
 
 

 

 

  

Abstract— Recent studies indicated that detecting radiographic 

patterns on CT chest scans can yield high sensitivity and specificity 

for COVID-19 detection. In this work, we scrutinize the 

effectiveness of deep learning models for semantic segmentation of 

pneumonia infected area segmentation in CT images for the 

detection of COVID-19. We explore the efficacy of U-Nets and 

Fully Convolutional Neural Networks in this task using real-world 

CT data from COVID-19 patients. The results indicate that Fully 

Convolutional Neural Networks are capable of accurate 

segmentation despite the class imbalance on the dataset and the 

man-made annotation errors on the boundaries of symptom 

manifestation areas, and can be a promising method for further 

analysis of COVID-19 induced pneumonia symptoms in CT 

images. 

 
Index Terms—COVID-19, deep learning, semantic 

segmentation, CT images, pandemic. 

 

Impact Statement— Fully Convolutional Neural Networks 

appear to be an accurate segmentation method in CT scans for 

COVID-19 pneumonia and could assist in the detection as a fast 

and cost-effective option. 

I. INTRODUCTION 

 HE novel coronavirus 2019-nCoV first transmitted to 

humans in December 2019, resulting in a pandemic 

outbreak the following months. The disease, known as COVID-

19 [1] caused or is expected to cause significant short-term and 

long-term societal and economic impacts [2], resulting in more 

than 260,000 deaths up to 7th of May 2020 [3]. 

A further insight on the findings so far indicate that COVID-

19 affects multiple organs in the human body, including heart 

and blood vessels, kidneys, gut, and brain. The virus enters the 

cells by binding to surface receptors angiotensin-converting 

enzyme 2 or ACE2. This receptor can be found on alveoli, i.e. 

tiny air sacs in human lungs. Thus, lungs become the ground 

zero for the virus affection [4]. 

In this context, CT scanning could be a promising and 

efficient alternative or auxiliary tool for the detection and 

control of COVID-19 disease, compared to other types of tests. 

For example, a test based on reverse transcription polymerase 

chain reaction (RTPCR), takes 4 to 6 hours, assuming that the 

required resources are available.  
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CT scan analysis can be interpreted as an image analysis 

problem, which can be addressed as: a) classification, b) object 

detection, and c) semantic segmentation problem. The first 

approach, i.e. CT scan classification provides a binary outcome 

of the form 0 or 1, which indicates if the patient has COVID-

19. The second approach, in case of a positive detection, 

provides bounding boxes, indicated the symptomatic areas. The 

third case involves the pixel level detection of the symptomatic 

areas, in each of the CT scan slices. In this paper, we propose a 

deep learning semantic segmentation approach for the 

annotation of symptomatic lung areas, for COVID-19 patients. 

 

A. Related Work 

CT abnormalities related to COVID-19 patients, are a 

common case and are reported and used by the doctors in 

multiple studies [5]–[7]. There are two important outcomes 

from these studies: a) there are clear patterns indicating viral 

infections, even at early stages [6], [7], and b) CT abnormalities 

diagnostic of viral pneumonia can be available before a positive 

laboratory test in almost 70% of the cases [5]. Hence, CT 

investigation appears a promising candidate for an early 

detection of COVID-19 infections.  

Research outcomes on COVID-19 confirmed cases, indicated 

that CT abnormalities, before the appearance of clinical 

symptoms, may occur [8]. Asymptomatic patients typically 

have abnormal chest CT, which are consistent with viral 

pneumonia.  On the one hand, typical patterns may refer to 

unilateral, multifocal and peripherally based ground glass 

opacities [GGO]. On the other hand, interlobular septal 

thickening, thickening of the adjacent pleura, nodules, round 

cystic changes, bronchiectasis, pleural effusion, and 

lymphadenopathy were rarely observed in the asymptomatic 

group, but appear in symptomatic cases.  

The adaptation of any visual detection approach should 

emphasize on the identification of predominant patterns of lung 

abnormalities like GGOs, crazy-paving pattern, consolidation, 

and linear opacities. Yet, the appearance rates and the density 

varied greatly depending on the stage of the disease, expecting 

a maximum manifestation after 9 days from the onset of the 

initial symptoms [6]. 

Doulamis and Nikolaos Doulamis are with the National Technical University 

of Athens, Greece.  

Athanasios Voulodimos, Eftychios Protopapadakis, Iason Katsamenis, Anastasios Doulamis, Nikolaos Doulamis 

Deep learning models for COVID-19 infected 

area segmentation in CT images 

T 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.08.20094664doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:avoulod@uniwa.gr)
https://doi.org/10.1101/2020.05.08.20094664
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 

 

Deep learning approaches over various types of images 

consist a common approach for identification, detection or 

segmentation in medical imaging [9]. In this context, several 

approaches have already started being investigated by 

researchers to assist medical professionals in COVID-19 

detection. 

A first approach was the classification of multiple CT slices 

using a convolutional neural network variation [10]. The 

adopted methodology is capable to identify a viral infection 

with an ROCAUC score of 0.95 (score of 1 indicates a perfect 

classifier). However, despite the high detection rates, authors 

indicate that is extremely difficult to distinguish between 

different types of viral pneumonia based solely on CT analysis. 

CNN variations for the distinction of Coronavirus vs Non-

coronavirus cases has been proposed by [11]. The specific 

approach allows for the distinction between COVID-19, other 

types of viral infections and non-infection cases. Results 

indicate that there are adequate detection rates and a higher 

detection rate than RT-PCR testing. 

A multistage approach involving segmentation and the 

classification between COVID-19 and other viral infection has 

been proposed in the work of [12], allowing for advanced 

disease progression monitoring. At first, a segmentation 

approach, i.e. U-Net, focus on the lungs regions, by removing 

image portions that are not relevant for the detection. Then, a 

pretrained Resnet-50 network is modified to handle the 

classification problem: COVID-19 or other cases. 

Volumetric Medical Image segmentation networks, known as 

V-nets [13], were also utilized. The work of [14], used a V-net 

to segment all the slices of a given MRI, at once. Quantitative 

evaluation results indicate that automatic infection region 

delineation can be feasible and effective. 

An object detection approach, i.e. denoting the areas of 

interest using bounding boxes was, also, considered [15]. The 

detection of symptomatic lung areas has been achieved by 

employing a VGG architecture [16] variation. Proposed 

approach can classify COVID-19 cases from community 

acquired pneumonia (CAP) and non-pneumonia (NP). 

B. Our contribution 

In this paper, we propose a deep learning framework for the 

identification of areas with COVID-19 symptoms in CT scans. 

Compared to other approaches, we adopt a light U-Net model 

from scratch, which can be trained and operate on ordinary PC 

without GPU utilization, requires a limited annotated dataset for 

training and validations, and can handle the class imbalance 

problem. 

II. MATERIALS AND METHODS 

Identification of COVID-19 symptoms on CT images could 

be seen as a binary classification approach; the negative class 

consists of regions without COVID-19 induced symptoms, e.g. 

swelling, lesions and other types, described in section I.A., and 

the positive class includes areas depicting symptoms 

manifestation related to COVID-19.  

Such semantic segmentation tasks can be implemented in a 

two-step process: (i) feature extraction over an image patch and 

(ii) a training process, using annotated datasets. In such a 

scenario, each pixel is described by feature values, extracted 

locally, over a, typically, small area, denoted as “patch”. Deep 

learning approaches do both steps for a given set of data. The 

main question, thus, involves the type of deep learning 

approach: traditional CNNs over image patches [9] or FCNs 

over the entire image. 

In the former case, a classifier is fed with these feature values 

and produces an outcome, which classifies the pixel at the 

center as positive or negative detection. As such, for any CT 

slice (image) of size 630 ×  630 pixels, and given a patch size 

of 11 × 11 pixels, we should annotate (630 − 5 − 5) ×
(630 − 5 − 5) = 384,400 overlapping image patches. Deep 

learning feature extraction has been the common case approach; 

experimental results indicate the benefits over traditional, hand-

made, feature extraction processes. In such case, a CNN 

classifier could annotate the image within a few seconds time 

frame [17]. The advantages of such a technique are the high 

accuracy rate and the flexibility in handling unbalanced data 

sets. 

The latter case involves the utilization of the entire image and 

the annotation in one pass. Towards that direction, the fully 

convolutional neural networks techniques were considered and 

implemented. The main advantages of such processes are 

described in the next section. 

A. Employed deep learning techniques 

There are various levels of granularity in image 

understanding, starting from a coarse-grained down to a more 

fine-grained comprehension. The first step is the classification. 

In this case, we just indicate if an image depicts a COVID 

infection or not. The second step includes localization, where 

along with the discrete label, i.e. COVID-19 or not, we also 

expect a bounding box, indicating the area of interest. That way, 

the model assists the experts by narrowing the time they have 

to spend on scans.  

However, for many applications, bounding boxes do not 

suffice, e.g. precise tumor detection. In such cases, we need the 

information on a pixel-level basis, i.e. highly detailed results. 

This is the goal of semantic image segmentation algorithms. In 

this case, we try to label each pixel of an image with a 

corresponding class of what is being represented. Semantic 

segmentation comes with specific limitations in the form of 

time constraints, limited hardware access, and low false-

negative detection thresholds.  

In this study, we handle the semantic segmentation problem 

for COVID-19 infection-induced symptoms in the lung areas, 

given as inputs CT scans. Fig. 1 demonstrates the proposed 

approach outcomes compared to other segmentation 

approaches or experts’ annotated images. 

 

1) Fully convolutional neural networks 

Fully Convolutional Networks (FCNs), as the name suggests, 
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are built using locally connected layers, such as convolution, 

pooling and upsampling [18]. Note that no dense layer is used 

in this kind of architecture. This reduces the number of 

parameters and computation time [19], [20]. Their topology 

contains 2 parts: (i) downsampling path, which is responsible 

for capturing semantic/contextual information and (ii) 

upsampling path, responsible for recovering spatial 

information. Any disadvantages related to information loss, due 

to pooling or downsampling layers, can be mitigated using an 

operation called skip connection, which bypasses at least one 

layer.  

 

2) U-Nets 

U-Net is another variation based on the CNNs, designed and 

applied in 2015 to process biomedical images [21], [22]. As a 

general convolutional neural network focuses its task on image 

classification, where input is an image and output is one label, 

but in biomedical cases, it requires us not only to distinguish 

whether there is a disease, but also to localize the area of 

abnormality. 

The U-Net is built upon the Fully Convolutional Network and 

modified in a way that it yields better segmentation in medical 

imaging. To that extent, the architecture contains two paths. 

The first path is the contraction path (also known as the 

encoder) which is used to capture the context in the image. The 

encoder is just a traditional stack of convolutional and max-

pooling layers. The second path is the symmetric expanding 

path (also known as the decoder) which is used to enable precise 

localization using transposed convolutions. Contracting and 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

 Input CT image Ground truth FCN-8s output U-Net output 

Fig. 1 Semantic segmentation results comparison among deep learning models’ outputs and experts’ annotations. 
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expanding paths are connected using a bottleneck, built from 

simply 2 convolutional layers (with batch normalization), with 

dropout. 

Compared to known FCN approaches, e.g. FCN-8s [18], the 

two main differences are the (i) symmetry and (ii) connection 

skipping between paths. U-Net is symmetric. Furthermore, the 

skip connections between the downsampling path and the 

upsampling path apply a concatenation operator instead of a 

sum. These skip connections intend to provide local 

information to the global information while upsampling. Given 

the model’s symmetry, the network has a large number of 

feature maps in the upsampling path, which allows transferring 

information. 

Fig. 2 provides further insights regarding the models’ 

annotations, in terms of accuracy and edge smoothness. Given 

a CT scan slice, the FCN-8 model tends to produce more coarse 

boundaries. On the other hand, U-Net provide smoother 

regions, slightly smaller that the original annotated area. Both 

models are capable to localize well, for the majority of 

symptomatic regions. 

III. RESULTS AND DISCUSSION 

All models were developed in Python, using Keras and 

TensorFlow libraries. The deep models were trained using an 

NVIDIA Tesla P4 GPU, provided by Google Colab. For the 

evaluation process we conducted tests on a typical PC with 8 

CPU cores (AMD FX-8320 @ 3.5 GHz) and 8GB RAM. Fig. 3 

describes the adopted topology for the proposed U-Net 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

 Input CT image Ground truth FCN-8s output U-Net output 

Fig. 2 Visual comparison of the deep models’ outputs. The leftmost column is the original CT scan image, whereas the second column 

illustrates the corresponding segmentation for COVID-19 symptomatic areas. The last two columns depict the generated semantic 

segmented area. 
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architecture. The final U-Net model required less than 3MB of 

storage space. 

A. Dataset description 

This dataset was collected from Radiopaedia [23] and 

manually annotated in the work of [24], [25]. All images are CT 

scans of lungs, with dimensions of 630 ×  630 pixels, and 

were labeled, segmented, and verified by radiologist experts. 

More specifically, it consists of 10 axial volumetric CT scans 

of confirmed COVID-19 pneumonia patients. It is noted that the 

dataset consists of CT volumes providing a total of 939 cross-

sectional images, both positive and negative. In particular, 447 

slices have been labeled as negative and 492 as positive and 

then segmented by radiologist experts. From the whole number 

of CT images in the dataset, about 85% is used for training and 

validation of the deep learning models, while the rest 15% is 

used for testing.  Among the training data, about 90% of them 

were used for training and the remaining 10% for validation. 

B. Implementation and limitations of mitigation strategies 

Prior to any implementation approach, we should consider the 

limitations of the problem at hand. In deep learning approaches, 

there are two main concerns: (i) data availability and (ii) data 

imbalance, which both impact the classification model selection 

and topology’s complexity. 

The first step was a training data balancing strategy, involving 

under-sampling of the majority class [26]. At first glance, 

approximately 400 images contain no positive annotations. 

These were excluded from the training set. The remaining 300, 

approximately, images had various ratios ranging from 0.1% to 

20% of positive annotations to image total pixels. 

Man-made annotations are prone to errors [27]. It is extremely 

difficult, rather impossible for most cases, to be able to 

distinguish if a specific pixel, on a boundary area, between two 

classes, corresponds to either of them. Towards that direction, 

we could utilize the networks’ capabilities to generalize and 

handling the noise, given that the wrong annotations are limited. 

Other approaches considered where the implementation of 

different performance metrics during the training process and 

building models of limited complexity. 

C. Experimental results 

Experimental results consider both the detection capabilities, 

employing multiple classification related performance metrics 

and the computational average time, required by a trained 

model to fully annotate a CT slice. Fig. 4 provides the average 

execution times per image, which range between 0.01 to 0.018 

seconds.  

 
Similarly to the evaluation strategies adopted in other 

classification related problems, four performance metrics were 

considered: a) precision, which calculates how many correct 

positive predictions we have, b) recall, which indicates the 

fraction of the positive samples that are successfully retrieved, 

c) accuracy, which is the percentage of correct classification for 

both, positive and negative, classes, and d) F1-score, which is 

the weighted harmonic mean of precision and recall. 

Fig. 5 illustrates the performance scores in terms of precision 

and recall, for the segmentation approaches in train, validation 

and test data sets. In this case, we mainly focus on recall. Recall 

indicates the model’s capability to identify the case; i.e. if a CT 

 
Fig. 4 Average processing time per image. 
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Fig. 3 The proposed U-Net architecture. 
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slice image has COVID symptomatic areas the model will 

indicate these areas even if precision (on the positive class) is 

limited. Results indicate two important aspects: significant 

recall variation scores between train and test sets and b) the 

better generalization capabilities of U-Net despite the lower 

performance during training and validation. 

Fig. 6 displays the performance scores in terms of accuracy 

and F1 scores, for the segmentation approaches in train, 

validation and test datasets. The difference between accuracy 

and F1 score can be put down to the class imbalance. Indeed, 

the majority class, i.e. no detections, is almost always correctly 

identified. The false-negative detections can be spotted on the 

boundaries in images where COVID symptoms manifestation 

becomes apparent. Yet, the F1 score is relatively high, 

indicating that the minority class, i.e. COVID symptomatic 

areas, can be identified. 

Finally, Fig. 7 provides an indication of low detection rates 

cases. Detection failures may include partial area annotation or 

non-annotation at all, despite the appearance of symptoms in 

the CT slice. However, CT scans have consecutive slices; even 

if the detection fails for the current slice, it is highly likely that 

it will succeed in the next ones, thus providing a potentially 

valuable aid to medical professionals. 

 
Fig. 6 Performance results, in terms of accuracy and F1 scores, for the segmentation approaches in train, validation and test data set. 
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Fig. 5 Performance results, in terms of precision and recall scores, for the segmentation approaches in train, validation and test data sets. 
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IV. CONCLUSION 

In this paper, we have presented a deep learning based 

approach for semantic segmentation in CT images for the 

detection of COVID-19 induced symptoms in the lung area. 

Preliminary results indicate that the proposed Fully 

Convolutional Neural Networks are capable of providing 

accurate segmentation for symptomatic areas, despite the class 

imbalance on the dataset and the man-made annotation errors 

on the boundaries of symptom manifestation areas, and could 

thus assist doctors in the detection as a fast and cost-effective 

supplementary option. 
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