
  

  

Abstract— In this work, nonlinear temporal features from 
multi-channel EEGs are used for the classification of 
Alzheimer’s disease patients from healthy individuals. This was 
achieved by temporal manifold learning using Gaussian Process 
Latent Variable Models (GPLVM) as a nonlinear dimensionality 
reduction technique. Classification of the extracted features was 
undertaken using a nonlinear Support Vector Machine. 
Comparisons were made against the linear counterpart, 
Principle Component Analysis while exploring the effect of the 
time window or EEG epoch length used. It was demonstrated 
that temporal manifold learning using GPLVM is better in 
extracting features that attain high separability and prediction 
accuracy. This work aims to set the significance of using 
GPLVM temporal manifold learning for EEG feature extraction 
in the classification of Alzheimer’s disease.   

I. INTRODUCTION 

Dementia due to Alzheimer’s disease (AD) is a 
neurodegenerative illness that mainly occurs in elderly 
individuals and evolves over a prolonged period of time. The 
diagnosis of neurological disorders such as AD in early stages 
and the accurate disease progress characterisation can be vital 
for the treatment and improvement of patient’s life [1, 2]. 
However, the current diagnostic methods depend mainly on 
clinical history, mental status examinations and neuroimaging 
scans [2]. These methods are expensive, time-consuming and 
sometimes inaccurate [3]. Thus, a cost-effective precise 
diagnosis method is needed, especially for the early detection 
of AD, the most common neurodegenerative disorder [4].  One 
such method that is non-invasive and economical, has no-
contradictions and previously widely researched is the 
electroencephalogram (EEG) [5].  

The EEG, even though recorded at the scalp level, reflects 
the grossly summed currents of the electrical fields generated 
by the neural activity in the cortical neural circuits. Therefore, 
through the EEG, the behaviour and integrity of underlying 
neural circuits can thus be indirectly studied [8]. Slowing of 
EEG rhythms, loss of signal complexity and changes in the 
strength of synchronisation between pairs of recording 
electrodes are some of the abnormalities previously observed 
in AD patients [12, 13].   

Previous work in dementia patients [6, 7] investigated the 
nonlinear dynamics of EEG measures, and showed that the 
computed global brain electrical nonlinear indices exhibited 
specific patters of dysfunction. In the case of AD, when 
analysing the EEG nonlinear dynamics, researchers have 
demonstrated a reduction in nonlinear complexity [9, 10]. A 
comprehensive review of the nonlinear dynamical analysis of 
EEG measures [11] was recently produced and sheds light on 
the importance of this type of approach for the diagnosis of 
neurodegenerative diseases. 

 
1 Centre for Data Science, Coventry University, Coventry CV1 2JH, UK 

(e-mail: gunawardes@uni.coventry.ac.uk, fei.he@coventry.ac.uk).  
2 Academic Unit of Radiology at the University of Sheffield, Sheffield S1 

2TN, UK. 

Numerous EEG studies have previously revealed the 
importance of nonlinear methods for the diagnosis of AD. 
These range from time-series methods, spectral analysis and 
machine learning techniques [11, 13 – 15]. 

EEG recordings are high-dimensional data (i.e. number of 
channels and high-frequency sampling time points) and as 
such directly applying standard classification methods to the 
raw EEG data can be problematic. Therefore, how to select the 
important nonlinear features in a reduced lower-dimensional 
space is an important but also challenging problem. The 
corresponding comparison with classical linear dimension 
reduction methods is also lacking. 

In this work, we explore the unsupervised Gaussian 
Process Latent Variable Model (GPLVM) [19], which models 
the joint distribution of the observed data and their 
corresponding representation in a low dimensional latent 
space. We compared the linear and nonlinear dimensionality 
reduction approaches, i.e. Principle Component Analysis 
(PCA) and GPLVM, for the classification of EEG recordings 
of patients with AD, and demonstrated the advantages from 
utilising a nonlinear approach. 

This paper is organised as follows section II and III briefly 
introduce Gaussian Process modelling and GPLVM 
respectively. Section IV provides specifics of the EEG data 
used, pre-processing steps and how GPLVM was used for 
classification. Section V discusses the results obtained 
followed by the concluding remarks while section VI discusses 
the future work.  

II. GAUSSIAN PROCESS 
Gaussian Process (GP) has been widely used as a Bayesian 

non-parametric model in various machine learning 
applications [16]. A GP is a distribution over functions where 
a finite set of random function variables, 𝒇 =
	[	𝑓(𝒙()	,… , 𝑓(𝒙,)	]. where 𝒙/ ∈ ℝ(×3 is the 𝑖th sample of a 
𝐷 dimensional input, are modelled as a joint multivariate 
Gaussian distribution with mean 𝝁(𝑿) and covariance matrix 
𝑲(𝑿	, 𝑿), in which the data matrix 𝑿 =	 [𝒙(	,… , 𝒙,]. and 

𝑲(𝑿	, 𝑿) = 	 9		
𝑘(𝒙(	, 𝒙() ⋯ 𝑘(𝒙(	, 𝒙,)

⋮ ⋱ ⋮
𝑘(𝒙,	, 𝒙() ⋯ 𝑘(𝒙,	, 𝒙,)

		>,          (1)       

is a positive semidefinite matrix, where 𝑘?𝒙/	, 𝒙@A is the kernel 
function, also called the covariance function with hyper-
parameters 𝜽. 𝝁(𝑿) = 	 [	𝑚(𝒙()	,… ,𝑚(𝒙,)]., where 𝑚(𝒙/) 
is the mean function. It is common to have the mean function 
𝑚(𝒙/) = 0. Therefore, assigning a multivariate Gaussian prior 
over 𝑓, 𝒇	~	𝒩(𝟎	,𝑲). 
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Given 𝒚/ = 𝑓(𝒙/) +	𝜀/, where 𝜀	~	𝒩(0	, 𝜎L) and 𝒀 =
	[	𝒚(	,… , 𝒚,	].. Considering a Gaussian likelihood where 
𝑝(𝒀|𝒇) = 	𝒩(𝒇	, 𝜎L𝑰), 𝑰	 ∈ ℝ,×, is an identity matrix. 
Therefore, given a set of new input samples 𝑿∗ =
	[𝒙∗(	, … , 𝒙∗,]

., the inference for new outputs or observations 
𝒀∗ = 	 [𝒚∗(	,… , 𝒚∗,]

. are given by multivariate Gaussian 
distribution, thus 𝑝(	𝒀∗|𝒀, 𝑿, 𝑿∗) = 	𝒩(𝝁∗	, 𝚺∗), where 

𝝁∗ = 	𝑲(𝑿∗	, 𝑿)	(	𝑲(𝑿	, 𝑿) +	𝜎L𝑰	)S𝟏	𝒀∗            (2) 

is the mean of the distribution of the new observations and 

𝚺∗ = 	𝑲(𝑿∗	, 𝑿∗) − 	𝑲(𝑿∗	, 𝑿)	(	𝑲(𝑿	, 𝑿) +
												𝜎L𝑰	)S(𝑲(𝑿	, 𝑿∗)		                  (3) 

defines its covariance matrix. It should be noted that if the 
covariance function used is one which allows non-linear 
functional mappings between 𝑿 and 𝒀, e.g. the Radial Basis 
Function (RBF) kernel, then the GP model provides a 
probabilistic non-parametric nonlinear model and vice-versa 
for a linear covariance function.  

 The hyper-parameters 𝜽 of the covariance function 
𝑘?𝒙/	, 𝒙@A can be extended to include the noise variance 𝜎L. 
The hyper-parameters are then determined by the 
maximisation of the marginal log-likelihood 

log 𝑝(𝒀|	𝑿	, 𝜽	) = 	− (
L
[	log|	𝑲(𝑿	, 𝑿) +	𝜎L𝑰	| +

																																											𝒀.(		𝑲(𝑿	, 𝑿) +	𝜎L𝑰		)S𝟏	𝒀 +
																																										𝑁 log(2𝜋)	].              (4) 

The optimisation of the hyper-parameters are guided by the 
gradients of the marginal log-likelihood with respect to each 
hyper-parameter. For an in depth understanding of GPs refer 
to [17, 18]. 

III. GAUSSIAN PROCESS LATENT VARIABLE MODEL 
A GPLVM [19] assumes that the observed dataset 𝒀 is 

generated from a lower dimensional data 𝑿. Therefore, the 
GPLVM framework learns the mapping of a high-dimensional 
dataset 𝒀	 ∈ 	ℝ,	×	3 and the corresponding low dimensional 
latent space 𝑿	 ∈ 	ℝ,	×	\, 𝑄 < 𝐷, using a GP mapping from 
the latent space to the data space, 𝑿	 → 𝒀. Let 𝒀 =
	[	𝒚(	,… , 𝒚,	]., 𝒚/ ∈ ℝ(×3, and 𝑿 =	 [𝒙(	,… , 𝒙,]., 𝒙/ ∈
ℝ(×\. Given a covariance function for the GP, 𝑘?𝒙/	, 𝒙@A, the 
likelihood 𝑝(𝒀|	𝑿	, 𝜽	) of the data given the latent positions is 

𝑝(𝒀|	𝑿	, 𝜽	) = 	 (
`Lab×c		|𝑲|b

exp g− (
L
	tr(	𝑲S(	𝒀𝒀.	)j        (5) 

where 𝑲 = 𝑲(𝑿	, 𝑿) as defined in Equation (1) and 𝜽 is the 
respective hyper-parameters of the covariance function which 
also includes the noise variance of the data. Thus the 
maximising the marginal log-likelihood, log 𝑝(𝒀|	𝑿	, 𝜽	), with 
respect to 𝑿 and 𝜽, the optimal estimates 𝑿k and 𝜽k are obtained. 

 In [20] the authors provide a probabilistic formulation for 
PCA. In GPLVM the use of a linear covariance function, 
restricting the mapping 𝑿	 → 𝒀 to linearity, consequently 
results in an alternative probabilistic model for PCA as given 
by [20]. However, the use of a covariance function that allows 
for nonlinear functional mappings provides a probabilistic 
nonlinear latent variable model. Therefore GPLVM is a 

nonlinear manifold learning technique for nonlinear 
dimensionality reduction. 

A. Dissimilarity Preservation 
The	GPLVM	ensures	a	smooth	mapping	from	the	latent	

to	 the	 data	 space.	 However,	 the	 mapping	 does	 not	
guarantee	that	the	local	structures	within	the	data	space	
will	 be	 preserved	 in	 the	 latent	 space.	 Conversely,	 this	
mapping	ensures	that	two	points	which	are	‘distant’	in	the	
data	space	cannot	be	placed	closer	together	in	the	latent	
space.	This	implies	a	discontinuity	in	the	mapping.	Thus,	
in	a	certain	sense	the	GPLVM	is	dissimilarity	preserving	
[33].		

IV. MATERIALS AND METHODS 
All	 participants	 were	 prospectively	 selected	 in	 this	

study	and	provided	 informed	consent	while	 this	project	
was	approved	by	 the	Yorkshire	and	 the	Humber	 (Leeds	
West)	 Research	 Ethics	 Committee	 (reference	 number	
14/YH/1070).	 Patients	 were	 recruited	 in	 the	 Sheffield	
Teaching	Hospital	memory	clinic,	a	young-onset	memory	
clinic	that	deals	with	people	mostly	aged	under	65.	All	AD	
EEG	 data	 and	 most	 Healthy	 Controls	 (HC)	 have	 been	
previously	used	 in	a	 recent	 study	by	Blackburn	et	al.	 in	
[21]. Task-free	 EEG	 recordings	 that	 requires	 minimal	
cooperation	of	AD	patients	were	used;	typically	this	group	
of	patients	can	have	difficulty	engaging	with	and	following	
cognitive	 tasks.	 The	 HC	 participants	 were	 enrolled	
through	opportunistic	sampling	and	word	of	mouth.	The	
following	sub-sections	A.	and	B.	summaries	the	details	of	
the	study	design	used	in	[21]	to	acquire	the	EEG	recording	
of	AD	and	HC	groups.	

A. Patients and Healthy Controls 
Diagnosed between 1 month to 2 years prior to the EEG 

recordings, participants with AD were in the mild to moderate 
stages of the disease, with a mean Mini Mental State 
Examination (MMSE) score of 20.1 (standard deviation 
4.00). The diagnosis was reached by taking into account 
clinical history, neurological examination, 
neuropsychological scores, and neuro-radiological findings. 
The determination of the cognitive profile of AD patients and 
HC was achieved using a series of extensive 
neuropsychological tests, appropriately tailored to be 
sensitive to cognitive difficulties typically seen in AD. To 
exclude other alternative causes of dementia all patients were 
scanned with high-resolution structural MRI.  

The HC were of age and gender matched and everyone 
underwent a series of extensive neuropsychology testing, and 
structural and functional MRI imaging that were normal. 

EEG recordings from a total of 16 AD patients and 12 HC 
participants were used in this study. The specific details of the 
neuropsychology tests and the functional MRI scans of the 
AD cohort are described in great detail in previous work [21]. 
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B. EEG Data Acquisition 
All EEG data was acquired with an XLTEK 128-channel 

headbox (Optima Medical LTD, Surrey, UK) at a sampling 
rate of 2000 Hz with scalp Ag/AgCL electrodes. A modified 
10/10 overlapping a 10/20 international system of electrode 
placement method was utilised to acquire the EEG recordings. 

The recordings were undertaking with a referential 
montage were a linked earlobe reference was used (jump 
cables were devised to combine the right and left earlobe 
electrodes while impedances where kept equal between 
sides). Subsequently the following 23 bipolar channel pairs 
were produced for the analysis; F8–F4, F7–F3, F4–C4, F3–
C3, F4–FZ, FZ–CZ, F3–FZ, T4–C4, T3–C3, C4–CZ, C3–CZ, 
CZ–PZ, C4–P4, C3–P3, T4–T6, T3–T5, P4–PZ, P3–PZ, T6–
O2, T5–O1, P4–O2, P3–O1 and O2–O1.  

During the EEG recording the participants were 
encouraged not to think about anything specific. With 
alternating 5 minute Eye-Open (EO) and Eye-Close (EC) 
epochs, 30 minute resting state EEG recordings were obtained 
from all participants while they were prompted if 
demonstrated any signs of drowsiness. All EEGs were 
reviewed by an experienced neurophysiologist using the 
XLTEK review station with time-locked video recordings 
(Optima Medical LTD). From the 30-minute resting state 
EEG recordings, 12 second artefact free EO and EC epochs 
were isolated. Subsequently, for each of the EO and EC 
epochs, mini-epochs of 2, 3 and 4 seconds were produced. 

C. Pre-processing tasks 
In the analysis of EEG signals, the use of digital filtering 

is of common practise. Usually in EEG signal processing the 
application of a high-pass filter to attenuate low frequency 
artefacts relating to eye blinking and slow movements is used. 
Furthermore, low-pass filtering is used to filter out higher 
frequencies and a notch filter is often applied to filter out the 
frequency component relating to the AC power line voltage 
[22]. 

Even though filters are extremely useful in attenuating 
certain frequency components from the signal of interest, 
filtering is not entirely harmless. Several studies have 
demonstrated that filtering can introduce distortions in the 
temporal structure of EEG signals [23-26]. This would not be 
much of an issue if only the magnitude of the frequency 
spectrum of the signal is used. However, in this study, since 
the high-dimensional temporal structure of the multichannel 
EEG is examined, the use of filters would pose a major issue 
due to the distortions induced. Thus, the Fast Fourier 
Transform (FFT) was implemented to remove unwanted 
frequency components. Thereafter, the inverse-FFT was used 
to reconstruct the time domain signal without the unwanted 
frequency components. 

The following frequency components were removed; 0 – 
2Hz which could relate to eye-blinks and slow movement 
artefacts and all frequencies above 100Hz that could be EMG 

related activity. Thus the analysis in this work was conducted 
using EEG frequencies between 2 – 100Hz. After removing 
the unwanted frequency components the time-domain signal 
was recovered via the inverse FFT. This was then down 
sampled to 200Hz.    

D. Low-Dimensional Manifold Learning of High-
Dimensional Multi-channel EEG Using GPLVM 

As mentioned in Section IV.B, the number of EEG 
channels for each participant included in the analysis was 23. 
The low-dimensional latent space for each AD and HC 
subject is thus obtained by reducing the temporal dimension 
via nonlinear dimensionality reduction using the GPLVM 
framework mentioned in section III. Therefore, from the 
definition of the data space 𝒀	 ∈ 	ℝ,	×	3  in section III, 𝑁 =
23 and 𝐷 is the temporal dimension that is to be reduced. 
Once dimensionality reduction is done, the respective latent 
space 𝑿 for each AD and HC subject will be such that 𝑿	 ∈
	ℝ,	×	\, where the latent dimension 𝑄 is set as 𝑄 = 2. The 
GPLVM is initialised using PCA. The heavy tailed Matérn 12 
covariance function was chosen over the commonly used 
RBF kernel. This is because nearly a 100% recover accuracy 
was obtained in the GPLVM mapping 𝑿	 → 𝒀 when using the 
Matérn 12 covariance function. The initialisation of the 
hyper-parameters of the covariance function was done in a 
trial and error fashion in order to obtain favourable 
classification accuracies.  

Before applying dimensionality reduction each and every 
EEG channel of all subjects were de-meaned and normalised 
such that the absolute maximum value attained by the 
respective channels is 1.   

E. Classification 
In order to demonstrate the classification ability using the 

low-dimensional latent spaces of each EEG channel, binary 
classification using non-linear Support Vector Machine [27] 
with a RBF kernel was used. The two latent dimensions (𝑄 =
2 as mentioned earlier) corresponding to each channel were 
used as the features of that respective channel. Thus, 23 
separate binary classifications using the respective low-
dimensional latent spaces as features of the 23 EEG channels 
were carried out. The non-linear SVM classification was 
implemented in Python using the Scikit-learn package. 

The respective latent spaces of the high-dimensional EEG 
data were produced for all AD and HC subjects using 
GPLVM. Out of the 16 AD patients and 12 HC subjects, the 
respective latent spaces of 10 AD and 10 HC subjects were 
used to train the 23 nonlinear SVM classifiers. The remaining 
latent spaces of 6 AD and 2 HC subjects were used to test the 
prediction accuracies of the respective classifiers. 

V. RESULTS 
In Fig. 1 – 8 illustrated in this section, the triangular 

markers relate to the respective testing set of features and the 
circular markers relate to the training set. All orange markers 
indicate features of AD and light blue indicates HC. The 
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orange shaded regions relate to the area of the EEG channel 
latent spaces in which AD features are to be expected and 
similarly the blue shaded regions for HC. 

The complete process of feature extraction using 
dimensionality reduction and classification was done for three 
different lengths of time windows (epoch lengths). This was 
done in order to see how GPLVM performs against PCA for 
different epoch lengths. Furthermore, in the results below, 
‘prediction accuracy’ means how well the trained classifier 
predicts the classification (AD or HC) of the testing features. 
This does not account for how well the features used for 
training is classified. The SVM score indicates how well the 
training features can be separated in the latent space of the 
corresponding EEG channel. 

Tables 1 and 3 below summarises the prediction accuracy 
results for all the 23 classifiers relating to the 23 EEG 
channels, when PCA is used for dimensionality reduction, in 
EC and EO EEG resting states respectively. The tables show 
the mean prediction accuracy across all the channels. Also 
shown is the best prediction accuracy attained and the 
corresponding channel which attains it out of all the other 
channels. Similarly, Tables 2 and 4 is when GPLVM is used 
for dimensionality reduction in the EC and EO EEG resting 
states respectively. Tables 2 and 4 also show the 
corresponding hyper-parameter initialisations used for the 
covariance function. 

It is evident from the results shown in the following 
subsections that when GPLVM is used as a dimensionality 
reduction technique for feature extraction, in both EC and EO 
resting state EEGs, across all time windows, at least one 
channel attains a prediction accuracy of 100%. This is true 
with the exception of one case when the time window 0 – 4 is 
used in the EO instance. Furthermore, out of all the time 
widows used, the 0 – 3 time window is of a special case. This 
is because in this time window, while a 100% prediction 
accuracy is attained at least by one channel, this particular 
time window also attains high SVM scores for the respective 
best channel for both EO and EC instances. This indicates that 
this time window may be of particular use when further 
analysing the EEG. This is particularly true in the EC case, as 
shown in Fig. 1 and Fig. 2.  

A. Eye-Close results 
 
TABLE 1. FEATURES EXTRACTED USING PCA - EC 

PCA Classification Accuracy % Time 
Window 

Mean Best Best channel 

53.260 100 P4 – O2 0 – 2  
51.63 75 CZ – PZ 0 – 3 
54.89 87.5 T6 – O2 0 – 4 

 
 

TABLE 2. FEATURES EXTRACTED USING GPLVM - EC   

GPLVM Classification 
Accuracy % 

Covariance Function 
Hyper-parameters 
initialisations 

Time 
Window 

Mean Best Best 
channel 

Variance Length-
scale 

59.78 100 T6 – O2 0.5 0.5 0 – 2  
50 100 P3 – O1 1 1 0 – 3 
59.78 100 T6 – O2 0.5 1 0 – 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. EC GPLVM Latent space of channel  P3 – O1, that attained the 
best prediction accuracy 100% within the 3 second  mini-epoch that 
immediately follows eye closure (0 – 3 time window). SVM score during 
training 0.95. Orange markers indicate features of AD and light blue 
indicates HC. The triangular markers denote the testing set of features and 
the circular markers denote training set. 

 

Figure 2. EC GPLVM Latent space of channel P4 – PZ, that attained the 
2nd best prediction accuracy of  87.5% within the 0 – 3 time window. SVM 
score during training 0.85 
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B. Eye-Open results 
 
TABLE 3. FEATURES EXTRACTED USING PCA - EO 

PCA Classification Accuracy Time 
Window 

Mean Best Best channel 

48.91 87.5 F4 – FZ  0 – 2  
53.80 87.5 P3 – O1 0 – 3 
52.17 75 C4 – CZ 0 – 4 

 
 
TABLE 4. FEATURES EXTRACTED USING GPLVM - EO 

GPLVM Classification 
Accuracy 

Covariance Function 
Hyper-parameters 
initialisations 

Time 
Window 

Mean Best Best 
channel 

Variance Length-
scale 

60.87 100 T3 – T5 2 0.5 0 – 2  
55.43 100 T6 – O2 1.5 1 0 – 3 
59.24 87.5 CZ – PZ  1 10 0 – 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. EC PCA Latent space of channel  CZ – PZ, that attained the best 
prediction accuracy 75% within the 0 – 3 time window. SVM score during 
training 0.8 

 
Figure 4. EC PCA Latent space of channel  F3 – C3, that attained the 2nd best 
prediction accuracy of  75% within the 0 – 3 time window. SVM score 
during training 0.95 

 
Figure 5. EO GPLVM Latent space of channel  T6 – O2, that attained the 
best prediction accuracy 100% within the 0 – 3 time window. SVM score 
during training 0.85   

 
Figure 6. EO GPLVM Latent space of channel  F4 – C4, that attained the 
2nd best prediction accuracy of  75% within the 0 – 3 time window. SVM 
score during training 0.85 

 
Figure 7. EO PCA Latent space of channel  P3 – O1, that attained the best 
prediction accuracy 87.5% within the 0 – 3 time window. SVM score 
during training 0.9 
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VI. CONCLUSION AND FUTURE WORKS 
In this work, purely temporal based features are used for 

the classification of AD and HC resting state EEGs in both EC 
and EO instances. The high-dimensional multichannel EEG is 
projected to a nonlinear low-dimensional manifold and a 
nonlinear mapping from the data space to the latent space by 
means of GPLVM. A comparison was done using PCA which 
is the linear counterpart to GPLVM. From the results it is 
evident that nonlinear dimensionality reduction using GPLVM 
provides comparably better results. Also, certain interesting 
findings about the time window used for the analysis was made 
in regard to both the prediction accuracy of new features as 
well as the feature separability in the latent space of EEG 
channels. 

Even though certain interesting findings were made there 
is much room for further investigation into the use of GPLVM 
for temporal feature extraction in EEGs. GPLVM does not 
preserve the local structures present in the data in the latent 
space and only preserves global dissimilarities. Thus, some 
important local features may be lost. Using back constraint 
GPLVM proposed in [33], a compromise can be made 
between local similarity preservation and global dissimilarity 
preservation. Furthermore, GPLVM is a static model, thus the 
temporal EEG manifold is regarded as static. Incorporating the 
temporal dynamics using GP Dynamic Models [34] would 
prove to be useful. Also, one important aspect that needs to be 
added to this work is a neurological interpretation of the result. 
Especially in regard to the channels that attain 100% 
prediction accuracies and high SVM scores in both EC and EO 
cases as well as the 0 – 3 time window. 

One important future work is to further investigate more 
detailed form of the nonlinearity using nonlinear dynamic 
modelling [28, 29] and causality measures in both time and 
frequency domain [30-32].  
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