2.19)

F − test was calculated as 4.84× 10−31. R square was calculated as 0.902781. We can say that the significance
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of fit for model is suitable for the considered data. We can give another regression model

y = −0.4× 10−6x6 + 0.9253x5 − 101611x4 + 0.6× 10−9x3 − 0.2× 10−14x2 + 0.3× 10−18x− 0.3× 10−22 (2.20)

which is polynomial of sixth order. For this polynomial, R square was calculated as 0.9978. We present a
simulation about polynomial fitting data for infected people from 5 March to 3 May 2020.

Figure 27. Polynomial fitting data for infected in South Africa from 5 March 2020 to 3 May 2020.

Now we present a predictive analysis for died people. According to the results obtained, we get a linear
regression which can be calculated as

y = −29.2547 + 2.51587x. (2.21)

F − test was calculated as 5.36× 10−22. R square was calculated as 0.858225. We can say that the significance
of fit for model is for the considered data. We can suggest another regression model

y = −0.2× 10−5x4 + 3.7609x3 − 247847x2 + 0.7× 10−9x− 0.8× 10−13 (2.22)

which is polynomial of fourth order. For this polynomial, R square was calculated as 0.9958. We present a
simulation about polynomial fitting data for died people from 15 March to 3 May 2020.
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Figure 28. Polynomial fitting data for death in South Africa from 15 March 2020 to 3 May 2020.

2.2.1 Prediction about corona data in South Africa

In this section, we aim at performing prediction using existing data collected representing daily numbers of
new infected, deaths and reliability level method. The collected data will be considered from 5 March 2020
corresponding to the first day of confirmed case of COVID-19 in South Africa to 3 May 2020. The future
prediction will start from 3 May 2020 to 15 of June 2020. This will help us give a prediction on numbers of
new daily infected class, recovered, daily numbers of deaths in South Africa within this period. The prediction
will consist of three different graphs comprising upper boundaries, middle lines and low boundaries. The upper
boundaries represent the worse cases scenario, of course a scenario that is not needed for deaths class and infected
but an ideal one for recovered class, and the lower boundaries representing perfect scenarios (A scenario that
is needed) for South Africa to get rid of the infection. These results of prediction for future daily new infected,
recovered and deaths are represented graphically in Figure 29 and 30 respectively. The prediction of daily new
infected in the case of South Africa seems to follow the upper boundaries and low boundary for daily number
of deaths.
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Figure 29. Prediction of daily number of infected in South Africa using Forecast Sheet.

Figure 30. Prediction of daily number of deaths in South Africa using Forecast Sheet.

We now give some data about corona in South Africa in Table 2.
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Table 2. Some data about corona in South Africa.
Infected Death

Arithmetic mean 113, 05000 2, 62000
Geometric mean 57, 35444 3, 184267
Harmonic mean 11, 569120 2, 260659

Standard deviation 109, 71834 3, 613410
Skewness 1, 1222456 1, 594677
Variance 11837, 4808 12, 79560
Covariance 1492, 5916 31, 91000

Pearson Correlation 0, 7921566 0, 618164
Spearman Correlation −5, 389406 −6, 168775

We present lognormal distribution for infected and death cases about COVID-19 in Figure 31.

Figure 31. Lognormal distribution for all cases in South Africa.

2.3 Parameters estimation using the Bell curving approach

In the previous section,we presented the graph of a day-to-day evolution of COVID-19 spread including infected,
recovery and death for South Africa and Turkey. To be honest, one cannot for sure tell if those curves follow
the normal distribution or lognormal distribution. Therefore in this section, two cases are considered. In the
first case, we assume a lognormal curve and second we assume normal distribution curve.
Case I : We consider the lognormal density of probability

Lp (x) =
1

x

1

σ
√

2π
exp

[
−1

2

(lnx− µ)
2

σ2

]
. (2.23)

We now define a function β that captures daily occurrences

β = O0 exp

[
−1

2

(lnx− µ)
2

σ2

]
. (2.24)

We aim to estimate O0, σ and µ. To achieve this, we consider first four different days

d1 < d2 < d3 < d4 where di = lnxi. (2.25)
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We first start by estimating µ, by assuming a proportion

β (d2)

β (d1)
= exp

[
− 1

2σ2

{
(d2 − µ)

2 − (d1 − µ)
2
}]

(2.26)

and
β (d4)

β (d3)
= exp

[
− 1

2σ2

{
(d4 − µ)

2 − (d3 − µ)
2
}]

. (2.27)

To proceed, we apply on both sides the ln function

ln

[
β (d2)

β (d1)

]
= − 1

2σ2

{
(d2 − µ)

2 − (d1 − µ)
2
}
⇒ σ2 = − 1

2 ln
[
β(d2)
β(d1)

] {(d2 − µ)
2 − (d1 − µ)

2
}

(2.28)

ln

[
β (d4)

β (d3)

]
= − 1

2σ2

{
(d4 − µ)

2 − (d3 − µ)
2
}
⇒ σ2 = − 1

2 ln
[
β(d4)
β(d3)

] {(d4 − µ)
2 − (d3 − µ)

2
}
.

Due to the equality, we can now have

1

ln
[
β(d2)
β(d1)

] {(d2 − µ)
2 − (d1 − µ)

2
}

=
1

ln
[
β(d4)
β(d3)

] {(d4 − µ)
2 − (d3 − µ)

2
}
. (2.29)

Thus
ln
[
β(d4)
β(d3)

]
ln
[
β(d2)
β(d1)

] =
(d4 + d3 − 2µ)− (d4 − d3)

(d2 + d1 − 2µ)− (d2 − d1)
. (2.30)

The solution is the above is

µ =

1
2 (d4 + d3) (d4 − d3)−

ln
[
β(d4)

β(d3)

]
ln
[
β(d2)

β(d1)

] (d2 + d1) (d2 − d1)

1
2 (d4 − d3)−

ln
[
β(d4)

β(d3)

]
ln
[
β(d2)

β(d1)

] (d2 − d1)

. (2.31)

Having µ, we can determine

σ =

√√√√ 1

2 ln
[
β(d2)
β(d1)

] {− (d2 − µ)
2

+ (d1 − µ)
2
}
. (2.32)

Alternatively, we consider 8 days to capture more facts xi, i = 1, 2, 3, 4, 5, 6, 7, 8, we put di = lnxi. We assume
a proportionality λ of {d1, d2, d3, d4} and {d5, d6, d7, d8} . Therefore

P1 =
(d4 + d3 − 2µ)− (d4 − d3)

(d2 + d1 − 2µ)− (d2 − d1)
(2.33)

and

P2 =
(d8 + d7 − 2µ)− (d8 − d7)

(d6 + d5 − 2µ)− (d6 − d5)
. (2.34)

We now assume that P1 is proportional to P2 then

(d4 + d3 − 2µ)− (d4 − d3)

(d2 + d1 − 2µ)− (d2 − d1)
= λ

(d8 + d7 − 2µ)− (d8 − d7)

(d6 + d5 − 2µ)− (d6 − d5)
. (2.35)

For simplicity, we put di + dj = Aij = Aji

d14 =
d4 − d3

d2 − d1
, d58 =

d8 − d7

d6 − d5
. (2.36)
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Therefore, the above can be reformulated as

A43 − 2µ

A21 − 2µ
d14 = λ

A87 − 2µ

A65 − 2µ
d58. (2.37)

Also we write (
A43A65 − 2µ (A43 +A65) + 4µ2

) d14

λd58
=
(
A21A87 − 2µ (A21 +A87) + 4µ2

)
(2.38)

and

4µ2

{
d14

λd58
− 1

}
− 2µ

{
d14

λd58
(A43 +A65) + (A21 +A87)

}
+A43A65

d14

λd58
−A21A87 = 0. (2.39)

Thus we have

µ1,2 =

(
d14

λd58
(A43 +A65) + (A21 +A87)

)
±

√√√√√
(
d14

λd58
(A43 +A65) + (A21 +A87)

)2

−4
{
d14

λd58
− 1
}(

A43A65
d14

λd58
−A21A87

)
4
{
d14

λd58
− 1
} . (2.40)

Thus for Case I, we get

O0 =

∑4
j=1 β (lnxi)∑4

j=1
1
xj

exp
[
− 1

2
(ln xj−µ)2

σ2

] . (2.41)

Case II, we get

O0 =

∑8
j=1 β (lnxj)∑8

j=1
1
xj

exp
[
− 1

2
(ln xj−µ)2

σ2

] (2.42)

λ =
ln
[
β(d4)
β(d3)

]
ln
[
β(d2)
β(d1)

] × ln
[
β(d6)
β(d5)

]
ln
[
β(d8)
β(d7)

] .
For each case, the cumulative distribution function can be calculated by

Φ (x) =
1

2

[
1 + erf

(
(lnxj − µ)

σ
√

2

)]
. (2.43)

Case II: We assume that the curve follows the normal distribution, thus

Φ (x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]
. (2.44)

However, we consider the following function

λ (x) = λ0 exp

[
−1

2

(
x− µ
σ

)2
]
. (2.45)

We aim to determine λ0, σ and µ. Here we choose three points d1, d2, d3 such that λ (d2) corresponds to the
maximum point. Following the procedure presented earlier, we have

ln
[
λ(d3)
λ(d2)

]
ln
[
λ(d2)
λ(d1)

] =
(d3 + d2 − 2µ)− (d3 − d2)

(d2 + d1 − 2µ)− (d2 − d1)
. (2.46)
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Thus

µ =

1
2 (d3 + d2) (d3 − d2)−

ln
[
λ(d3)

λ(d2)

]
ln
[
λ(d2)

λ(d1)

] (d2 + d1) (d2 − d1)

1
2 (d3 + d2)−

ln
[
λ(d3)

λ(d2)

]
ln
[
λ(d2)

λ(d1)

] (d2 − d1)

. (2.47)

With µ in hand, we determine

σ =

√√√√ 1

2 ln
[
λ(d2)
λ(d1)

] {(d1 − µ)
2 − (d2 − µ)

2
}

(2.48)

and

λ0 =

∑3
j=1 λ (dj)∑3

j=1 exp
[
− 1

2
(dj−µ)2

σ2

] . (2.49)

Particular case if we consider the case where d2−d1 = d3−d2 that is λ (d1) = λ (d3) due to symmetry of normal
distribution , then we get

µ =
1
2 (d3 + d2) (d3 − d2) + (d2 + d1) (d2 − d1)

1
2 (d3 + d2) + (d2 − d1)

. (2.50)

2.4 Comparison: Turkey vs South Africa

In this subsection, we present a comparison between Turkey and South Africa about COVID-19.

Table 3: Comparison between Turkey and South Africa updated on COVID-19

Country South Africa:5 March to 02 May 2020 Turkey:11 March to 02 May 2020
Number of infected 6336 124375
Number of death 123 3336

Number of recovered 2549 58259
Total tested 230686 1,033,617

Lockdown date
26 March 2020
(Total lockdown)

11April 2020, (Partial lockdown:
Less than 20 and
older than 65)

Donations NA
t 1,865,799,782 up to

28 April 2020

The analysis presented in this section does not aim at praising nor criticizing any country; but just to assess
the effect of lockdown and its regulations, and to perceive if this concept can help save humans before the
vaccine. The fundamental question to answer here is to know why South Africa has less number of deaths and
infected people than Turkey; if it recorded its first confirmed case six days earlier before Turkey recorded its
first. The answer may rely on two fundamental facts which include the period lockdown was implemented and
the type of lockdown put in place. The South African government publicized on 23 March 2020 a 21-day of
national lockdown which started effectively from midnight 27 March. This was announced 22 days after the first
confirmed case was recorded in the country. The lockdown came with strict measures encompassing, immediate
deployment of South African National Defence force to ensure that all people living within the territory of South
Africa obey the lockdown rules. Only workers considered necessary to operative response to the pandemic were
exempted, namely: health caregivers, security service providers, essential service providers that are fundamental
to the rudimentary functioning of economy as well as other workers in industries that cannot be economically
shut down. This implies that the mentioned categories were permitted to go to their places of work during
the lockdown. On the other hand, the numbers of people at gatherings apart from funerals were limited to 50
people; while restaurants, taverns, bottle stores and shops that are not selling indispensable goods were forced to
close. Thus, a large population was not allowed to leave their houses except for essential needs. Consequently,
the movement between provinces, metropolitan and districts were also restricted unless for essential reasons
that cannot be catered for within provincial boundaries. The South African government further closed all of its
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national borders and only allowed the transportation for indispensable reasons. Likewise, all international and
domestics passenger flights were prohibited, except those assigned to evacuate citizens from foreign countries
and certain repatriations due to COVID-19. However, the measures taken by Turkey were not implemented
swiftly upon the confirmation of its first COVID-19 case. It is recorded that the Turkish government announced
a partial lockdown on 11 April 2020, a month after the country registered it first confirmed case of COVID-19.
Prior to the announcement of the partial lockdown, mosques cafes, night clubs, and all universities within the
country were already closed on 11 March 2020. The restriction measures applied only on people younger than
20 years old and older than 65 years old, who were not allowed to leave their homes except for indispensable
reasons. In addition, the government ordered a ban on movements between 30 major cities with metropolitan
status as well as Zonguldak; whereby the lockdown is applied every weekend since 11 April 2020 and also 21-
23 April 2020. Punishment (money) is applied for people who go out. Very importantly the government have
totally banned the sale of masks, but provided free masks to its people to be compulsory utilized in public places.
However, the newly placed order exempted health care assistance, funerals, military and passenger transports
from the ban; provided that certain conditions are met. Although both countries have put severe measures to
protect their citizens from the deadly disease; there are still records of rising number of infected and dead people
in both Turkey and South Africa. Does that mean that the lockdown regulations are worthless? Absolutely
not! It is only that several citizens in respective countries are not adhering to the rules and regulations put
in place by their respective government authorities. This results from the concept of social distancing being
largely misunderstood, as it is not clearly defined to mean whether persons should stay one meter away from
one another or only from any infected humans, contaminated air and other objects because of the nature in
which COVID-19 can be spread. Nevertheless, due to a long incubation period of COVID-19, approximately
14 days maximum; which renders ordinary citizens not to differentiate an infected person from others; then it
is crucial that stringent measures be implemented, which will prohibit people from leaving their homes; and in
case they had gone out, they should maintain the one metre distance away from each other and frequently wash
their hands upon touching any object.

3 Mathematical model of COVID-19 in South Africa and Turkey

Mathematical models of infected diseases are deemed not that useful by some people who feel that they cannot
be utilized to develop a vaccine or cure of any given disease. However, it is important to note that the principal
aim of these mathematical models is to describe a system using mathematical tools, concepts and language.
Hence, throughout the history of human beings, researchers working within the field of mathematics have
developed more accurate and effi cient mathematical models. For instance, history has made reference to one
of the well-known Newtonian laws which described very accurately many problems in our daily lives; although
they are coupled with some limits. In instances where these laws failed, two other well-known concepts namely;
theory of relativity and quantum mechanics using mathematical formulas can be utilized instead. Generally,
these concepts are of great importance in all fields of science such as in natural sciences including chemistry,
biology, physics, and earth science, in engineering such as computer science, and electrical engineering, as well
as in social science where their applicability to economics, sociology, psychology and political science can be
relevant. In other words, mathematical models can help to provide a clear explanation of a system and investigate
the effect of several components, and later make an accurate predictions based on the observed facts. In the
current situation under study, due to the magnitude of fear imposed by COVID-19 on humans, it is therefore
paramount for mathematicians to provide conceptual models, using mathematical tools called differential and
integral operators, to suggest well-constructed mathematical models that will be used to understand and predict
the spread of COVID-19.
In this section, a mathematical model that takes into account nine classes (susceptible, infected which

has 5 sub-classes, recovered, death and vaccinated classes), the dynamic is presented and explained with the
subsequent diagrams; but the death class is omitted because it can produce a complex model. The created model
incorporates the lockdown effect, represented by a coeffi cient that takes into account the social distancing and
a contact coeffi cient.
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·
S = Λ− (α (x) + γ1 + µ1)S (3.1)
·
I = α (x)S − (ε+ ξ + λ+ µ1) I
·
IA = ξI − (θ + µ+ χ+ µ1) IA
·
ID = εI − (η + ϕ+ µ1) ID
·
IR = ηID + θIA − (v + ξ + µ1) IR
·
IT = µIA + vIR − (σ + τ + µ1) IT
·
R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R
·
D = τ IT − µ1D
·
V = γ1S + ΦR− µ1V − τ IT

where

·
N = Λ− µ1N − τ IT (3.2)

α (x) =
k1pe

−x

N
(I + w (βID + γIA + δ1IR)) .

S (t) is the class of individuals that are susceptible to contact COVID-19 at time t. I (t) is the class of
individuals that are susceptible to contacted COVID-19, but have no symptoms and have not been tested.
IA (t) is the class of individuals that have some symptoms but not tested yet. ID (t) is the class of individuals
that have contacted COVID-19, have been tested positive, but no symptoms. IR (t) is the class of individuals
that have contacted COVID-19, have been tested positive and have symptoms. IT (t) is the class of individuals
that have contacted COVID-19 and one is critical condition. R (t) is the class of recovered individuals at time
t. D (t) is the number of death at time t. V (t) is the class of individuals that have been vaccinated.

Table 4. Parameters of the suggested COVID-19 model
Φ : The rate at which recovered and vaccinated

µ1 : Turkish natural mortal rate

α (x) : The infection force

β : Transmission rate of ID (t) class

γ : Transmission rate of IA (t) class

δ1 : Transmission rate of IR (t) class

ε : Proportion rate of detection relative to asymptomatic class

θ : Proportion rate of detection relative to symptomatic class

ξ : Rate that infected class are not aware of their status

η : Rate that infected class are aware of their status

µ : Rate that non-tested join class IT (t)

v : Rate that tested join class IT (t)

τ : The mortal rate due to COVID-19

λ : Recovery rate of class I (t)
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κ : Recovery rate of class IA (t)

ξ : Recovery rate of class IR (t)

ϕ : Recovery rate of class ID (t)

σ : Recovery rate of class IT (t)

k1 : Contact rate

p : Proportion that a contact is suffi cient enough to lead to transmission

w : Transmission coeffi cient for the infected classes

Λ : Recruitment rate into class S (t)

γ1 : Rate of vaccination

The initial conditions are given as

N (0) = N0, S (0) = S0, I (0) = I0, IA (0) = I0
A, ID (0) = I0

D, (3.3)

IR (0) = I0
R, IT (0) = I0

T , R (0) = R0, D (0) = D0, V (0) = V0.

We present a diagram which summarizes COVID-19 model which is described by the system (3.1) in Figure 21.

Figure 32. Diagram summarizing COVID-19 model given by the system (3.1).

3.1 Boundness and positivity of the solutions

In this section, we show that ∀t ≥ 0, the system solution is positive, that the model is well-posed and biologically
feasible. We define the norm

‖f‖ = sup
t∈Df

|f (t)| . (3.4)

We assume that all the class
S (α+ γ1) > 0, ∀t ≥ 0 (3.5)
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due to the model under this assumption. We write

·
I (t) = αS − (ε+ ξ + λ+ µ1) I, ∀t ≥ 0

≥ − (ε+ ξ + λ+ µ1) I (t) , ∀t ≥ 0 (3.6)

≥ I0e−(ε+ξ+λ+µ1)t, ∀t ≥ 0

Since I (t) ≥ 0,∀t ≥ 0, then

·
IA (t) = ξI (t)− (θ + µ+ χ+ µ1) IA (t) , ∀t ≥ 0 (3.7)

≥ − (θ + µ+ χ+ µ1) IA (t) , ∀t ≥ 0

then
IA (t) ≥ I0

Ae
−(θ+µ+χ+µ1)t, ∀t ≥ 0. (3.8)

The same with ID (t) class
ID (t) ≥ I0

De
−(η+ϕ+µ1)t, ∀t ≥ 0. (3.9)

IA (t) and ID (t) are positive ∀t ≥ 0 and η, θ ≥ 0 then

IR (t) ≥ I0
Re
−(v+ξ+µ1)t, ∀t ≥ 0,

IT (t) ≥ I0
T e
−(σ+τ+µ1)t, ∀t ≥ 0, (3.10)

R (t) ≥ R0e
−(Φ+µ1)t, ∀t ≥ 0,

D (t) ≥ D0e
−µt, ∀t ≥ 0.

Also

·
V (t) ≥ −µ1V (t)− τ IT (t) , ∀t ≥ 0 (3.11)

V (t) ≥ V0e
−µ1t − τ

t∫
0

e−µ1(t−τ)IT (τ) dτ

V (t) ≥ 0 if V0e
−µ1t > τ

t∫
0

e−µ1(t−τ)IT (τ) dτ, ∀t ≥ 0. With S (t) , we have to assume that

‖α‖∞ <∞⇒ ‖I‖∞ + w ‖ID‖∞ + γ ‖IA‖∞ + δ1 ‖IR‖∞ <∞ (3.12)

such that

·
S (t) = Λ− (α (x) + γ1 + µ1)S, ∀t ≥ 0

≥ − (α (x) + γ1 + µ1)S, ∀t ≥ 0

≥ − (|α (x)|+ γ1 + µ1)S, ∀t ≥ 0, (3.13)

≥ −
(

sup
x∈Dα

|α (x)|+ γ1 + µ1

)
S, ∀t ≥ 0

≥ − (‖α‖∞ + γ1 + µ1)S, ∀t ≥ 0.

This implies that
S (t) ≥ S0e

−(‖α‖∞+γ1+µ1)t, ∀t ≥ 0. (3.14)

Therefore ∀t ≥ 0, if the initial conditions are positive, all the solutions are positive with extra condition on V (t)
class that

V0e
−µ1t > τ

t∫
0

e−µ1(t−τ)IT (τ) dτ, ∀t ≥ 0. (3.15)
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Now in the absence of the COVID-19, we have

N (t) ≤ Λ

µ1

. (3.16)

The above inequality is called threshold population level. This obtains because we assume that the total number
of population must be increased or be constant

dN (t)

dt
≥ 0⇒ Λ− µ1N ≥ 0 (3.17)

therefore N (t) ≤ Λ
µ1
. It is therefore biologically feasible that

Ω =

{
(S, I, IA, ID, IR, IT , R,D, V ) ∈ R : 0 ≤ S + I + IA + ID + IR + IT +R+D + V = N ≤ Λ

µ1

}
. (3.18)

The disease free equilibrium point is(
Λ

γ1 − µ1

, 0, 0, 0, 0, 0, 0, 0,
Λγ1

µ1 (γ1 − µ1)

)
. (3.19)

We now derive the reproduction number using the next generation operator technique [9]. We have 3 infected
classes I (t) , IA (t) and ID (t) . The matrix F and V will be be obtained from

·
I = α (x)S − (ε+ ξ + λ+ µ1) I
·
IA = ξI − (θ + µ+ χ+ µ1) IA (3.20)
·
ID = εI − (η + ϕ+ µ1) ID.

We obtain the following matrices

F =

 δ (x) δ (x)wγ δ (x)wβ
ξ 0 0
ε 0 0

 (3.21)

and

V =

 (ε+ ξ + λ+ µ1) 0 0
0 (θ + µ+ χ+ µ1) 0
0 0 (η + ϕ+ µ1)

 . (3.22)

For simplicity

V =

 l1 0 0
0 l2 0
0 0 l3

 (3.23)

where

l1 = ε+ ξ + λ+ µ1

l2 = θ + µ+ χ+ µ1 (3.24)

l3 = η + ϕ+ µ1.

Then we have

V −1 =

 1
l1

0 0

0 1
l2

0

0 0 1
l3

 . (3.25)

So we write the following

FV −1 =

 δ (x) δ (x)wγ δ (x)wβ
ξ 0 0
ε 0 0

 1
l1

0 0

0 1
l2

0

0 0 1
l3

 (3.26)
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and we have

FV −1 =


δ(x)
l1

δ(x)wγ
l2

δ(x)wβ
l3

ξ
l1

0 0
ε
l1

0 0

 . (3.27)

We now present disease equilibrium points. We achieve this by solving

Λ− (α (x) + γ1 + µ1)S = 0

α (x)S − (ε+ ξ + λ+ µ1) I = 0

ξI − (θ + µ+ χ+ µ1) IA = 0

εI − (η + ϕ+ µ1) ID = 0

ηID + θIA − (v + ξ + µ1) IR = 0 (3.28)

µIA + vIR − (σ + τ + µ1) IT = 0

λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R = 0

τ IT − µ1D = 0

γ1S + ΦR− µ1V − τ IT = 0

This implies that

D =
τ

µ1

IT

IA =
ξ

θ + µ+ χ+ µ1

I

ID =
ε

η + ϕ+ µ1

I (3.29)

IR =

(
ηε

η + ϕ+ µ1

+
θξ

θ + µ+ χ+ µ1

)
I

v + ξ + µ1

IT =

(
µξ

θ + µ+ χ+ µ1

+
χηε

η + ϕ+ µ1

+
vθξ

θ + µ+ χ+ µ1

)
I

σ + τ + µ1

.

Thus

S∗ =
δ (x)

N

(
1 + βεw

η+ϕ+µ1
+ γξw

θ+µ+χ+µ1
+ δ1ηεw

(η+ϕ+µ1)(v+ξ+µ1)

+ δ1θξw
(θ+µ+χ+µ1)(v+ξ+µ1)

)
, (3.30)

Λ− (δ (x) (I∗ + wβI∗D + γwI∗A + wδ1I
∗
R) + (γ1 + µ1))S∗ = 0

and
Λ + (γ1 + µ1)S∗

A
= I∗ (3.31)

where

A =
δ (x)

N

(
1 + βεw

η+ϕ+µ1
+ γξw

θ+µ+χ+µ1
+ δ1ηεw

(η+ϕ+µ1)(v+ξ+µ1)

+ δ1θξw
(θ+µ+χ+µ1)(v+ξ+µ1)

)
. (3.32)
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That is

I∗ =
ΛA+ (γ1 + µ1) (ξ + ε+ λ+ µ1)

A2
,

I∗A =
ξ

θ + µ+ χ+ µ1

(
ΛA+ (γ1 + µ1) (ξ + ε+ λ+ µ1)

A2

)
,

I∗D =
ε

η + ϕ+ µ1

(
ΛA+ (γ1 + µ1) (ξ + ε+ λ+ µ1)

A2

)
, (3.33)

I∗R =

(
ηε

η + ϕ+ µ1

+
θξ

θ + µ+ χ+ µ1

)(
ΛA+ (γ1 + µ1) (ξ + ε+ λ+ µ1)

A2

)
,

I∗T =
ΛA+ (γ1 + µ1) (ξ + ε+ λ+ µ1)

A2 (σ + τ + µ1)

(
µξ

θ + µ+ χ+ µ1

+
χηε

η + ϕ+ µ1

+
vθξ

θ + µ+ χ+ µ1

)
D∗ =

τ

µ1

(
µξ

θ + µ+ χ+ µ1

+
χηε

η + ϕ+ µ1

+
vθξ

θ + µ+ χ+ µ1

)
ΛA+ (γ1 + µ1) (ξ + ε+ λ+ µ1)

A2 (σ + τ + µ1)
.

Also we get

R∗ =
ΛA+ (γ1 + µ1) (ξ + ε+ λ+ µ1)

A2 (Φ + µ1)


λ+ ηε

η+ϕ+µ1
+ χξ

θ+µ+χ+µ1

+ ξ
v+ξ+µ1

(
ηε

η+ϕ+µ1
+ θξ

θ+µ+χ+µ1

)
+ σµξ

(θ+µ+χ+µ1)(σ+τ+µ1)

+ vηεσ
(η+ϕ+µ1)(σ+τ+µ1) + σvθξ

(θ+µ+χ+µ1)(σ+τ+µ1)

 (3.34)

and

V ∗ =
γ1 (ξ + ε+ λ+ µ1)

µ1A
+

ΦΛA+ (γ1 + µ1) Φ (ξ + ε+ λ+ µ1)

A2 (Φ + µ1)
(3.35)

×


λ+ ηε

η+ϕ+µ1
+ χξ

θ+µ+χ+µ1

+ ξ
v+ξ+µ1

(
ηε

η+ϕ+µ1
+ θξ

θ+µ+χ+µ1

)
+ σµξ

(θ+µ+χ+µ1)(σ+τ+µ1)

+ vηεσ
(η+ϕ+µ1)(σ+τ+µ1) + σvθξ

(θ+µ+χ+µ1)(σ+τ+µ1)

 .

For the COVID-19 endemic with this model, we need to have

·
I (t) > 0,

·
IA (t) > 0 and

·
ID (t) > 0. (3.36)

This implies

α (x)S − (ε+ ξ + λ+ µ1) I > 0, ∀t ≥ 0

ξI − (θ + µ+ χ+ µ1) IA > 0, ∀t ≥ 0 (3.37)

εI − (η + ϕ+ µ1) ID > 0, ∀t ≥ 0.

Thus

IA <
ξ

θ + µ+ χ+ µ1

I

ID <
ε

η + ϕ+ µ1

I (3.38)

α (x)S

ε+ ξ + λ+ µ1

> I.

We use the fact that S
N < 1

δ (x)

ε+ ξ + λ+ µ1

(I + wβID + γwIA + wδ1IR) > I (3.39)
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noting that

IA <
ξ

θ + µ+ χ+ µ1

I

ID <
ε

η + ϕ+ µ1

I (3.40)

IR <
η

v + ξ + µ1

ID +
θ

v + ξ + µ1

IA

<
ηε

(v + ξ + µ1) (η + ϕ+ µ1)
I +

ξθ

(θ + µ+ χ+ µ1) (v + ξ + µ1)
I.

Also

wβID <
wβεI

η + ϕ+ µ1

(3.41)

wγ1IA <
wγ1ξI

θ + µ+ χ+ µ1

.

Therefore we have the following inequality in terms of I

δ (x)

ε+ ξ + λ+ µ1

(
I + wβε

η+ϕ+µ1
I + wγ1ξ

θ+µ+χ+µ1
I

+ wηεδ1

(v+ξ+µ1)(η+ϕ+µ1)I + wδ1ξθ
(θ+µ+χ+µ1)(v+ξ+µ1)I

)
> I (3.42)

and
δ (x)

ε+ ξ + λ+ µ1

(
1 + wβε

η+ϕ+µ1
+ wγ1ξ

θ+µ+χ+µ1

+ wηεδ1

(v+ξ+µ1)(η+ϕ+µ1) + wδ1ξθ
(θ+µ+χ+µ1)(v+ξ+µ1)

)
> 1. (3.43)

Therefore
R0 > 1 (3.44)

where

R0 =
δ (x)

ε+ ξ + λ+ µ1

(
1 + wβε

η+ϕ+µ1
+ wγ1ξ

θ+µ+χ+µ1

+ wηεδ1

(v+ξ+µ1)(η+ϕ+µ1) + wδ1ξθ
(θ+µ+χ+µ1)(v+ξ+µ1)

)
. (3.45)

This shows that we have a unique endemic equilibrium when R0 > 1.

3.2 Local and global stability of the Disease-free equilibrium

Lemma 1. The disease-free equilibrium E0 of the COVID-19 system is locally asymptotically stable when
R0 < 1 and unstable when R0 > 1. The Jacobian matrix for COVID-19 system is given by



− (γ1 + µ1) 0 0 0 0 0 0 0 0
0 − (ε + ξ + λ + µ1) 0 0 0 0 0 0 0
0 ξ − (θ + µ + χ + µ1) 0 0 0 0 0 0
0 ε 0 − (η + ϕ + µ1) 0 0 0 0 0
0 0 θ η − (v + ξ + µ1) 0 0 0 0
0 0 µ 0 v − (σ + τ + µ1) 0 0 0
0 λ χ ϕ ξ σ − (Φ + µ1) 0 0
0 0 0 0 0 0 τ −µ1 0
γ1 0 0 0 0 −τ Φ 0 −µ1



It is known that the disease-free equilibrium E0 asymptotically stable if and only if the tr (J (E0)) < 0 and the
det (J (E0)) > 0. For the suggested COVID-19 the trace of J (E0) is

tr (J (E0)) = − (γ1 + 9µ1 + 2ξ + ε+ λ+ θ + Φ + τ + µ+ ϕ+ η + v + χ) < 0. (3.46)

The determinant of J (E0) is

det (J (E0)) = (γ1 + µ1) (ε+ ξ + λ+ µ1) (θ + µ+ χ+ µ1) (η + ϕ+ µ1) (3.47)

× (v + ξ + µ1) (σ + τ + µ1) (Φ + µ1)µ2
1 > 0.

In this case, we can conclude that the disease-free equilibrium of the suggested model for COVID-19 under
vaccination and treatment is locally asymptotically stable.
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Theorem 2. The COVID-19 model disease-free equilibrium is globally asymptotically stable within the
feasible interval if R0 < 1 and unstable if R0 > 1.
Proof. We use the Lyapunov function defined by

L =
1

l1
I +

1

l2
IA +

1

l3
ID. (3.48)

Therefore its derivative along the solutions of the COVID-19 model

dL

dt
=

1

l1

dI

dt
+

1

l2

dIA
dt

+
1

l3

dID
dt

(3.49)

where

l1 = ε+ ξ + λ+ µ1

l2 = θ + µ+ χ+ µ1 (3.50)

l3 = η + ϕ+ µ1.

Then we write
dL

dt
=

1

l1
(α (x)S − l1I) +

1

l2
(ξI − l2IA) +

1

l3
(εI − l3ID) (3.51)

=
1

l1l2l3
(α (x)Sl2l3 − l1l2l3I + l1l3ξI − l1l2l3IA + l1l2εI − l1l2l3ID) .

We have on the other hand that

α (x) =
δ (x)

N
(I + w (βID + γIA + δ1IR)) (3.52)

and we get
dL

dt
=

1

l1l2l3

(
δ(x)
N (I + w (βID + γIA + δ1IR))Sl2l3 − l1l2l3I

+l1l3ξI − l1l2l3IA + l1l2εI − l1l2l3ID

)
. (3.53)

Thus

dL

dt
≤ S

N
(I + ID + IA + IR)

[
δ (x)

ε+ ξ + λ+ µ1

(
1 + wβε

η+ϕ+µ1
+ wδ1ξ

θ+µ+χ+µ1

+ wδ1ηε
(ξ+ϕ+µ1)(v+ξ+µ1) + wδ1ξθ

(v+ξ+µ1)(θ+µ+χ+µ1)

)]
(3.54)

≤ S

N
(I + ID + IA + IR) (R0 − 1) ≤ 0 if R0 ≤ 1.

Therefore the COVID-19 will be eliminate if and only if R0 < 1 In particular, all parameters in the COVID-19
model are positive thus the Lyapunov decrease if and only if R0 ≤ 1 constant if and only if

I = ID = IA = IR = 0. (3.55)

Therefore L is Lyapunov function within the feasible biological interval and the bigger compact invariant set
in
{
S, I, ID, IA, IR, IT , R,D, V ∈ Ω : dLdt ≤ 0

}
is the point E0. By the well-known Lasalle’s invariance concept

[8] each solution of the COVID-19 model suggested in this work with initial condition in Ω leads to E0 when
t→∞ only if R0 ≤ 1. Conclusion, the disease-free equilibrium E0 of the COVID-19 model suggested here which
includes treatment and vaccination is globally asymptotically stable.

3.3 Local and global stability of the endemic equilibrium

We compute first the Jacobian matrix of the COVID-19 model for endemic equilibrium case

JE∗ =



α∗ (x)− (γ1 + µ1) 0 0 0 0 0 0 0 0
α∗ (x) −l1 0 0 0 0 0 0 0

0 ξ −l2 0 0 0 0 0 0
0 ε 0 −l3 0 0 0 0 0
0 0 θ η −l4 0 0 0 0
0 0 µ 0 v −l5 0 0 0
0 λ χ ϕ ξ σ −l6 0 0
0 0 0 0 0 0 τ −µ1 0
γ1 0 0 0 0 −τ Φ 0 −µ1


. (3.56)
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We now construct a characteristic equation

P = det |−JE∗ + IMλ| = 0 (3.57)

where IM is the 9× 9 unit matrix. Then we have

det



λ+ l 0 0 0 0 0 0 0 0
α∗ λ+ l1 0 0 0 0 0 0 0
0 ξ λ+ l2 0 0 0 0 0 0
0 ε 0 λ+ l3 0 0 0 0 0
0 0 θ η λ+ l4 0 0 0 0
0 0 µ 0 v λ+ l5 0 0 0
0 λ χ ϕ ξ σ λ+ l6 0 0
0 0 0 0 0 0 τ λ+ µ1 0
γ1 0 0 0 0 −τ Φ 0 λ+ µ1


. (3.58)

From the above, we obtain the

P (λ) = λ9 + a1λ
8 + a2λ

7 + a3λ
6 + a4λ

5 + a5λ
4 + a6λ

3 + a7λ
2 + a8λ+ a9. (3.59)

The square Hurwitz matrix associate to P (λ) is given as

H =



a1 a3 a5 a7 a9 0 0 0 0
1 a2 a4 a6 a8 0 0 0 0
0 a1 a3 a5 a7 a9 0 0 0
0 1 a2 a4 a6 a8 0 0 0
0 0 a1 a3 a5 a7 a9 0 0
0 0 1 a2 a4 a6 a8 0 0
0 0 0 a1 a3 a5 a7 a9 0
0 0 0 1 a2 a4 a6 a8 0
0 0 0 0 a1 a3 a5 a7 a9


. (3.60)

Then we have

H1 = a1 > 0

H2 = a1a2 − a3 > 0

H3 = −a2
1a4 + a1a2a3 + a1a5 − a2

3 > 0

H4 = a2
1a2a6 − a2

1a
2
4 − a1a

2
2a5 + a1a2a3a4 − a1a2a7 − a1a3a6 + 2a1a4a5 + a2a3a5

−a2
3a4 + a3a7 − a2

5 > 0

H5 = a3
1a4a8 − a3

1a
2
6 − a2

1a2a3a8 − a2
1a2a4a7 + 2a2

1a2a5a6 + a2
1a3a4a6 − a2

1a
2
4a5

+a1a
2
2a3a7 − a1a

2
2a

2
5 − a3

5 + a1a2a3a4a5 − a2
1a4a9 − a2

1a5a8 + 2a2
1a6a7 + a1a2a3a9

−a1a2a5a7 + a1a
3
1a8 − 3a1a3a5a6 − a1a2a + 2a1a4a

2
5 − a2a

2
3a7 + a2a3a

2
5

(3.61)

+a3
3a6 − a2

3a4a5 + a1a5a9 − a1a
2
7 − a9a

2
3 + 2a3a5a7 > 0

H6 = −a3
1a

2
8a2 + 2a3

1a4a6a8 − a3
1a

3
6 − a2

1a
2
2a6a9 + 2a2

1a
2
2a7a8 − a2

1a2a3a6a8 + a2
1a

2
4a2a9

−3a2
1a2a6a4a7 + 2a2

1a2a5a
2
6 − a2

1a
2
4a3a8 + a2

1a
2
6a3a4 + a2

1a
3
4a7 − a2

1a
2
4a5a6 + a3

2a1a5a9

−a1a
3
2a

2
7 − a1a

2
2a3a4a9 − a1a

2
2a3a8a5 + 2a1a

2
2a3a6a7 + a1a

2
2a4a5a7 − a1a

2
2a

2
5a6

+a1a2a
2
3a4a8 − a1a2a

2
3a

2
6 − a1a2a3a7a

2
4 + a1a2a3a4a5a6 + 2a2

1a2a8a9 + a2
1a3a

2
8

−2a2
1a4a6a9 − 2a2

1a4a7a8 − 2a2
1a5a6a8 + 3a2

1a
2
6a7 − a1a

2
2a7a9 + 3a1a2a3a6a9

−3a1a2a3a7a8 − 2a1a2a4a5a9 + 3a1a2a4a
2
7 − a1a2a5a7a6 + a1a

2
3a6a8 + 2a1a4a7a9

+2a1a4a3a5a8 + a1a4a3a6a7 − 3a1a3a5a
2
6 − 2a1a

2
4a5a7 + 2a1a4a

2
5a6 + 2a1a5a6a9

−a2
2a3a5a9 + a2

2a3a
2
7 + a2a

2
3a4a9 + a2a

2
3a5a8 − 2a2a

2
3a6a7 − a2a3a4a5a7

+a2a3a6a
2
5 − a3

3a4a8 + a3
3a

2
6 + a2

3a
2
4a7 − a2

3a4a5a6 − a1a2a
2
9 − 2a1a3a8a9

+a2a3a7a9 + 2a1a7a5a8 + a2a
2
5a9 − a2a

2
7a5 + a2

3a7a8 − 2a4a3a
2
7 + 3a5a3a6a7

−3a1a6a
2
7 − 2a9a6a

2
3 − a3a8a

2
5 + a4a

2
5a7 − a3

5a6 + a3a
2
9 − 2a7a5a9 + a3

7 > 0
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H7 = a4
1a

3
8 + 2a3

1a2a6a8a9 − 3a3
1a2a7a

2
8 − a3

1a3a6a
2
8 + a3

1a
2
4a8a9 − 2a3

1a
2
8a4a5 − a3

1a4a
2
6a9 + 3a3

1a4a6a8a7

+a3
1a5a

2
6a8 − a3

1a
3
6a7 + a2

1a
2
2a

2
9a4 − 2a2

1a
2
2a8a9a5 + 3a2

1a2a3a5a
2
8 − 3a2

1a2a4a6a
2
7 − 2a2

1a
2
4a3a7a8

−2a2
1a

2
2a7a9a6 + 3a2

1a
2
2a

2
7a8 − 3a2

1a2a3a4a8a9 + 2a2
1a2a5a

2
6a7 + a2

1a4a
2
3a

2
8 + a2

1a
2
4a3a6a9 + a2

1a
2
4a

2
5a8

−a2
1a2a3a6a7a8 + a2

1a2a
2
4a7a9 + 2a2

1a2a5a4a6a9 + a2
1a2a5a4a7a8 − 2a2

1a2a8a6a
2
5 + a2

1a
3
4a

2
7 − a1a

3
2a

3
7

−a2
1a3a4a5a6a8 + a2

1a
2
6a3a4a7 − a2

1a
3
4a9a5 − a2

1a
2
4a5a6a7 − a1a

3
2a3a

2
9 + 2a1a

3
2a5a7a9 + 2a1a

2
2a

2
3a8a9

−a1a
2
2a3a4a7a9 − 3a1a

2
2a3a5a7a8 + 2a1a

2
2a3a6a

2
7 − a1a

2
2a4a9a

2
5 + a1a

2
2a4a5a

2
7 + a1a

2
2a

3
5a8 − a1a

3
9

−a1a
2
2a

2
5a6a7 − a1a2a

3
3a

2
8 − a1a2a

2
3a4a6a9 + 2a1a2a

2
3a4a7a8 + a1a2a

2
3a5a6a8 − a1a2a

2
3a

2
6a7

+a1a2a3a
2
4a5a9 − a1a2a3a

2
4a

2
7 − a1a2a3a4a

2
5a8 + a1a2a3a4a5a6a7 − 3a3

1a
2
8a9 − 2a2

1a2a6a
2
9 + a2

5a
2
9

+4a2
1a2a7a8a9 + 4a2

1a3a7a
2
8 − a2

1a
2
4a

2
9 + 2a2

1a4a5a9a8 − a2
1a4a6a9a7 − 3a2

1a4a
2
7a8 + 2a2

1a
2
5a

2
8

−5a2
1a5a6a7a8 + 3a2

1a
2
6a

2
7 + a1a

2
2a5a

2
9 − a1a

2
2a9a

2
7 + a1a2a3a4a

2
9 + a1a2a3a5a8a9 + 5a1a2a3a6a7a9

−5a1a2a3a
2
7a8 − 5a1a2a4a5a7a9 + 3a1a2a4 + 3a1a2a4a

3
7 + a1a2a

2
5a7a8 − a1a2a5a6a

2
7 + a4

3a
2
8

+a1a
2
3a4a8a9 − 4a1a

2
3a5a

2
8 + a1a

2
3a6a7a8 − 3a1a3a4a5a6a9 + 4a1a3a4a5a7a8 + a1a3a4a6a

2
7

+3a1a3a
2
5a6a8 − 3a1a3a5a

2
6a7 + 2a1a

2
4a

2
5a9 − 2a1a

2
4a5a

2
7 − 2a1a4a

3
5a8 + 2a1a4a

2
5a6a7 − a3

5a6a7

+a2
2a

2
3a

2
9 − 2a2

2a3a5a7a9 + a2
2a3a

3
7 − 2a2a

3
3a8a9 + a2a

2
3a4a7a9 + 3a2a

2
3a5a7a8 − 2a2a

2
3a6a

2
7

+a2a3a4a
2
5a9 − a2a3a4a5a

2
7 − a2a3a

3
5a8 + a2a3a

2
5a6a7 + a3

3a4a6a9 − 2a3
3a4a7a8 − a3

3a5a6a8

+a3
3a

2
6a7 − a2

3a
2
4a5a9 + a2

3a
2
4a

2
7 + a2

3a
2
5a4a8 − a2

3a4a5a6a7 + 3a2
1a8a

2
9 + a1a3a6a

2
9 − 6a1a3a7a8a9

+2a1a4a
2
7a9 − 3a1a

2
5a8a9 + 3a5a6a7a9 + 4a1a5a

2
7a8 − 3a1a6a

3
7 − 2a2a3a5a

2
9 + a2a3a

2
7a9 + a4

5a8

+2a2a
2
5a7a9 − a2a5a

3
7 − a2

3a4a
2
9 + 3a2

3a5a8a9 − 3a2
3a6a7a9 + 2a2

3a
2
7a8 + 2a3a4a5a7a9 − 2a3a4a

3
7

−4a3a
2
5a7a8 + 3a3a5a6a

2
7 − a4a

3
5a9 + a4a

2
5a

2
7 + 2a3a7a

2
9 − 3a5a

2
7a9a

4
7 > 0.

Theorem 3. If R0 ≥ 1, the endemic equilibrium point E∗ of the COVID-19 system is globally asymptotically
stable.
Proof. We prove this using the Lyapunov function

L (S∗, I∗, I∗A, I
∗
D, I

∗
R, I

∗
T , R

∗, D∗, V ∗) =

(
S − S∗ − S∗ log

S∗

S

)
+

(
I − I∗ − I∗ log

I∗

I

)
+

(
IA − I∗A − I∗A log

I∗A
IA

)
+

(
ID − I∗D − I∗D log

I∗D
ID

)
+

(
IR − I∗R − I∗R log

I∗R
IR

)
+

(
IT − I∗T − I∗T log

I∗T
IT

)
(3.62)

+

(
R−R∗ −R∗ log

R∗

R

)
+

(
D −D∗ −D∗ log

D∗

D

)
+

(
V − V ∗ − V ∗ log

V ∗

V

)
.

Therefore taking the derivative respect to t on both sides gives

dL

dt
=

·
L =

(
S − S∗
S

)
·
S +

(
I − I∗
I

)
·
I +

(
IA − I∗A
IA

)
·
IA +

(
ID − I∗D
ID

)
·
ID

+

(
IR − I∗R
IR

)
·
IR +

(
IT − I∗T
IT

)
·
IT +

(
R−R∗
R

)
·
R+

(
D −D∗
D

)
·
D (3.63)

+

(
V − V ∗
V

)
·
V

replacing
·
S,
·
I,
·
IA,

·
ID,

·
IR,

·
IT ,

·
R,
·
D and

·
V by their values, we obtain
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dL

dt
=

(
S − S∗
S

)
(Λ− (α (x) + γ1 + µ1)S) +

(
I − I∗
I

)
(α (x)S − l1I)

+

(
IA − I∗A
IA

)
(ξI − l2IA) +

(
ID − I∗D
ID

)
(εI − l3ID)

+

(
IR − I∗R
IR

)
(ηID + θIA − l4IR) +

(
IT − I∗T
IT

)
(µIA + vIR − l5IT ) (3.64)

+

(
R−R∗
R

)
(λI + ϕID + χIA + ξIR + σIT − l6R) +

(
D −D∗
D

)
(τ IT − µ1D)

+

(
V − V ∗
V

)
(γ1S + ΦR− µ1V − τ IT ) .

Then we have

dL

dt
=

(
S − S∗
S

)
(Λ− (α (x) (S − S∗) + γ1 (S − S∗) + µ1 (S − S∗)))

+

(
I − I∗
I

)
(α (x) (S − S∗)− l1 (I − I∗))

+

(
IA − I∗A
IA

)
(ξ (I − I∗)− l2 (IA − I∗A)) +

(
ID − I∗D
ID

)
(ε (I − I∗)− l3 (ID − I∗D))

+

(
IR − I∗R
IR

)
(η (ID − I∗D) + θ (IA − I∗A)− l4 (IR − I∗R)) (3.65)

+

(
IT − I∗T
IT

)
(µ (IA − I∗A) + v (IR − I∗R)− l5 (IT − I∗T ))

+

(
R−R∗
R

)(
λ (I − I∗) + ϕ (ID − I∗D) + χ (IA − I∗A) + ξ (IR − I∗R)

+σ (IT − I∗T )− l6 (R−R∗)

)
+

(
D −D∗
D

)
(τ (IT − I∗T )− µ1 (D −D∗))

+

(
V − V ∗
V

)
(γ1 (S − S∗) + Φ (R−R∗)− µ1 (V − V ∗)− τ (IT − I∗T )) .
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They can be separated in two part as follows

dL

dt
=

(S − S∗)2

S
(−α (x)− γ1 − µ1) + Λ− S∗

S
Λ− l1

(I − I∗)2

I
+ α (x)S − α (x)S∗

−α (x)
I∗

I
S + α (x)

I∗

I
S∗ − l2

(IA − I∗A)
2

IA
+ ξI − ξI∗ − ξ I

∗
A

IA
I + ξ

I∗A
IA
I∗

−l3
(ID − I∗D)

2

ID
+ εI − εI∗ − εI

∗
D

ID
I + ε

I∗D
ID
I∗ − l4

(IR − I∗R)
2

IR
+ ηID − ηI∗D

−ηID
I∗R
IR

+ η
I∗R
IR

+ θIA − θI∗A − θIA
I∗R
IR

+ θI∗A
I∗R
IR
− l5

(IT − I∗T )
2

IT
+ µIA − µI∗A

−µIA
I∗T
IT

+ µI∗A
I∗T
IT

+ vIR − vI∗R − vIR
I∗T
IT

+ vI∗R
I∗T
IT
− l6

(R−R∗)2

R
+ λI − λI∗ (3.66)

−λI R
∗

R
+ λI∗

R∗

R
+ ϕID − ϕI∗D − ϕID

R∗

R
+ ϕI∗D

R∗

R
+ χIA − χI∗A

−χIA
R∗

R
+ χI∗A

R∗

R
+ ξIR − ξI∗R − ξIR

R∗

R
+ ξI∗R

R∗

R
+ σIT − σI∗T

−σIT
R∗

R
+ σI∗T

R∗

R
− µ1

(D −D∗)2

D
+ τ IT − τ I∗T − τ IT

D∗

D
+ τ I∗T

D∗

D

−µ1

(V − V ∗)2

V
− γ1S − γ1S

∗ − γ1S
V ∗

V
+ γ1S

∗V
∗

V
+ ΦR− ΦR∗

−ΦR
V ∗

V
+ ΦR∗

V ∗

V
− τIT + τI∗T + τIT

V ∗

V
− τI∗T

V ∗

V
.

This can be simplified as
dL

dt
= Π− Γ (3.67)

where

Π = Λ + α (x)S + α (x)
I∗

I
S∗ + ξI + ξ

I∗A
IA
I∗ + εI + ε

I∗D
ID
I∗ + ηID

+η
I∗R
IR

+ θIA + θI∗A
I∗R
IR

+ µIA + µI∗A
I∗T
IT

+ vIR + vI∗R
I∗T
IT

+ λI

+λI∗
R∗

R
+ ϕID + ϕI∗D

R∗

R
+ χIA + χI∗A

R∗

R
+ ξIR + ξI∗R

R∗

R
(3.68)

+σIT + σI∗T
R∗

R
+ τ IT + τ I∗T

D∗

D
+ γ1S + γ1S

∗V
∗

V
+ ΦR∗

V ∗

V

+ΦR+ τI∗T + τIT
V ∗

V

and

Γ =
(S − S∗)2

S
(α (x) + γ1 + µ1) +

S∗

S
Λ + l1

(I − I∗)2

I
+ α (x)S∗

+α (x)
I∗

I
S + l2

(IA − I∗A)
2

IA
+ ξI∗ + ξ

I∗A
IA
I + l3

(ID − I∗D)
2

ID
+ εI∗

+ε
I∗D
ID
I + l4

(IR − I∗R)
2

IR
+ ηI∗D + ηID

I∗R
IR

+ θI∗A + θIA
I∗R
IR

+ µI∗A

+µIA
I∗T
IT

+ vI∗R + vIR
I∗T
IT

+ l6
(R−R∗)2

R
+ λI∗ + l5

(IT − I∗T )
2

IT
(3.69)

+λI
R∗

R
+ ϕI∗D + ϕID

R∗

R
+ χI∗A + χIA

R∗

R
+ ξI∗R + ξIR

R∗

R
+ σI∗T

+σIT
R∗

R
+ µ1

(D −D∗)2

D
+ τ I∗T + τ IT

D∗

D
+ µ1

(V − V ∗)2

V

+γ1S
∗ + γ1S

V ∗

V
+ ΦR∗ + ΦR

V ∗

V
+ τIT + τI∗T

V ∗

V
.
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Therefore having Π < Γ, this implies dLdt < 0, however

0 = Π− Γ ⇒ dL

dt
= 0 (3.70)

if
S = S∗, I = I∗, IA = I∗A, ID = I∗D, IR = I∗R, IT = I∗T , R = R∗, D = D∗ and V = V ∗. (3.71)

We can now conclude that the largest compact invariant set for COVID-19 model in{
(S∗, I∗, I∗A, I

∗
D, I

∗
R, I

∗
T , R

∗, D∗, V ∗) ∈ Ω :
dL

dt
= 0

}
(3.72)

is the point {E∗} the endemic equilibrium of the COVID-19 model. Therefore using the Lasalle’s invariance
principle, we conclude that E∗ is globally asymptotically stable in Ω if Π < Γ.

4 Modeling with non-local operators

Due to complexities around the spread of COVID-19, it is really hard to produce predictions. Especially, when
multi-scenarios are requested. Indeed it has been reported that local operators including can not provide non-
local processes for example change in processes. In this section, we present an analysis of COVID-19 model with
local operators including Caputo-Caputo-Fabrizio, Atangana-Baleanu and the new introduced fractal-fractional
operators. We first present the definition of each operator. We start with the definition of Caputo fractional
derivative

C
0 D

α
t f (t) =

1

Γ (1− α)

∫ t

0

d

dτ
f (τ) (t− τ)

−α
dτ. (4.1)

Caputo-Fabrizio fractional derivative

CF
0 Dα

t f (t) =
M (α)

1− α

∫ t

0

d

dτ
f (τ) exp

[
− α

1− α (t− τ)

]
dτ. (4.2)

Atangana-Baleanu fractional derivative

ABC
0 Dα

t f (t) =
AB (α)

1− α

∫ t

0

d

dτ
f (τ)Eα

[
− α

1− α (t− τ)
α

]
dτ. (4.3)

The fractal-fractional derivative with power-law kernel

FFP
0 Dα,β

t f (t) =
1

Γ (1− α)

AGd

dtβ

∫ t

0

f (τ) (t− τ)
−α

dτ (4.4)

where
df (t)

dtβ
= lim
t→t1

f (t)− f (t1)

t2−β − t2−β1

(2− β) . (4.5)

The fractal-fractional derivative with exponential decay kernel

FFE
0 Dα,β

t f (t) =
M (α)

1− α
AGd

dtβ

∫ t

0

f (τ) exp

[
− α

1− α (t− τ)

]
dτ. (4.6)

The fractal-fractional derivative with Mittag-Leffl er kernel

FFM
0 Dα,β

t f (t) =
AB (α)

1− α
AGd

dtβ

∫ t

0

f (τ)Eα

[
− α

1− α (t− τ)
α

]
dτ. (4.7)

The associated integral operators of the last three operators are given as

FFP
0 Jα,βt f (t) =

1

Γ (α)

∫ t

0

(t− τ)
α−1

τ1−βf (τ) dτ,

FFE
0 Jα,βt f (t) =

1− α
M (α)

t1−βf (t) +
α

M (α)

∫ t

0

τ1−βf (τ) dτ, (4.8)

FFM
0 Jα,βt f (t) =

1− α
AB (α)

t1−βf (t) +
α

AB (α) Γ (α)

∫ t

0

(t− τ)
α−1

τ1−βf (τ) dτ.
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4.1 Positive solutions with non-local operators

In this subsection, we present a detailed analysis of positiveness of the solutions for COVID-19 model with
non-local operators. We start with ABC derivative case

ABC
0 Dα

t S = Λ− (α (x) + γ1 + µ1)S
ABC
0 Dα

t I = α (x)S − (ε+ ξ + λ+ µ1) I
ABC
0 Dα

t IA = ξI − (θ + µ+ χ+ µ1) IA
ABC
0 Dα

t ID = εI − (η + ϕ+ µ1) ID
ABC
0 Dα

t IR = ηID + θIA − (v + ξ + µ1) IR (4.9)
ABC
0 Dα

t IT = µIA + vIR − (σ + τ + µ1) IT
ABC
0 Dα

t R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R
ABC
0 Dα

t D = τ IT − µ1D
ABC
0 Dα

t V = γ1S + ΦR− µ1V − τ IT .

The norm and all hypothesis of the classical are valid here also

ABC
0 Dα

t I = α (x)S − (ε+ ξ + λ+ µ1) I (4.10)

≥ − (ε+ ξ + λ+ µ1) I.

This produces

I (t) ≥ I (0)Eα

[
− α (ε+ ξ + λ+ µ1) tα

AB (α)− (1− α) (ε+ ξ + λ+ µ1)

]
,∀t ≥ 0

S (t) ≥ S (0)Eα

[
− α (‖α (x)‖∞ + γ1 + µ1) tα

AB (α)− (1− α) (‖α (x)‖∞ + γ1 + µ1)

]
,∀t ≥ 0

IA (t) ≥ IA (0)Eα

[
− α (θ + µ+ χ+ µ1) tα

AB (α)− (1− α) (θ + µ+ χ+ µ1)

]
,∀t ≥ 0

ID (t) ≥ ID (0)Eα

[
− α (η + ϕ+ µ1) tα

AB (α)− (1− α) (η + ϕ+ µ1)

]
,∀t ≥ 0

IR (t) ≥ IR (0)Eα

[
− α (v + ξ + µ1) tα

AB (α)− (1− α) (v + ξ + µ1)

]
,∀t ≥ 0 (4.11)

IT (t) ≥ IT (0)Eα

[
− α (σ + τ + µ1) tα

AB (α)− (1− α) (σ + τ + µ1)

]
,∀t ≥ 0

R (t) ≥ R (0)Eα

[
− α (Φ + µ1) tα

AB (α)− (1− α) (Φ + µ1)

]
,∀t ≥ 0

D (t) ≥ D (0)Eα

[
− αµ1t

α

AB (α)− (1− α)µ1

]
,∀t ≥ 0

V (t) ≥ V (0)Eα

[
− αµ1t

α

AB (α)− (1− α)µ1

]
,∀t ≥ 0.

40

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.08.20095588doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.08.20095588
http://creativecommons.org/licenses/by-nd/4.0/


This shows that if all the initial conditions are positive then all solutions are positive with the Atangana-Baleanu
derivative. With Caputo-Fabrizio, we have

I (t) ≥ I (0) exp

[
− α (ε+ ξ + λ+ µ1) t

M (α)− (1− α) (ε+ ξ + λ+ µ1)

]
,∀t ≥ 0

S (t) ≥ S (0) exp

[
− α (‖α (x)‖∞ + γ1 + µ1) t

M (α)− (1− α) (‖α (x)‖∞ + γ1 + µ1)

]
,∀t ≥ 0

IA (t) ≥ IA (0) exp

[
− α (θ + µ+ χ+ µ1) t

M (α)− (1− α) (θ + µ+ χ+ µ1)

]
,∀t ≥ 0

ID (t) ≥ ID (0) exp

[
− α (η + ϕ+ µ1) t

M (α)− (1− α) (η + ϕ+ µ1)

]
,∀t ≥ 0

IR (t) ≥ IR (0) exp

[
− α (v + ξ + µ1) t

M (α)− (1− α) (v + ξ + µ1)

]
,∀t ≥ 0 (4.12)

IT (t) ≥ IT (0) exp

[
− α (σ + τ + µ1) t

M (α)− (1− α) (σ + τ + µ1)

]
,∀t ≥ 0

R (t) ≥ R (0) exp

[
− α (Φ + µ1) t

M (α)− (1− α) (Φ + µ1)

]
,∀t ≥ 0

D (t) ≥ D (0) exp

[
− αµ1t

M (α)− (1− α)µ1

]
,∀t ≥ 0

V (t) ≥ V (0) exp

[
− αµ1t

M (α)− (1− α)µ1

]
,∀t ≥ 0.

This shows that all solutions are positive if all the initial conditions are positive with Caputo-Fabrizio. With
Caputo derivative, we have

I (t) ≥ I (0)Eα [− (ε+ ξ + λ+ µ1) tα] ,∀t ≥ 0

S (t) ≥ S (0)Eα [− (‖α (x)‖∞ + γ1 + µ1) tα] ,∀t ≥ 0

IA (t) ≥ IA (0)Eα [− (θ + µ+ χ+ µ1) tα] ,∀t ≥ 0

ID (t) ≥ ID (0)Eα [− (η + ϕ+ µ1) tα] ,∀t ≥ 0

IR (t) ≥ IR (0)Eα [− (v + ξ + µ1) tα] ,∀t ≥ 0 (4.13)

IT (t) ≥ IT (0)Eα [− (σ + τ + µ1) tα] ,∀t ≥ 0

R (t) ≥ R (0)Eα [− (Φ + µ1) tα] ,∀t ≥ 0

D (t) ≥ D (0)Eα [−µ1t
α] ,∀t ≥ 0

V (t) ≥ V (0)Eα [−µ1t
α] ,∀t ≥ 0.

This shows that all solutions are positive if all the initial conditions are positive with Caputo.
For fractal-fractional case, without loss of generality, we present the proof for I class and the rest can be

deduced similarly. We start with power-law case

FFP
0 Dα,β

t I = α (x)S − (ε+ ξ + λ+ µ1) I, ∀t ≥ 0 (4.14)

≥ − (ε+ ξ + λ+ µ1) I, ∀t ≥ 0.

and

RL
0 Dα,β

t I ≥ −t1−β (ε+ ξ + λ+ µ1) I, ∀t ≥ 0 (4.15)

≥ −b1−β (ε+ ξ + λ+ µ1) I, ∀t ≥ 0.
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Thus, we have

I (t) ≥ I (0)Eα
[
−b1−β (ε+ ξ + λ+ µ1) tα

]
,∀t ≥ 0

S (t) ≥ S (0)Eα
[
−b1−β (‖α (x)‖∞ + γ1 + µ1) tα

]
,∀t ≥ 0

IA (t) ≥ IA (0)Eα
[
−b1−β (θ + µ+ χ+ µ1) tα

]
,∀t ≥ 0

ID (t) ≥ ID (0)Eα
[
−b1−β (η + ϕ+ µ1) tα

]
,∀t ≥ 0

IR (t) ≥ IR (0)Eα
[
−b1−β (v + ξ + µ1) tα

]
,∀t ≥ 0 (4.16)

IT (t) ≥ IT (0)Eα
[
−b1−β (σ + τ + µ1) tα

]
,∀t ≥ 0

R (t) ≥ R (0)Eα
[
−b1−β (Φ + µ1) tα

]
,∀t ≥ 0

D (t) ≥ D (0)Eα
[
−b1−βµ1t

α
]
,∀t ≥ 0

V (t) ≥ V (0)Eα
[
−b1−βµ1t

α
]
,∀t ≥ 0.

With exponential kernel, we have

I (t) ≥ I (0) exp

[
− b1−βα (ε+ ξ + λ+ µ1) t

M (α)− (1− α) (ε+ ξ + λ+ µ1)

]
,∀t ≥ 0

S (t) ≥ S (0) exp

[
− b1−βα (‖α (x)‖∞ + γ1 + µ1) t

M (α)− (1− α) (‖α (x)‖∞ + γ1 + µ1)

]
,∀t ≥ 0

IA (t) ≥ IA (0) exp

[
− b1−βα (θ + µ+ χ+ µ1) t

M (α)− (1− α) (θ + µ+ χ+ µ1)

]
,∀t ≥ 0

ID (t) ≥ ID (0) exp

[
− b1−βα (η + ϕ+ µ1) t

M (α)− (1− α) (η + ϕ+ µ1)

]
,∀t ≥ 0

IR (t) ≥ IR (0) exp

[
− b1−βα (v + ξ + µ1) t

M (α)− (1− α) (v + ξ + µ1)

]
,∀t ≥ 0 (4.17)

IT (t) ≥ IT (0) exp

[
− b1−βα (σ + τ + µ1) t

M (α)− (1− α) (σ + τ + µ1)

]
,∀t ≥ 0

R (t) ≥ R (0) exp

[
− b1−βα (Φ + µ1) t

M (α)− (1− α) (Φ + µ1)

]
,∀t ≥ 0

D (t) ≥ D (0) exp

[
− b1−βαµ1t

M (α)− (1− α)µ1

]
,∀t ≥ 0

V (t) ≥ V (0) exp

[
− b1−βαµ1t

M (α)− (1− α)µ1

]
,∀t ≥ 0.

With Mittag-Leffl er kernel, we obtain
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I (t) ≥ I (0)Eα

[
− b1−βα (ε+ ξ + λ+ µ1) tα

AB (α)− (1− α) (ε+ ξ + λ+ µ1)

]
,∀t ≥ 0

S (t) ≥ S (0)Eα

[
− b1−βα (‖α (x)‖∞ + γ1 + µ1) tα

AB (α)− (1− α) (‖α (x)‖∞ + γ1 + µ1)

]
,∀t ≥ 0

IA (t) ≥ IA (0)Eα

[
− b1−βα (θ + µ+ χ+ µ1) tα

AB (α)− (1− α) (θ + µ+ χ+ µ1)

]
,∀t ≥ 0

ID (t) ≥ ID (0)Eα

[
− b1−βα (η + ϕ+ µ1) tα

AB (α)− (1− α) (η + ϕ+ µ1)

]
,∀t ≥ 0

IR (t) ≥ IR (0)Eα

[
− b1−βα (v + ξ + µ1) tα

AB (α)− (1− α) (v + ξ + µ1)

]
,∀t ≥ 0 (4.18)

IT (t) ≥ IT (0)Eα

[
− b1−βα (σ + τ + µ1) tα

AB (α)− (1− α) (σ + τ + µ1)

]
,∀t ≥ 0

R (t) ≥ R (0)Eα

[
− b1−βα (Φ + µ1) tα

AB (α)− (1− α) (Φ + µ1)

]
,∀t ≥ 0

D (t) ≥ D (0)Eα

[
− b1−βαµ1t

α

AB (α)− (1− α)µ1

]
,∀t ≥ 0

V (t) ≥ V (0)Eα

[
− b1−βαµ1t

α

AB (α)− (1− α)µ1

]
,∀t ≥ 0.

5 Numerical analysis of COVID-19 models from classical to nonlocal

operators: Application of Atangana-Seda numerical scheme

While analytical methods are adequate to provide exact solution of a giving equation, or systems of equations,
it is important to note that when dealing with nonlinear equations, analytical methods cannot be used. In
particular, the model of COVID-19 suggested in this work either with classical or non-local operators contains
nonlinear components therefore analytical methods is ineffective. Very recently, Atangana and Seda [10] made
use of Newton polynomial to introduce an alternative numerical scheme that can be used to solving nonlinear
equations arising in many field of science, technology and engineering, the method has been recognized to be
very effi cient and accurate. In this section, we will make use of the Atangana-Seda scheme to solve the suggested
mathematical model for COVID-19 for different differential operators.
We start with classical case for numerical solution of COVID-19 model

·
S = Λ− (α (x) + γ1 + µ1)S
·
I = α (x)S − (ε+ ξ + λ+ µ1) I
·
IA = ξI − (θ + µ+ χ+ µ1) IA
·
ID = εI − (η + ϕ+ µ1) ID
·
IR = ηID + θIA − (v + ξ + µ1) IR (5.1)
·
IT = µIA + vIR − (σ + τ + µ1) IT
·
R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R
·
D = τ IT − µ1D
·
V = γ1S + ΦR− µ1V − τ IT .
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For simplicity, we write above equation as follows;
·
S = S̃ (t, S, I, IA, ID, IR, IT , R,D, V )
·
I = Ĩ (t, S, I, IA, ID, IR, IT , R,D, V )
·
IA = ĨA (t, S, I, IA, ID, IR, IT , R,D, V )
·
ID = ĨD (t, S, I, IA, ID, IR, IT , R,D, V )
·
IR = ĨR (t, S, I, IA, ID, IR, IT , R,D, V ) (5.2)
·
IT = ĨT (t, S, I, IA, ID, IR, IT , R,D, V )
·
R = R̃ (t, S, I, IA, ID, IR, IT , R,D, V )
·
D = D̃ (t, S, I, IA, ID, IR, IT , R,D, V )
·
V = Ṽ (t, S, I, IA, ID, IR, IT , R,D, V ) .

where

S̃ (t, S, I, IA, ID, IR, IT , R,D, V ) = Λ− (α (x) + γ1 + µ1)S

Ĩ (t, S, I, IA, ID, IR, IT , R,D, V ) = α (x)S − (ε+ ξ + λ+ µ1) I

ĨA (t, S, I, IA, ID, IR, IT , R,D, V ) = ξI − (θ + µ+ χ+ µ1) IA

ĨD (t, S, I, IA, ID, IR, IT , R,D, V ) = εI − (η + ϕ+ µ1) ID

ĨR (t, S, I, IA, ID, IR, IT , R,D, V ) = ηID + θIA − (v + ξ + µ1) IR (5.3)

ĨT (t, S, I, IA, ID, IR, IT , R,D, V ) = µIA + vIR − (σ + τ + µ1) IT

R̃ (t, S, I, IA, ID, IR, IT , R,D, V ) = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R

D̃ (t, S, I, IA, ID, IR, IT , R,D, V ) = τ IT − µ1D

Ṽ (t, S, I, IA, ID, IR, IT , R,D, V ) = γ1S + ΦR− µ1V − τ IT .

After applying fractal-fractional integral with exponential kernel, we have the following

S (tp+1) = S (tp) +

[
S̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−S̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+

∫ tp+1

tp

S̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

I (tp+1) = I (tp) +

[
Ĩ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−Ĩ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+

∫ tp+1

tp

Ĩ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

IA (tp+1) = IA (tp) +

[
ĨA (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

− ĨA

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+

∫ tp+1

tp

ĨA (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

ID (tp+1) = ID (tp) +

[
ĨD (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨD
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+

∫ tp+1

tp

ĨD (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ
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IR (tp+1) = IR (tp) +

[
ĨR (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨR
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ] (5.4)

+

∫ tp+1

tp

ĨR (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

IT (tp+1) = IT (tp) +

[
ĨT (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨT
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+

∫ tp+1

tp

ĨT (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

R (tp+1) = R (tp) +

[
R̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−R̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+

∫ tp+1

tp

R̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

D (tp+1) = D (tp) +

[
D̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−D̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+

∫ tp+1

tp

D̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

V (tp+1) = V (tp) +

[
Ṽ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−Ṽ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+

∫ tp+1

tp

Ṽ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

We can have the following scheme for this model

Sp+1 = Sp +
1− α
M (α)

[
S̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−S̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 S̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 S̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 S̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1 = Ip +

1− α
M (α)

[
Ĩ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−Ĩ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 Ĩ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 Ĩ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 Ĩ

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1
A = IpA +

1− α
M (α)

[
ĨA (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨA
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 ĨA (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 ĨA

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 ĨA

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


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Ip+1
D = IpD +

1− α
M (α)

[
ĨD (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨD
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 ĨD (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 ĨD

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 ĨD

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t



Ip+1
R = IpR +

1− α
M (α)

[
ĨR (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨR
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ] (5.5)

+
α

M (α)


23
12 ĨR (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 ĨR

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 ĨR

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t



Ip+1
T = IpT +

1− α
M (α)

[
ĨT (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨT
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 ĨT (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 ĨT

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 ĨT

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t



Rp+1 = Rp +
1− α
M (α)

[
R̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−R̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 R̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 R̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 R̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t



Dp+1 = Dp +
1− α
M (α)

[
D̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−D̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12D̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3D̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12D̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t



V p+1 = V p +
1− α
M (α)

[
Ṽ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−Ṽ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 Ṽ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 Ṽ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 Ṽ

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


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Now, we handle the following model with classical derivative

·
S = Λ− (α (x) + γ1 + µ1)S
·
I = α (x)S − (ε+ ξ + λ+ µ1) I
·
IA = ξI − (θ + µ+ χ+ µ1) IA
·
ID = εI − (η + ϕ+ µ1) ID
·
IR = ηID + θIA − (v + ξ + µ1) IR (5.6)
·
IT = µIA + vIR − (σ + τ + µ1) IT
·
R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R
·
D = τ IT − µ1D
·
V = γ1S + ΦR− µ1V − τ IT

where initial conditions are

S (0) = 57780000, I (0) = 1, IA (0) = 1, ID (0) = 1, IR (0) = 1, (5.7)

IT (0) = 1, R (0) = 0.1, D (0) = 0.2, V (0) = 0.1.

Also the parameters are chosen as

Λ = 57000000, k = 3, p = 0.5, η = 0.12, χ = 0.015, v = 0.027, x = 0.4,

θ = 0.301, γ = 0.09, β = 0.013, λ = 0.0345, ϕ = 0.0345, δ1 = 0.01, (5.8)

γ1 = 0.4, µ1 = 0.3, ε = 0.161, ξ = 0.015, σ = 0.015, τ = 0.0199,Φ = 0.2.

We present numerical simulation for COVID-19 model in Figure 33 and 34.

Figure 33. Numerical visualization for COVID-19 model in South Africa.
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Figure 34. Numerical visualization for COVID-19 model in South Africa.

For same model, initial conditions are chosen

S (0) = 81000000, I (0) = 1, IA (0) = 1, ID (0) = 1, IR (0) = 1, (5.9)

IT (0) = 1, R (0) = 0.1, D (0) = 0.2, V (0) = 0.1.

Also the parameters are

Λ = 80000000, k = 2, p = 0.5, η = 0.12, χ = 0.015, v = 0.027, x = 0.4, θ = 0.301,

γ = 0.09, β = 0.013, γ1 = 0.4, µ1 = 0.3, ε = 0.161, ξ = 0.015, σ = 0.015, (5.10)

τ = 0.0199,Φ = 0.2, λ = 0.0345, ϕ = 0.0345, δ1 = 0.01.

We present numerical simulation for COVID-19 model in Figure 35 and 36.
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Figure 35. Numerical visualization for COVID-19 model in Turkey.

Figure 36. Numerical visualization for COVID-19 model in Turkey.

Now, we replace the classical differential operator will be replaced by the operator with power-law, exponential
decay and Mittag-Leffl er kernels. We start with exponential decay kernel
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CF
0 Dα

t S = Λ− (α (x) + γ1 + µ1)S
CF
0 Dα

t I = α (x)S − (ε+ ξ + λ+ µ1) I
CF
0 Dα

t IA = ξI − (θ + µ+ χ+ µ1) IA
CF
0 Dα

t ID = εI − (η + ϕ+ µ1) ID
CF
0 Dα

t IR = ηID + θIA − (v + ξ + µ1) IR (5.11)
CF
0 Dα

t IT = µIA + vIR − (σ + τ + µ1) IT
CF
0 Dα

t R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R
CF
0 Dα

t D = τ IT − µ1D
CF
0 Dα

t V = γ1S + ΦR− µ1V − τ IT .

For simplicity, we write above equation as follows;

CF
0 Dα

t S = S̃ (t, S, I, IA, ID, IR, IT , R,D, V )
CF
0 Dα

t I = Ĩ (t, S, I, IA, ID, IR, IT , R,D, V )
CF
0 Dα

t IA = ĨA (t, S, I, IA, ID, IR, IT , R,D, V )
CF
0 Dα

t ID = ĨD (t, S, I, IA, ID, IR, IT , R,D, V )
CF
0 Dα

t IR = ĨR (t, S, I, IA, ID, IR, IT , R,D, V ) (5.12)
CF
0 Dα

t IT = ĨT (t, S, I, IA, ID, IR, IT , R,D, V )
CF
0 Dα

t R = R̃ (t, S, I, IA, ID, IR, IT , R,D, V )
CF
0 Dα

t D = D̃ (t, S, I, IA, ID, IR, IT , R,D, V )
CF
0 Dα

t V = Ṽ (t, S, I, IA, ID, IR, IT , R,D, V ) .

After applying fractal-fractional integral with exponential kernel, we have the following

S (tp+1) = S (tp) +
1− α
M (α)

[
S̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−S̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)

∫ tp+1

tp

S̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

I (tp+1) = I (tp) +
1− α
M (α)

[
Ĩ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−Ĩ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)

∫ tp+1

tp

Ĩ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

IA (tp+1) = IA (tp) +
1− α
M (α)

[
ĨA (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

− ĨA

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)

∫ tp+1

tp

ĨA (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

ID (tp+1) = ID (tp) +
1− α
M (α)

[
ĨD (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨD
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)

∫ tp+1

tp

ĨD (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ
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IR (tp+1) = IR (tp) +
1− α
M (α)

[
ĨR (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨR
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ](5.13)

+
α

M (α)

∫ tp+1

tp

ĨR (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

IT (tp+1) = IT (tp) +
1− α
M (α)

[
ĨT (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨT
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)

∫ tp+1

tp

ĨT (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

R (tp+1) = R (tp) +
1− α
M (α)

[
R̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−R̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)

∫ tp+1

tp

R̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

D (tp+1) = D (tp) +
1− α
M (α)

[
D̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−D̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)

∫ tp+1

tp

D̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

V (tp+1) = V (tp) +
1− α
M (α)

[
Ṽ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−Ṽ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)

∫ tp+1

tp

Ṽ (τ , S, I, IA, ID, IR, IT , R,D, V ) dτ

We can have the following scheme for this model

Sp+1 = Sp +
1− α
M (α)

[
S̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−S̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 S̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 S̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 S̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1 = Ip +

1− α
M (α)

[
Ĩ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−Ĩ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 Ĩ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 Ĩ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 Ĩ

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1
A = IpA +

1− α
M (α)

[
ĨA (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨA
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 ĨA (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 ĨA

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 ĨA

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


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Ip+1
D = IpD +

1− α
M (α)

[
ĨD (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨD
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 ĨD (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 ĨD

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 ĨD

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1
R = IpR +

1− α
M (α)

[
ĨR (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨR
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ] (5.14)

+
α

M (α)


23
12 ĨR (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 ĨR

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 ĨR

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1
T = IpT +

1− α
M (α)

[
ĨT (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−ĨT
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 ĨT (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 ĨT

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 ĨT

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Rp+1 = Rp +

1− α
M (α)

[
R̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−R̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 R̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 R̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 R̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Dp+1 = Dp +

1− α
M (α)

[
D̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−D̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12D̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3D̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12D̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


V p+1 = V p +

1− α
M (α)

[
Ṽ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−Ṽ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 Ṽ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 Ṽ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 Ṽ

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


For Mittag-Leffl er kernel, we can have the following

Sp+1 = Sp +
1− α
AB (α)

S̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

S̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ
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Ip+1 = Ip +
1− α
AB (α)

Ĩ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

Ĩ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Ip+1
A = IpA +

1− α
AB (α)

ĨA (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

ĨA (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Ip+1
D = IpD +

1− α
AB (α)

ĨD (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

ĨD (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Ip+1
R = IpR +

1− α
AB (α)

ĨR (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p) (5.15)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

ĨR (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Ip+1
T = IpT +

1− α
AB (α)

ĨT (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

ĨT (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Rp+1 = Rp +
1− α
AB (α)

R̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

R̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Dp+1 = Dp +
1− α
AB (α)

D̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

D̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

V p+1 = V p +
1− α
AB (α)

Ṽ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

Ṽ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

53

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.08.20095588doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.08.20095588
http://creativecommons.org/licenses/by-nd/4.0/


We can get the following numerical scheme

Sp+1 =
1− α
AB (α)

S̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p) (5.16)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
S̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 S̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2S̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1 =
1− α
AB (α)

Ĩ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
Ĩ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 Ĩ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2Ĩ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


54

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.08.20095588doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.08.20095588
http://creativecommons.org/licenses/by-nd/4.0/


Ip+1
A =

1− α
AB (α)

ĨA (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
ĨA
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 ĨA (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2ĨA
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
D =

1− α
AB (α)

ĨD (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
ĨD
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 ĨD (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2ĨD
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Ip+1
R =

1− α
AB (α)

ĨR (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
ĨR
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 ĨR (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2ĨR
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
T =

1− α
AB (α)

ĨT (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
ĨT
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 ĨT (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2ĨT
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Rp+1 =
1− α
AB (α)

R̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
R̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 R̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2R̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Dp+1 =
1− α
AB (α)

D̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
D̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 D̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2D̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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V p+1 =
1− α
AB (α)

Ṽ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
Ṽ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 Ṽ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2Ṽ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


For power-law kernel, we can have the following

Sp+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

S̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Ip+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

Ĩ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Ip+1
A =

1

Γ (α)

p∑
r=2

∫ tr+1

tr

ĨA (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Ip+1
D =

1

Γ (α)

p∑
r=2

∫ tr+1

tr

ĨD (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Ip+1
R =

1

Γ (α)

p∑
r=2

∫ tr+1

tr

ĨR (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ (5.17)

Ip+1
T =

1

Γ (α)

p∑
r=2

∫ tr+1

tr

ĨT (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Rp+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

R̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

Dp+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

D̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ

V p+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

Ṽ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

dτ
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We can get the following numerical scheme

Sp+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

(5.18)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
S̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 S̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2S̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
Ĩ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 Ĩ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2Ĩ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
A =

(∆t)
α

Γ (α+ 1)

p∑
r=2

ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
ĨA
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 ĨA (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2ĨA
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Ip+1
D =

(∆t)
α

Γ (α+ 1)

p∑
r=2

ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
ĨD
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 ĨD (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2ĨD
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
R =

(∆t)
α

Γ (α+ 1)

p∑
r=2

ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
ĨR
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 ĨR (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2ĨR
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
T =

α (∆t)
α

Γ (α+ 1)

p∑
r=2

ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
ĨT
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 ĨT (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2ĨT
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Rp+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
R̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 R̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2R̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Dp+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
D̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 D̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2D̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


V p+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
Ṽ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 Ṽ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2Ṽ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Now, we handle the following model

ABC
0 Dα

t S = Λ− (α (x) + γ1 + µ1)S
ABC
0 Dα

t I = α (x)S − (ε+ ξ + λ+ µ1) I
ABC
0 Dα

t IA = ξI − (θ + µ+ χ+ µ1) IA
ABC
0 Dα

t ID = εI − (η + ϕ+ µ1) ID
ABC
0 Dα

t IR = ηID + θIA − (v + ξ + µ1) IR (5.19)
ABC
0 Dα

t IT = µIA + vIR − (σ + τ + µ1) IT
ABC
0 Dα

t R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R
ABC
0 Dα

t D = τ IT − µ1D
ABC
0 Dα

t V = γ1S + ΦR− µ1V − τ IT

where initial conditions are

S (0) = 57780000, I (0) = 1, IA (0) = 1, ID (0) = 1, IR (0) = 1, (5.20)

IT (0) = 1, S (0) = 0.1, S (0) = 0.2, S (0) = 0.1.

Also the parameters are chosen as

Λ = 57000000, k = 3, p = 0.5, η = 0.12, χ = 0.015, v = 0.027, x = 0.4, θ = 0.301,

γ = 0.09, β = 0.013, γ1 = 0.4, µ1 = 0.3, ε = 0.161, ξ = 0.015, σ = 0.015, (5.21)

τ = 0.0199,Φ = 0.2, λ = 0.0345, ϕ = 0.0345, δ1 = 0.01.

We present numerical simulation for COVID-19 model in Figure 37 and 38.

Figure 37. Numerical visualization for COVID-19 model in South Africa for α = 0.75.
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Figure 38. Numerical visualization for COVID-19 model in South Africa for α = 0.75.

For same model, initial conditions are chosen

S (0) = 81000000, I (0) = 1, IA (0) = 1, ID (0) = 1, IR (0) = 1, (5.22)

IT (0) = 1, R (0) = 0.1, D (0) = 0.2, V (0) = 0.1.

Also the parameters are

Λ = 80000000, k = 2, p = 0.5, η = 0.12, χ = 0.015, v = 0.027, x = 0.4, θ = 0.301,

γ = 0.09, β = 0.013, γ1 = 0.4, µ1 = 0.3, ε = 0.161, ξ = 0.015, σ = 0.015, (5.23)

τ = 0.0199,Φ = 0.2, λ = 0.0345, ϕ = 0.0345, δ1 = 0.01.

We present numerical simulation for COVID-19 model in Figure 39 and 40.
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Figure 39. Numerical visualization for COVID-19 model in Turkey for α = 0.8.

Figure 40. Numerical visualization for COVID-19 model in Turkey for α = 0.8.

Now, we replace the classical differential operator will be replaced by the operator with power-law, exponential
decay and Mittag-Leffl er kernels. We start with exponential decay kernel
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FFE
0 Dα,β

t S = Λ− (α (x) + γ1 + µ1)S
FFE
0 Dα,β

t I = α (x)S − (ε+ ξ + λ+ µ1) I
FFE
0 Dα,β

t IA = ξI − (θ + µ+ χ+ µ1) IA
FFE
0 Dα,β

t ID = εI − (η + ϕ+ µ1) ID
FFE
0 Dα,β

t IR = ηID + θIA − (v + ξ + µ1) IR (5.24)
FFE
0 Dα,β

t IT = µIA + vIR − (σ + τ + µ1) IT
FFE
0 Dα,β

t R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R
FFE
0 Dα,β

t D = τ IT − µ1D
FFE
0 Dα,β

t V = γ1S + ΦR− µ1V − τ IT .

For simplicity, we write above equation as follows;

FFE
0 Dα,β

t S = S̃ (t, S, I, IA, ID, IR, IT , R,D, V )
FFE
0 Dα,β

t I = Ĩ (t, S, I, IA, ID, IR, IT , R,D, V )
FFE
0 Dα,β

t IA = ĨA (t, S, I, IA, ID, IR, IT , R,D, V )
FFE
0 Dα,β

t ID = ĨD (t, S, I, IA, ID, IR, IT , R,D, V )
FFE
0 Dα,β

t IR = ĨR (t, S, I, IA, ID, IR, IT , R,D, V ) (5.25)
FFE
0 Dα,β

t IT = ĨT (t, S, I, IA, ID, IR, IT , R,D, V )
FFE
0 Dα,β

t R = R̃ (t, S, I, IA, ID, IR, IT , R,D, V )
FFE
0 Dα,β

t D = D̃ (t, S, I, IA, ID, IR, IT , R,D, V )
FFE
0 Dα,β

t V = Ṽ (t, S, I, IA, ID, IR, IT , R,D, V ) .

After applying fractal-fractional integral with exponential kernel, we have the following

S (tp+1) = S (tp) +
1− α
M (α)

[
t1−βp S̃ (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 S̃
(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ]

+
α

M (α)

∫ tp+1

tp

S̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ

I (tp+1) = I (tp) +
1− α
M (α)

[
t1−βp Ĩ (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 Ĩ
(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ]

+
α

M (α)

∫ tp+1

tp

Ĩ (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ

IA (tp+1) = IA (tp) +
1− α
M (α)

[
t1−βp ĨA (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 ĨA

(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ]

+
α

M (α)

∫ tp+1

tp

ĨA (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ

ID (tp+1) = ID (tp) +
1− α
M (α)

[
t1−βp ĨD (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 ĨD

(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ]

+
α

M (α)

∫ tp+1

tp

ĨD (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ
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IR (tp+1) = IR (tp) +
1− α
M (α)

[
t1−βp ĨR (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 ĨR

(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ](5.26)
+

α

M (α)

∫ tp+1

tp

ĨR (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ

IT (tp+1) = IT (tp) +
1− α
M (α)

[
t1−βp ĨT (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 ĨT

(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ]

+
α

M (α)

∫ tp+1

tp

ĨT (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ

R (tp+1) = R (tp) +
1− α
M (α)

[
t1−βp R̃ (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 R̃
(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ]

+
α

M (α)

∫ tp+1

tp

R̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ

D (tp+1) = D (tp) +
1− α
M (α)

[
t1−βp D̃ (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 D̃
(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ]

+
α

M (α)

∫ tp+1

tp

D̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ

V (tp+1) = V (tp) +
1− α
M (α)

[
t1−βp Ṽ (τ , Sp, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βp−1 Ṽ
(
τ , Sp−1, Ip−1, I p−1

A , I p−1
D , I p−1

R , I p−1
T , Rp−1, Dp−1, V p−1

) ]

+
α

M (α)

∫ tp+1

tp

Ṽ (τ , S, I, IA, ID, IR, IT , R,D, V ) τ1−βdτ

We can have the following scheme for this model

Sp+1 = Sp +
1− α
M (α)

[
t1−βP S̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1S̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ] (5.27)

+
α

M (α)


23
12 t

1−β
p S̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 S̃

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 S̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1 = Ip +

1− α
M (α)

[
t1−βP Ĩ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1Ĩ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 t

1−β
p Ĩ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 Ĩ

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 Ĩ

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1
A = IpA +

1− α
M (α)

[
t1−βP ĨA (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1ĨA

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 t

1−β
p ĨA (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 ĨA

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 ĨA

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


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Ip+1
D = IpD +

1− α
M (α)

[
t1−βP ĨD (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1ĨD

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 t

1−β
p ĨD (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 ĨD

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 ĨD

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1
R = IpR +

1− α
M (α)

[
t1−βP ĨR (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1ĨR

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 t

1−β
p ĨR (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 ĨR

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 ĨR

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Ip+1
T = IpT +

1− α
M (α)

[
t1−βP ĨT (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1ĨT

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 t

1−β
p ĨT (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 ĨT

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 ĨT

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Rp+1 = Rp +

1− α
M (α)

[
t1−βP R̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1R̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 t

1−β
p R̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 R̃

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 R̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


Dp+1 = Dp +

1− α
M (α)

[
t1−βP D̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1D̃
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 t

1−β
p D̃ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 D̃

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 D̃

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


V p+1 = V p +

1− α
M (α)

[
t1−βP Ṽ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p)

−t1−βP−1Ṽ
(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
) ]

+
α

M (α)


23
12 t

1−β
p Ṽ (tp, S

p, Ip, I pA , I
p
D , I

p
R , I

p
T , R

p, Dp, V p) ∆t

− 4
3 t

1−β
p−1 Ṽ

(
tp−1, S

p−1, Ip−1, I p−1
A , I p−1

D , I p−1
R , I p−1

T , Rp−1, Dp−1, V p−1
)

∆t

+ 5
12 t

1−β
p−2 Ṽ

(
tp−2, S

p−2, Ip−2, I p−2
A , I p−2

D , I p−2
R , I p−2

T , Rp−2, Dp−2, V p−2
)

∆t


For Mittag-Leffl er kernel, we can have the following

Sp+1 = Sp +
1− α
AB (α)

t1−βp S̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

S̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ
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Ip+1 = Ip +
1− α
AB (α)

t1−βp Ĩ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

Ĩ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Ip+1
A = IpA +

1− α
AB (α)

t1−βp ĨA (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

ĨA (τ , S, I, IA, ID, IR, IT , R,D, V ) (tP+1 − τ)
α−1

dτ

Ip+1
D = IpD +

1− α
AB (α)

t1−βp ĨD (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

ĨD (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Ip+1
R = IpR +

1− α
AB (α)

t1−βp ĨR (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p) (5.28)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

ĨR (τ , S, I, IA, ID, IR, IT , R,D, V ) (tP+1 − τ)
α−1

dτ

Ip+1
T = IpT +

1− α
AB (α)

t1−βp ĨT (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

ĨT (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Rp+1 = Rp +
1− α
AB (α)

t1−βp R̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

R̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tP+1 − τ)
α−1

dτ

Dp+1 = Dp +
1− α
AB (α)

t1−βp D̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

D̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

V p+1 = V p +
1− α
AB (α)

t1−βp Ṽ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

α

AB (α) Γ (α)

p∑
r=2

∫ tr+1

tr

Ṽ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ
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We can get the following numerical scheme

Sp+1 =
1− α
AB (α)

t1−βp S̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p) (5.29)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 S̃

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr S̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 S̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1 =
1− α
AB (α)

t1−βp Ĩ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 Ĩ

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr Ĩ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 Ĩ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Ip+1
A =

1− α
AB (α)

t1−βp ĨA (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 ĨA

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr ĨA (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 ĨA
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
D =

1− α
AB (α)

t1−βp ĨD (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 ĨD

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr ĨD (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 ĨD
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Ip+1
R =

1− α
AB (α)

t1−βp ĨR (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 ĨR

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr ĨR (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 ĨR
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
T =

1− α
AB (α)

t1−βp ĨT (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 ĨT

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr ĨT (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 ĨT
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Rp+1 =
1− α
AB (α)

t1−βp R̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 R̃

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr R̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 R̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Dp+1 =
1− α
AB (α)

t1−βp D̃ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 D̃

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr D̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 D̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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V p+1 =
1− α
AB (α)

t1−βp Ṽ (tp, S
p, Ip, I pA , I

p
D , I

p
R , I

p
T , R

p, Dp, V p)

+
α (∆t)

α

AB (α) Γ (α+ 1)

p∑
r=2

t1−βr−2 Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
α (∆t)

α

AB (α) Γ (α+ 2)

p∑
r=2

[
t1−βr−1 Ṽ

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
α (∆t)

α

2AB (α) Γ (α+ 3)

p∑
r=2

 t1−βr Ṽ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 Ṽ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


For power-law kernel, we can have the following

Sp+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

S̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Ip+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

Ĩ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Ip+1
A =

1

Γ (α)

p∑
r=2

∫ tr+1

tr

ĨA (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Ip+1
D =

1

Γ (α)

p∑
r=2

∫ tr+1

tr

ĨD (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Ip+1
R =

1

Γ (α)

p∑
r=2

∫ tr+1

tr

ĨR (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ (5.30)

Ip+1
T =

1

Γ (α)

p∑
r=2

∫ tr+1

tr

ĨT (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Rp+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

R̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

Dp+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

D̃ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ

V p+1 =
1

Γ (α)

p∑
r=2

∫ tr+1

tr

Ṽ (τ , S, I, IA, ID, IR, IT , R,D, V ) (tp+1 − τ)
α−1

τ1−βdτ
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We can get the following numerical scheme

Sp+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

t1−βr−2 S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

(5.31)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 S̃

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr S̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 S̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 S̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

t1−βr−2 Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 Ĩ

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr Ĩ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 Ĩ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 Ĩ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
A =

(∆t)
α

Γ (α+ 1)

p∑
r=2

t1−βr−2 ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 ĨA

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr ĨA (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 ĨA
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 ĨA
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Ip+1
D =

(∆t)
α

Γ (α+ 1)

p∑
r=2

t1−βr−2 ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 ĨD

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr ĨD (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 ĨD
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 ĨD
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
R =

(∆t)
α

Γ (α+ 1)

p∑
r=2

t1−βr−2 ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 ĨR

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr ĨR (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 ĨR
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 ĨR
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Ip+1
T =

α (∆t)
α

Γ (α+ 1)

p∑
r=2

t1−βr−2 ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 ĨT

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr ĨT (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 ĨT
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 ĨT
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Rp+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

t1−βr−2 R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 R̃

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr R̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 R̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 R̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


Dp+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

t1−βr−2 D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 D̃

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr D̃ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 D̃
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 D̃
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]


V p+1 =
(∆t)

α

Γ (α+ 1)

p∑
r=2

t1−βr−2 Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)

× [(p− r + 1)
α − (p− r)α]

+
(∆t)

α

Γ (α+ 2)

p∑
r=2

[
t1−βr−1 Ṽ

(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

−t1−βr−2 Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
) ]

×
[

(p− r + 1)
α

(p− r + 3 + 2α)
− (p− r)α (p− r + 3 + 3α)

]

+
(∆t)

α

2Γ (α+ 3)

p∑
r=2

 t1−βr Ṽ (tr, S
r, Ir, I rA , I

r
D , I

r
R , I

r
T , R

r, Dr, V r)

−2t1−βr−1 Ṽ
(
tr−1, S

r−1, Ir−1, I r−1
A , I r−1

D , I r−1
R , I r−1

T , Rr−1, Dr−1, V r−1
)

+t1−βr−2 Ṽ
(
tr−2, S

r−2, Ir−2, I r−2
A , I r−2

D , I r−2
R , I r−2

T , Rr−2, Dr−2, V r−2
)


×

 (p− r + 1)
α

[
2 (p− r)2

+ (3α+ 10) (p− r)
+2α2 + 9α+ 12

]
− (p− r)α

[
2 (p− r)2

+ (5α+ 10) (p− r)
+6α2 + 18α+ 12

]

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Now, we handle the following model

FFM
0 Dα,β

t S = Λ− (α (x) + γ1 + µ1)S
FFM
0 Dα,β

t I = α (x)S − (ε+ ξ + λ+ µ1) I
FFM
0 Dα,β

t IA = ξI − (θ + µ+ χ+ µ1) IA
FFM
0 Dα,β

t ID = εI − (η + ϕ+ µ1) ID
FFM
0 Dα,β

t IR = ηID + θIA − (v + ξ + µ1) IR (5.32)
FFM
0 Dα,β

t IT = µIA + vIR − (σ + τ + µ1) IT
FFM
0 Dα,β

t R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R
FFM
0 Dα,β

t D = τ IT − µ1D
FFM
0 Dα,β

t V = γ1S + ΦR− µ1V − τ IT

where initial conditions are

S (0) = 57780000, I (0) = 1, IA (0) = 1, ID (0) = 1, IR (0) = 1, (5.33)

IT (0) = 1, R (0) = 0.1, D (0) = 0.2, V (0) = 0.1.

Also the parameters are chosen as

Λ = 57000000, k = 3, p = 0.5, η = 0.12, χ = 0.015, v = 0.027, x = 0.4, θ = 0.301,

γ = 0.09, β = 0.013, γ1 = 0.4, µ1 = 0.3, ε = 0.161, ξ = 0.015, σ = 0.015, (5.34)

τ = 0.0199,Φ = 0.2, λ = 0.0345, ϕ = 0.0345, δ1 = 0.01.

We present numerical simulation for COVID-19 model in Figure 41 and 42.

Figure 41. Numerical visualization for COVID-19 model in South Africa for α = 0.9, β = 0.75.
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Figure 42. Numerical visualization for COVID-19 model in South Africa for α = 0.7, β = 0.75.

For same model, initial conditions are chosen

S (0) = 81000000, I (0) = 1, IA (0) = 1, ID (0) = 1, IR (0) = 1, (5.35)

IT (0) = 1, R (0) = 0.1, D (0) = 0.2, V (0) = 0.1.

Also the parameters are

Λ = 57000000, k = 2, p = 0.5, η = 0.12, χ = 0.015, v = 0.027, x = 0.4, θ = 0.301,

γ = 0.09, β = 0.013, γ1 = 0.4, µ1 = 0.3, ε = 0.161, ξ = 0.015, σ = 0.015, (5.36)

τ = 0.0199,Φ = 0.2, λ = 0.0345, ϕ = 0.0345, δ1 = 0.01.

We present numerical simulation for COVID-19 model in Figure 43 and 44.
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Figure 43. Numerical visualization for COVID-19 model in Turkey for α = 0.9, β = 0.75.

Figure 44. Numerical visualization for COVID-19 model in Turkey for α = 0.7, β = 0.75.
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6 Optimal control for COVID-19 model

Optimal control theory provides us important contributions in controlling COVID-19 outbreak. In this section,
we will use 7 control variables as 7 possible control strategies to perform our aim. The control variable u1 is
the partial lockdown of schools, travels, universities, some businesses in Turkey. Also government apply partial
lockdown by age of people and sometimes states where spread of virus is high. The control variable u2 is the
vaccination which is applied to susceptible individuals. The control variable u3 is the information campaign to
people that have symptoms but not have been tested. The control variable u4 is the treatment for the infected
individuals. The control variable u5 is the personal protection which is performed with masks, sanitizer and
other stuffs.The control variable u6 is the self-quarantine exposed people. The control variable u7 is the isolation
of infected people.
We modify our model by adding these control variables such as;

·
S = Λ−

(
k1pe

−x

N
(1− u1) (I + w (βID + γIA + δ1IR)) + γ1 + µ1

)
S − u5S − u2S + u7IR − u6S

·
I =

k1pe
−x

N
(1− u1) (I + w (βID + γIA + δ1IR))S − (ε+ ξ + λ+ µ1) I

·
IA = ξI − (θ + µ+ χ+ µ1) IA − u3IA
·
ID = εI − (η + ϕ+ µ1) ID
·
IR = ηID + θIA − (v + ξ + µ1) IR − u7IR − u4IR + u6S (6.1)
·
IT = µIA + vIR − (σ + τ + µ1) IT
·
R = λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R+ u4IR + u5S + u3IA
·
D = τ IT − µ1D
·
V = γ1S + ΦR− µ1V − τ IT + u2S.

In this paper, we aim to minimize susceptible, infected, critically infected, asymptomatic people and to
maximize recovered people while minimizing the costs caused by the partial lockdown, vaccination, information
campaign, treatment, personal protection, self-quarantine and isolation. Thus, we construct the cost functional
as follows;

min
(u1,u2,u3,u4,u5,u6,u7)∈U

J (u1, u2, u3, u4, u5, u6, u7) =

∫ T

0

(
ρ1S + ρ2I + ρ3IR + ρ4IA − ρ5R+ π1u

2
1 + π2u

2
2

+π3u
2
3 + π4u

2
4 + π5u

2
5 + π6u

2
6 + π7u

2
7

)
dt

(6.2)
on the set of admissible controls

U =


(u1, u2, u3, u4, u5, u6, u7) ∈ L∞ (0, T )× L∞ (0, T )× L∞ (0, T )

×L∞ (0, T )× L∞ (0, T )× L∞ (0, T )× L∞ (0, T ) :
0 ≤ u1 (t) ≤ ũ1, 0 ≤ u2 (t) ≤ ũ2, 0 ≤ u3 (t) ≤ ũ3,

0 ≤ u4 (t) ≤ ũ4, 0 ≤ u5 (t) ≤ ũ5, 0 ≤ u6 (t) ≤ ũ6, 0 ≤ u7 (t) ≤ ũ7

 . (6.3)

The parameters ρ1, ρ2, ρ3, ρ4, ρ5, π1, π2, π3, π4, π5, π6, π7 represent the weighted parameters.
To show the existence of the optimal control for the problem under consideration, we notice that the set

of admissible controls U is, by definition, closed and bounded. It is obvious that there is an admissible pair
(u1, u2, u3, u4, u5, u6, u7) for the problem. Hence, the existence of the optimal control comes as a direct result
from the Filippove-Cesari theorem [11,12]. We therefore, have the following result:
We prove that the existence of an optimal control of an optimal control is guaranteed by providing the

following conditions.

• The set of admissible controls is convex, bounded and closed.

• The set of controls and corresponding state variables is nonempty.

• The right-hand side of the state ODE system is bounded by a linear function in the state and control
variables.

80

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.08.20095588doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.08.20095588
http://creativecommons.org/licenses/by-nd/4.0/


• The convexity of the integrand of cost functional with respect to u on the set U. The Hessian matrix of
this functional is given by;

H =



2π1 0 0 0 0 0 0
0 2π2 0 0 0 0 0
0 0 2π3 0 0 0 0
0 0 0 2π4 0 0 0
0 0 0 0 2π5 0 0
0 0 0 0 0 2π6 0
0 0 0 0 0 0 2π7


. (6.4)

Since the Hessian of of this functional is everywhere positive definite, then the functional J (u1, u2, u3, u4, u5, u6, u7)
is strictly convex.

There exist constants π = min {π1, π2,π3, π4, π5, π6, π7} > 0 such that the integrand of the cost functional
holds

J̃ (U) = π1u
2
1 + π2u

2
2 + π3u

2
3 + π4u

2
4 + π5u

2
5 + π6u

2
6 + π7u

2
7

+ρ1S + ρ2I + ρ3IR + ρ4IA − ρ5R (6.5)

≥ π1u
2
1 + π2u

2
2 + π3u

2
3 + π4u

2
4 + π5u

2
5 + π6u

2
6 + π7u

2
7

≥ π
(
u2

1 + u2
2 + u2

3 + u2
4 + u2

5 + u2
6 + u2

7

)
under the condition ρ1S+ ρ2I + ρ3IR + ρ4IA > ρ5R. Applying the Pontryagin’s maximum principle, we present
the first order necessary conditions for optimal solution for the considered optimal control problem. To achieve
this, we construct the Hamiltonian H which is given as

H = π1u
2
1 + π2u

2
2 + π3u

2
3 + π4u

2
4 + π5u

2
5 + π6u

2
6 + π7u

2
7

+ρ1S + ρ2I + ρ3IR + ρ4IA − ρ5R

+λ1

(
Λ− (δ (x) (1− u1) (I + w (βID + γIA + δ1IR)) + γ1 + µ1)S

−u5S − u2S + u7IR − u6S

)
+λ2 (δ (x) (1− u1) (I + w (βID + γIA + δ1IR))S − (ε+ ξ + λ+ µ1) I)

+λ3 (ξI − (θ + µ+ χ+ µ1) IA − u3IA) (6.6)

+λ4 (εI − (η + ϕ+ µ1) ID)

+λ5 (ηID + θIA − (v + ξ + µ1) IR − u7IR − u4IR + u6S)

+λ6 (µIA + vIR − (σ + τ + µ1) IT )

+λ7 (λI + ϕID + χIA + ξIR + σIT − (Φ + µ1)R+ u4IR + u5S + u3IA)

+λ8 (τ IT − µ1D)

+λ9 (γ1S + ΦR− µ1V − τ IT + u2S) .

Then there exists λ ∈ R9 such that the first order necessary conditions for the existence of optimal control are
given by the equations
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dλ1

dt
= −∂H

∂S
= −


ρ1 − λ1

(
(δ (x) (1− u1) (I + w (βID + γIA + δ1IR)) + γ1 + µ1)

−u5 − u2 − u6

)
+λ2 (δ (x) (1− u1) (I + w (βID + γIA + δ1IR)))

+λ5u6 + λ7u5 + λ9 (u2 + γ1)


dλ2

dt
= −∂H

∂I
= −

{
ρ2 + λ1 (δ (x) (1− u1)S) + λ2 (δ (x) (1− u1)S − (ε+ ξ + λ+ µ1))

+λ3ξ + λ4ε+ λ7λI

}
dλ3

dt
= − ∂H

∂IA
= −

{
ρ4 + (λ1 + λ2) δ (x) (1− u1)wγS + λ3 (− (θ + µ+ χ+ µ1)− u3)

+λ5θ + λ6µ+ λ7 (χ+ u3)

}
dλ3

dt
= − ∂H

∂ID
= −{(λ1 + λ2) δ (x) (1− u1)wβS − λ4 (η + ϕ+ µ1) + λ5η + λ7ϕ} (6.7)

dλ3

dt
= − ∂H

∂IR
= −

{
ρ3 + (λ1 + λ2) δ (x) (1− u1)wδ1S + λ1u7

−λ5 ((v + ξ + µ1) + u7 + u4) + λ6v + λ7 (ξ + u4)

}
dλ3

dt
= − ∂H

∂IT
= −{−λ6 (σ + τ + µ1) + λ7σ − λ9τ}

dλ3

dt
= −∂H

∂R
= −{−ρ5 − λ7 (Φ + µ1) + λ9Φ}

dλ3

dt
= −∂H

∂D
= −{−λ8µ1}

dλ4

dt
= −∂H

∂V
= −. {−λ9µ1}

Hence the optimal controls are given as

u1 =
I (t)S (t) (λ1 + λ2)

2π1

u2 =
S (t) (λ1 − λ9)

2π2

u3 =
IA (t) (λ3 − λ7)

2π3

u4 =
IR (t) (λ5 − λ7)

2π4
(6.8)

u5 =
S (t) (λ1 − λ7)

2π5

u6 =
S (t) (λ1 − λ5)

2π6

u7 =
IR (t) (λ5 − λ1)

2π7
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and optimality conditions are given by

u∗1 = min

{
ũ1,max

{
0,
I (t)S (t) (λ1 + λ2)

2π1

}}
u∗2 = min

{
ũ2,max

{
0,
S (t) (λ1 − λ9)

2π2

}}
u∗3 = min

{
ũ3,max

{
0,
IA (t) (λ3 − λ7)

2π3

}}
u∗4 = min

{
ũ4,max

{
0,
IR (t) (λ5 − λ7)

2π4

}}
(6.9)

u∗5 = min

{
ũ5,max

{
0,
S (t) (λ1 − λ7)

2π5

}}
u∗6 = min

{
ũ6,max

{
0,
S (t) (λ1 − λ5)

2π6

}}
u∗7 = min

{
ũ7,max

{
0,
IR (t) (λ5 − λ1)

2π7

}}
.

7 Discussion, recommendations and conclusion

The COVID-19 fatality on mankind prompted them to undertake serious investigations covering various aspects
within several fields of science, technology and engineering in the last 4 months. While researchers have obtained
some successful results, they are still struggling to get an effective vaccine that could prevent the spread of the
deadly COVID-19 among human beings. From December 2019 to 30 April 2020, there are 3441767 confirmed
infected cases, 1097858 recovered and 243922 deaths worldwide. Among which, 6336 confirmed cases, 2549
recovered and 123 deaths are recorded in South Africa; and 124 375 confirmed cases, 58259 recovered and 3336
deaths in Turkey. South Africa registered its first confirmed case of COVID-19 before Turkey on 5 March 2020;
while Turkey witnessed its first case on 11 March. The unfolding of the spread of COVID-19 in both countries
has defeated the general expectations that South Africa would record more infections and deaths comparing
to Turkey. As a result, endless scientific questions were asked within different fields of science; which impelled
the compilation of this paper to present critical and comprehensive studies with cases studied in South Africa
and Turkey in particular. Although both countries have put in place severe measures to protect their citizens;
the statistical predictions from the suggested mathematical models and predictions from statistical analysis
show two different patterns for both countries. For instance, in Turkey, a high and exponential growth in new
infected numbers from 11 March to 11 April 2020 was observed due to late implementation of the lockdown
regulations; however, from 12 April to 02 May 2020 this country has observed an exponential decay in the daily
numbers of new infected cases. Thus, Turkey curve seems to follow a lognormal distribution, which of course
could mean that they are winning the COVID-19 war; or they took control of the situation. As a result, it is
possible that Turkey in the next few months could end the spread of COVID-19, if they maintain the energy
and adhere to the measures in place to combat this virus. However, if they relax, the prediction from reliability
level method indicated that Turkey could see a very rapid exponential growth in numbers of daily deaths and
new infections. Furthermore, it is observed that the exponential decay in the daily number of new infected and
death cases corresponds to the period of lockdown implementation and the stringent rules put in place by the
Turkish government; by which the contravening of the rule is punishable with a monetary fine. On the other
hand in South Africa, although the numbers are not as high as those of Turkey, three phases are observed from
statistical results. The first phase goes from 5 March 2020 to 27 March 2020, where the country witnessed an
exponential growth in numbers of new infected and deaths daily; and it corresponds to a pre-lockdown period.
The second phase began on 28 March until 18 April 2020, in which the country observed a slowly increase of new
infected and death daily; a period corresponding to lockdown period enforced with the presence of South Africa
Defence Force. While the last phase ranges from 19 April to 02 May 2020, in which the country observed an
exponential growth in numbers of new infected and deaths per day. This exponential growth is attributed to the
relaxation and disobedience of lockdown regulations; probably due to economic breakdown, increasing poverty
effects among the larger population and also due to migration from level five to level four on the 1 st of May 2020.
Therefore, as the provision of a suitable vaccine to save and protect human beings the wrath and the fatality of
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the deadly COVID-19, which breakout in Wuhan, China, December 2019 is delayed; it is clearly evident that the
exponential growth in numbers of new infected can only be stopped or halted by enforcing the implementation
of social distancing and ensuring that people do frequently wash their hands upon touching any object or even
animals; whether infected with COVID-19 or not. Additionally, the wearing of masks should be adopted in
public places to avoid the spreading of the virus, in case the social distancing rules is not being kept. It is
further paramount that the medical workers in charge of COVID-19 patients are well protected to minimize the
contraction of the virus from the patients and passing it on to the general public. In addition to the prohibition
of alcohol sales and usage in public places; public smoking should also be prohibited in the effort to combat the
spread of COVID-19. Moreover, the statistical analysis results specifically the reliability level prediction and
the results obtained from suggested mathematical models; indicated that without social distancing restrictions
or clear implementation of lockdown regulations, it will be impossible for countries to control the spread of
COVID-19. This implies that the number of new infected and deaths per day would be diffi cult to contain,
resulting in the fight against the virus to get out of hand. These outcomes from reliability level are therefore
indicated in blue lines in Figures 18, 19, 20, 29 and 30 those from reliability level. The suggested mathematical
models with different differential operators including classical and nonlocal operators in the last 12 Figures as
case with lockdown and no-lockdown presented for different fractional orders also confirmed the results obtained
from the reliability level. In consideration of all prediction results, it is concluded that South Africa has not
yet won the war against COVID-19 and serious outbreak are expected in the near future as the climate season
changes to winter. Cold seasons are scientifically proven to be thriving climate for the survival of corona virus.
Therefore to avoid this foreseen crisis, social distancing must be a responsibility of each person living within
the Republic of South Africa, and the transition from level 5 to level 1 should be implemented very wisely.
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