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Abstract 

Occupational dispositions (profiles) are the top reason active duty service members are not medically 
ready to deploy or fulfill their job responsibilities. An audit across multiple U.S. Air Force (AF) medical 
treatment facilities revealed significant shortcomings in how medical providers assign profiles. We aimed to 
create a predictive model and a decision-support tool that estimates profile duration. 

Using retrospective profiles (n=1,546,805) from the Aeromedical Services Information Management 
System between 1 Feb 2007 and 31 Jan 2017, we built and validated a decision-support tool that estimates 
profile length. Multivariate quantile regressions (n=2,575) were performed across five quantiles and six levels 
of diagnostic specificity for every diagnostic code with 2,100 or more observations. 

The models universally estimated profile duration with very poor accuracy (pseudoR2 0.000 to 0.168); 
however, predictive ability was directly correlated with quantile level with minimal variation by diagnostic 
specificity. Age, O4 to O6+ ranks, very heavy job class, and co-morbid conditions were all significant in more 
than 25.0% of regressions down all levels of diagnostic specificity. Age, co-morbid conditions, E7-E9 ranks, O4 
to O6+ ranks, and light job class all added days to profile duration while E1 to E4 ranks, heavy, and very heavy 
job class subtracted days. 

While this study failed to produce an accurate tool, several findings, the indirect correlation between 
profile duration and very heavy job class and the assignment of durations based on convenient calendar times, 
warrant further investigation. For now, providers may consult existing decision-support tools when building 
profiles for AF service members, heeding attention that they were built with non-representative civilian 
populations. 
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Introduction 

Medical readiness—the ability of military members to safely execute their occupational requirements—

is the core mission of the Military Health System.[1,2] As of March 2019, 86.8% of Air Force (AF) service 

members were medically ready.[3] However, to align itself with recent Department of Defense (DoD) retention 

policy,[4] the AF increased its medical readiness goal to 95%, making readiness improvements a strategic 

priority.[5] 

Medical readiness consists of six elements—Periodic Health Assessment, Deployment-(or Duty-) 

Limiting Conditions (DLCs), Dental Assessment, Immunization Status, Laboratory Studies, and Individual 

Medical Equipment.[6] Of these DLCs are the primary reason why service members are not medically ready.[7-9] 

Assigning a DLC is analogous to an occupational disposition in civilian practice; after diagnosing the patient, 

providers must decide if the ailment interferes with the patient’s ability to fulfill his/her job requirements or 

deploy. 

AF healthcare providers annotate DLCs electronically as a ‘profile’ in the Aeromedical Services 

Information Management System (ASIMS). An AF profile consists of three categories of restrictions—duty, 

fitness, and mobility restrictions—the final category being the AF equivalent to DoD DLCs. Each category 

requires the provider to apply the service member’s medical diagnosis to their in-garrison job, encoded as AF 

Specialty Codes (AFSCs), AF-wide fitness requirements, and deployment minimums, respectively. 

Unfortunately, prior studies show poor agreement between providers and independent subject-matter 

experts for both the presence and content of these restrictions within profiles [κ = 0.152; 95% CI: 2.226-

41.209]. Profiles were both present and within the standard of care only 47% of the time.[10] Under-profiling 

places individuals in medically compromising work conditions, fitness evaluations, and deployments where 

access to healthcare services could be limited. Over-profiling may result in underperformance and physical 

deconditioning, potentially leading to long-term career impacts and negative health implications. Both lead to 

inaccurate readiness projections on true force availability. 
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Multiple potential reasons for profiling failure exist. The military depends on its providers to assign 

occupational dispositions. However, associating diagnoses with a patient’s occupation is not a focus of most 

medical residencies and fellowships, and non-flight-surgeon providers never receive any formal occupational 

training. Current AF health information systems also offer minimal decision support to assist with profile 

creation, thereby allowing a significant potential contribution from human error. While several commercial 

decision-support solutions exist, namely the Official Disability Guide® (MCG Health, Seattle, WA, USA) and 

MDGuidelines® (Reed Group, Westminster, CO, USA), both employ propriety algorithms and primarily use 

disability cases and workers’ compensation claims as data sources.[11] As military populations are generally 

younger, healthier and have different occupational requirements than civilians, these data sources are not 

representative of the military, limiting their utility for military practitioners. 

Fortunately, when AF medical providers create profiles, ASIMS collects similar data points to elements 

of these proprietary models. Each profile contains or links to data that includes International Classification of 

Diseases (ICD) code, age, gender, military rank, AFSC, special duty status, and other co-morbid medical 

conditions. Thus, an extensive, AF-specific dataset is available to create a similar predictive tool using a 

representative population. 

Objective 

The purpose of this study is to create a predictive model and decision-support tool for profile duration 

using a quantile regression approach and AF profiling data from ASIMS. A profile decision-support tool could 

offer improved point-of-care information to medical providers and ultimately improve the validity of readiness 

metrics. 

Methods 

Overview 
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 Data for this study were supplied by ASIMS for all finalized profiles between 1 Feb 2007 and 31 Jan 

2017. These data included all profiles (n=1,546,805) that were signed by a healthcare provider and/or profile 

officer. Exclusion criteria were restrictions associated with V00-Z99 and DoD ICD-10-CM codes and profiles 

for pregnant service members (assignment availability code 81s), service members concurrently undergoing a 

medical evaluation board (assignment availability code 37s), or service members with permanent mobility 

restrictions (any assignment limitation codes). All analyses were performed with Stata/IC 14 for Windows. This 

study was reviewed and approved as exempt by the Uniformed Services University Institutional Review Board 

(FWA 00001628). 

ICD Mapping  

 Primary diagnosis ICD-9-CM codes were mapped to ICD-10-CM codes using the 2017 Centers for 

Medicare & Medicaid Services’ General Equivalence Mapping documentation.[12] For ICD-9-CM codes that 

matched to multiple ICD-10-CM codes, only the ICD-10-CM code that had the greatest count in the ICD-10-

CM-only subset (Profiles published after 30 Sep 2015) was kept and considered the one-to-one match.[13] The 

remaining matches were discarded. Observations with primary diagnoses that failed conversion (n=6,325) and 

all V00-Z99 and DoD ICD-10-CM codes (n=1,218) were dropped. Additionally, all observations with a primary 

diagnosis of duration less than one day or greater than 364 days were dropped (n=38,693). 

 ICD-10-CM code morbidity mapping documentation was obtained from the Armed Forces Health 

Surveillance Branch.[14] All profile diagnoses—primary, secondary, and tertiary—were mapped to one of 25 

morbidity categories and one of 143 morbidity subcategories. 

Conversion of Air Force Specialty Codes to Job Classes 

Officer and enlisted AFSCs were extracted from their respective classification directories.[15,16] These 

AFSCs were crosswalked to Standard Occupational Classifications using the Military Occupational 

Classification crosswalking module provided by the Occupational Information Network.[17] Each Standard 

Occupational Classification was then crosswalked to an equivalent occupation listed in the Dictionary of 
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Occupational Titles, Fourth Edition.[18] In the cases where multiple Standard Occupational Classifications 

matched to one AFSC and/or where multiple occupations in the Dictionary of Occupational Titles matched to 

one Standard Occupational Classification, the best one-to-one match for each crosswalk was decided by the 

author. This occupational mapping resulted in each AFSC matched one-to-one with an occupation listed in the 

Dictionary of Occupational Titles.   

Each occupation listed in the Dictionary of Occupational Titles has a respective strength rating (job 

class) of sedentary, light, medium, heavy, or very heavy work.[19] Job classes of each of the occupations were 

then assigned to the matching AFSC. Job classes for AFSCs unable to be mapped to standard occupations were 

decided by the author. Enlisted AFSCs with a ‘9’ as the fourth digit and officer codes with a ‘4’ as the fourth 

digit signify a more administrative, and less physically active, occupation compared to other AFSCs of the same 

category. Thus, these respective job classes were reduced by one ordinal level if the strength rating assigned 

was not the lowest ordinal level, sedentary work. All ranks of colonel and above (O6+) were assigned a 

‘sedentary work’ job class. 

 Specialty duty status for AFSCs was determined through the AF Enlisted and Officer Classification 

Directories.[15,16] AFSCs were assigned a ‘Yes’ for specialty duty status if the code required any type of ground-

based controller, flying class, and/or personnel reliability program qualification prior to entry into the career 

field. 

Model Development 

To estimate profile duration by ICD-10-CM diagnosis, multivariate quantile regressions with pairs-

bootstrapping (100 repetitions) were performed across five quantiles and down six levels of diagnostic 

specificity. The five quantiles were 0.10, 0.25, 0.50 (Median), 0.75, and 0.90. The first five levels of specificity 

were all possible lengths of ICD-10-CM codes, from three to seven characters, of the primary diagnosis of each 

profile. For instance, at the fifth level, the maximum allowable ICD length was three characters; thus, the codes 
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A06.01 and A06.02 would both be A06 at this level. The sixth level of diagnostic specificity was the morbidity 

category of the primary diagnosis of each profile. 

A quantile regression was performed at each level of diagnostic specificity and across the five quantiles 

for all ICD-10-CM codes / morbidity subcategories with 2,100 or more observations. This approach resulted in 

2,575 total regressions. A minimum observation count of 2,100 was selected as the estimated sample size 

needed to obtain a power of 0.80 with 14 total covariates and to detect a small effect size (f2 = 0.02).[20,21] 

Multiple diagnostic levels were included to increase the available sample size and diagnostic range and thus 

include more diagnoses in the predictive tool (Figure 1).  However, the minimum observation count of 2,100 

excluded 128,391 (8.6%) observations from regression analysis.  

The dependent variable was the duration of the primary diagnosis in days while the independent 

variables included age, gender, military rank, job class, special duty status, co-morbid conditions, and similar 

co-morbid conditions. Co-morbid conditions were defined as the presence of any secondary or tertiary diagnosis 

in the profile. Similar co-morbid conditions were defined as the presence of any secondary or tertiary diagnosis 

within the same morbidity subcategory as the primary diagnosis.   

Variance inflation factors for independent variables were all less than 10; thus, it was concluded that 

collinearity among variables was not significantly present. However, the mean variance inflation factor was 2.3, 

which might be considered significantly greater than 1.0, making multicollinearity a concern.[22] The highest 

variance inflation factors were observed among age and the lower enlisted rank groups (Age: 3.3; E1-E4: 6.6; 

E5-E6: 5.6). 

All observations missing or masked for either gender, military rank, job class, and/or specialty duty 

status (n=6,520 [0.4%]) were excluded from the quantile regression analysis as these variables will be known at 

the point of care, yielding a final sample size of 1,365,658 profiles (Table I). 

Model Validation 
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 k-fold cross-validation with 10 subsamples was performed on each quantile regression to assess the 

model fit with out-of-sample observations. These cross-validation quantile regressions were performed without 

bootstrapping and under the assumption that the model variables were independent and identically distributed to 

reduce computational time. Since bootstrapping does not affect model fit, this approach did not affect the 

pseudoR2 values for the cross-validation subsamples.[23] The pseudoR2 of the 10 subsamples for each regression 

were averaged to determine the overall validated fit. 

Web Application Design 

 The decision-support tool was built with R and RShiny and is available at 

<https://colbycoapps.shinyapps.io/mrpt/>. 

Results 

Overall Fit & Validation 

 The fit and validation statistics for all categories and individual regressions were very poor with the 

pseudoR2 ranging from 0.000 to 0.168. Thus, at best the model covariates account for 16.8% of the variance in 

profile duration and some models failed completely. 

However, lower levels of diagnostic specificity exhibited similar model fit (mean pseudoR2) and model 

validation (k-fold cross-validation pseudoR2 mean) as higher levels of specificity (Table II). Quantile 

regressions at the maximum three-character level and morbidity subcategory level of specificity resulted in 

similar, albeit poor, fit and validation statistics as higher levels of specificity. 

 Mean pseudoR2 values were directly correlated with regression quantile (Table II).  These values for the 

original ICD code increased from 0.013 for quantile 0.10 to 0.048 for quantile 0.90, indicating that the model 

accounts for more variance in profile duration as duration increases. 

General Coefficient Influence on Profile Duration 

 At quantile 0.50 and when compared to their respective reference category, age, O4-O5 ranks, O6+ 

ranks, very heavy job class, and co-morbid conditions were all significant in more than 25.0% of regression 
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models down all levels of diagnostic specificity (Table III). The presence of co-morbid conditions stood out as 

being significant in around 80% of models. A similar pattern of significance, with minor deviations, was 

exhibited across quantiles for regressions by the original ICD code (Table IV). 

Direction of Coefficient Influence on Profile Duration 

When significant (p<0.05) and compared to their respective reference category, age, E7-E9 ranks, O4-

O5 ranks, O6+ ranks, and co-morbid conditions all added days to profile duration across all quantiles and down 

all levels of diagnostic specificity. When significant (p<0.05) and compared to their respective reference 

category, E1-E4 ranks, heavy job class, and very heavy job class all subtracted days from profile duration across 

all quantiles and down all levels of diagnostic specificity. The remaining coefficients displayed mixed effects 

across quantiles and/or diagnostic levels of specificity (Tables III-IV). 

At lower quantiles (0.10 and 0.25), male gender subtracted days from profile duration while adding days 

at higher quantiles (0.50, 0.75, and 0.90) when compared to female gender. When compared to O1-O3 ranks, 

E5-E6 ranks added days to profile duration across all quantiles except at the maximum three-letter level of 

diagnostic specificity for quantile 0.50. Light job class subtracted days from profile duration at quantile 0.10 but 

added days to profile duration at all remaining quantiles and diagnostic levels of specificity when compared to 

sedentary job class. Medium job class mostly detracted days from profile duration except at quantile 0.50 and 

0.90 for the original ICD code while special duty status generally added days to profile duration except at 

quantile 0.10 and the ICD code max length four level of specificity. Lastly, similar co-morbid conditions added 

days to profile duration at quantiles 0.10 and 0.25 and the morbidity subcategory level of specificity, but 

subtracted days throughout the remaining quantiles and levels (Tables III-IV). 

Discussion 

Overall, the mean pseudoR2 for both model fit and the cross-validations were very poor, indicating that 

models do not explain much of the variance in profile duration. However, pseudoR2 values increased as 

quantiles increased, indicating that the models’ independent covariates can predict profile duration with greater 

accuracy at higher quantiles than lower quantiles (Table IV). 
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Six profile durations (7, 14, 30, 60, 90, and 180 days) accounted for 45.2% of all observations. This 

suggests many medical providers assign profile durations based on convenient calendar intervals rather than 

disease prognosis, patient characteristics, or occupational status, which might explain the models’ poor 

performance. However, providers might be exhibiting more clinical judgement when assigning profiles of 

longer duration. Future studies should include the provider assigning the profile as an additional covariate. 

Lower levels of diagnostic specificity exhibited similar pseudoR2 values as higher levels (Table II). As 

specificity decreases, one would expect the predictive ability to decrease as well. However, since providers 

seemingly assign profiles by calendar convenience, this indiscriminate duration assignment would affect the 

power to detect smaller effect sizes. Higher levels of specificity had lower sample sizes per regression than 

lower levels; thus, these higher levels might have been underpowered to detect smaller effects. Therefore, the 

minimum sample size of 2,100 observations per regression might have been inadequate. 

Independent Covariates   

 The effects of age, E7-E9 ranks, O4-O5 ranks, O6+ ranks, and co-morbid conditions to add to profile 

duration are not surprising (Tables III-IV). Profile duration would be expected to increase as age increases and 

if co-morbid conditions are present. Some of the additive effect of these rank categories could either be from 

collinearity with age or a real effect when compared to the O1-O3 reference category and after controlling for 

age. 

 Counterintuitively, heavy and very heavy job classes subtracted days from profile duration on average 

when compared to sedentary job class (Tables III-IV). This finding contradicts prior research of U.S. Army 

occupational classes and disability using a job classification scheme similar to the Dictionary of Occupational 

Titles.[24] While heavy job class was significant only a small percentage of the time (5.4% - 17.4%), very heavy 

job class was among the top-three most significant coefficients across quantiles and levels of specificity (37.0% 

- 58.7%), making its negative effect on profile duration hard to discount. When mapping AFSCs to job classes, 

all special forces AFSCs were converted to very heavy job class. These individuals, while likely prone to 

disability long term, are generally known to avoid profiles, even when experiencing significant pain. While their 
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profile avoidance has not been validated or studied, fear of washing out of training, disappointing their fellow 

Airmen, missing mission opportunities, and/or differences in perception of what qualifies as an ‘injury’ or pain 

necessitating rest and recovery might explain this phenomenon. Profile avoidance would also explain attenuated 

profiles since these members would seek medical clearance faster than others. 

 One of the advantages of using quantile over linear regression is its ability to detect covariate influences 

across the entire range of a conditional distribution. Male gender, light job class, medium job class, and special 

duty status tended to subtract days from profile duration at lower quantiles and add days at higher quantiles 

(Table IV). These differential effects across quantiles are difficult to explain. For gender, males might receive 

shorter profiles on average than females but may be more likely to suffer serious injuries or medical conditions 

requiring longer disability.[25, 26] For instance, males were much more likely than females to receive profiles for 

alcohol abuse or dependence, and the median profile duration for these diagnoses was 177 and 179 days, 

respectively, much longer than most other conditions (data not shown). A similar phenomenon could explain 

special duty status. These service members might generally receive shorter profiles to return to ‘up’ status faster 

but are more likely to suffer serious injuries and/or conditions given the nature of their work. 

 Similar co-morbid conditions displayed the opposite trend, adding days to duration at lower quantiles 

and subtracting days at higher ones (Table IV). Multiple similar conditions might compound a simple problem, 

such as generic musculoskeletal pain, but generalized complaints at higher quantiles might signify a less serious 

underlying pathology and therefore a quicker recovery time.   

The overall poor fit and validation statistics do not discount the effect of the independent covariates on 

profile duration. While most covariates were significant in influencing profile duration less than half the time 

(Tables III-IV), using them to predict duration would still be superior than relying on medians or percentiles 

alone. However, considering the models’ poor performance, medical providers should only use a tool powered 

by these regressions as a reference point, rather than as an accurate prediction of profile duration. 

Limitations 
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The accuracy of ICD codes for determining diseases rates or health indices varies. Most studies assert 

that their accuracy is disease dependent, ranging from 50 – 90%.[27-29] The inter-code variability in accuracy 

likely depends on multiple factors—perceived disease severity of the assigned healthcare provider, experience 

of the assigned provider, complexity of the disease-specific ICD coding architecture, decision-support within 

the local electronic health record, availability of medical coders, and the coding culture within the facility. 

As medical coding in the Military Health System is not directly tied to reimbursement, one might expect 

military ICD coding to be less accurate than other healthcare sectors. The Electronic Surveillance System for 

the Early Notification of Community-based Epidemics (ESSENCE) uses syndromic groupings from ICD codes 

for early outbreak detection. From a record review of 2,474 records, investigators found an excellent interrater 

consistency between 0.87-1.0.[30] While the accuracy fluctuated between diseases, this ESSENCE study 

demonstrated the efficacy of using ICD codes within a military surveillance system.  

ICD-based injury severity measures have also been used to predict in-hospital mortality among injury-

related admissions. From a systematic review of 22 eligible studies, the reported area under the receiver 

operating characteristic curve ranged from 0.681-0.958 indicating a wide range of predictive ability.[31] ICD 

codes may be used in a predictive fashion, but their accuracy will depend on their employment method. 

In ASIMS medical providers attach profiles to ICD codes, but as previously discussed, they assign 

durations based on calendar convenience almost half the time. This study’s models, rather than predicting 

physiological duration by diagnosis, might be predicting the profiling behavior of medical providers.  

ICD-9-CM codes also comprised 84.6% of the primary diagnostic codes in the original dataset, and all 

were forward mapped to ICD-10-CM codes. Generally, ICD-9-CM codes are less specific than ICD-10-CM 

codes; thus, forward mapping inherently results in a loss of diagnostic specificity. Additionally, codes were 

mapped in a one-to-one fashion, only keeping the ICD-10-CM code with the highest prevalence among profiles 

published after 30 Sep 2015. This approach also likely contributed to the models’ poor performance. 

When a one-to-one match was unavailable in translating AFSCs to job classes, the determination made 

may have been subject to unconscious bias of the author. For instance, pilots and physicians have obvious 
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civilian correlates; however, matching the AFSC title of Mission Generation Vehicular Equipment Maintenance 

to a civilian parallel was more difficult.  

Strengths 

Ironically, while this study did not produce a tool with much clinical accuracy, it added evidence for the 

need of such decision support and a potential model for development. If providers are assigning restriction 

durations based upon calendar convenience, then they are not considering patient-specific characteristics, 

occupational requirements, and disease recovery timelines. This is concerning and warrants further 

investigation. 

While this is the first study to apply quantile regression to disability data, it also offers an example of the 

importance of data quality to model development. Even with additional covariates, including prescribed 

medications, laboratory results, radiological studies, and vital signs, the available profile duration data within 

ASIMS is likely not of sufficient quality to build a military-specific occupational disposition tool similar to 

MDGuidelines® (Reed Group, Westminster, CO, USA) and the Official Disability Guide® (MCG Health, 

Seattle, WA, USA).[32,33] For now military providers should consult civilian-facing tools of this nature when 

building profiles for active duty service members, heeding attention that they were built with non-representative 

populations. 

Conclusions 

This study failed to produce an accurate clinical tool to estimate occupational disposition durations in 

AF service members. While medical readiness is the core purpose of the Military Health System,[1,2] and a tool 

of this nature could improve the validity of readiness statistics and the safety of return-to-work 

recommendations, a high-quality, representative data source is not available at this time. Tools such 

MDGuidelines® (Reed Group, Westminster, CO, USA) and the Official Disability Guide® (MCG Health, 

Seattle, WA, USA) [32,33] might still be helpful, but the AF should consider occupational medicine training for 

its non-Flight Surgeon providers and building evidence-based return-to-work protocols. Failing in its primary 

goal, this study still produced several useful findings warranting further investigation—the indirect correlation 
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between profile duration and very heavy job class and the assignment of profile durations based on convenient 

calendar times. 
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29.5 (7.3)

25 or younger 499,205 (36.6)

26 - 30 327,687 (24.0)

31 - 35 233,722 (17.1)

36 - 40 188,463 (13.8)

41+ 116,581 (8.5)

Female 332,529 (24.3)

Male 1,033,129 (75.7)

E1 - E4 538,256 (39.4)

E5 - E6 538,321 (39.4)

E7 - E9 148,404 (10.9)

O1 - O3 69,207 (5.1)

O4 - O5 60,122 (4.4)

O6+ 11,348 (0.8)

Sedentary 331,367 (24.3)

Light 438,327 (32.1)

Medium 312,113 (22.9)

Heavy 237,285 (17.4)

Very Heavy 46,566 (3.4)

No 1,242,668 (91.0)

No 122,990 (9.0)

No 1,217,205 (89.1)

Yes 148,453 (10.9)

No 1,360,496 (99.6)

Yes 5,162 (0.4)

1,365,658

Similar
co-morbid 
conditions

Note: Data are n (%) unless otherwise noted.
E1, Airman Basic; E4, Senior Airman; E7, Master Sergeant; E9, Chief 
Master Sergeant; O1, Second Lieutenant; O3, Captain; O4, Major; O5, 
Lieutenant Colonel; O6+, Colonel and above.

Age group

Total

Job
class

Special duty
status

Mean age, years (sd)

Gender

Military rank
group

Table I. Demographics of U.S. Air Force profiles used in regression 
analysis, 1 Feb 2007 - 31 Jan 2017 (n=1,365,658)

Co-morbid 
conditions
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Diagnostic level
of specificity

Quantile pseudoR2 k-Fold
pseudoR2

Total
observations

Total 
regressions

Original ICD code 0.10
0.013

(0.001-0.042)
0.025

(0.000-0.048)
1,000,657 100

Original ICD code 0.25
0.017

(0.000-0.048)
0.026

(0.000-0.051)
1,000,657 100

Original ICD code 0.50 (Median)
0.025

(0.000-0.066)
0.036

(0.000-0.051)
1,000,657 100

Original ICD code 0.75
0.036

(0.000-0.085)
0.038

(0.000-0.053)
1,000,657 100

Original ICD code 0.90
0.048

(0.001-0.168)
0.036

(0.000-0.055)
1,000,657 100

Original ICD code 0.50 (Median)
0.025

(0.000-0.066)
0.036

(0.000-0.051)
1,000,657 100

ICD code 
length 6

0.50 (Median)
0.025

(0.000-0.066)
0.036

(0.000-0.051)
1,000,744 100

ICD code 
length 5

0.50 (Median)
0.024

(0.000-0.066)
0.036

(0.000-0.052)
1,026,834 98

ICD code 
length 4

0.50 (Median)
0.023

(0.000-0.066)
0.037

(0.000-0.052)
1,091,561 94

ICD code 
length 3

0.50 (Median)
0.026

(0.000-0.103)
0.039

(0.001-0.052)
1,246,193 81

Morbidity
subcategory

0.50 (Median)
0.027

(0.000-0.073)
0.038

(0.000-0.053)
1,365,658 42

Note: pseudo R2 displayed as mean (range).
ICD, International Classification of Diseases, Tenth Revision, Clinical Modification.

Table II. Regression fit & validation statistics [sample], by diagnostic level of specificity & quantile
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Original
ICD code

ICD code 
length 6

ICD code 
length 5

ICD code 
length 4

ICD code 
length 3

Morbidity
subcategory

100 100 98 94 81 42

0.7 (32.6) 0.7 (33.7) 0.7 (32.2) 0.7 (30.4) 0.6 (38.4) 0.4 (51.2)

Female

Male 7.0 (27.2) 11.2 (22.8) 8.5 (23.3) 7.9 (22.8) 4.3 (26.7) 0.6 (39.0)

E1 - E4 -4.5 (15.2) -8.3 (15.2) -8.3 (15.6) -5.2 (14.1) -7.1 (17.4) -5.6 (24.4)

E5 - E6 9.4 (6.5) 9.4 (6.5) 12.2 (6.7) 7.8 (5.4) -3.3 (3.5) 3.6 (12.2)

E7 - E9 15.5 (15.2) 17.3 (15.2) 15.6 (14.4) 19.4 (7.6) 7.1 (9.3) 7.5 (26.8)

O1 - O3

O4 - O5 15.6 (30.4) 15.2 (32.6) 14.2 (28.9) 14.9 (30.4) 13.4 (31.4) 11.1 (36.6)

O6+ 27.4 (35.9) 26.2 (35.9) 24.8 (38.9) 25.5 (37.0) 18.7 (37.2) 28.0 (43.9)

Sedentary

Light 6.4 (8.7) 5.7 (9.8) 5.7 (10.0) 6.8 (7.6) 5.2 (7.0) 1.5 (12.2)

Medium 0.1 (6.5) -0.4 (8.7) -0.7 (11.1) -1.2 (7.6) -3.1 (10.5) -1.1 (19.5)

Heavy -2.6 (8.7) -2.8 (10.9) -1.2 (11.1) -3.7 (13.0) -4.9 (17.4) -2.9 (14.6)

Very Heavy -8.5 (38.0) -8.6 (39.1) -8.7 (41.1) -9.7 (37.0) -7.8 (43.0) -5.5 (51.2)

No

Yes 3.6 (10.9) 6.1 (14.1) 2.3 (12.2) -0.6 (12.0) 2.4 (10.5) 0.1 (24.4)

No

Yes 19.3 (79.4) 18.7 (82.6) 19.0 (80.0) 18.8 (84.8) 18.4 (86.1) 22.5 (82.9)

No

Yes -8.1 (12.0) -8.5 (16.3) -9.4 (15.6) -7.4 (17.4) -3.0 (16.3) 6.0 (22.0)

Co-morbid 
conditions

Note: Data are average β value (% significant) unless otherwise noted. The average β value is the average 
coefficient value across the total number of regressions. Only statistically significant coefficients (p<0.05) were 
included in the average. The % significant is the percentage of coefficients that were statistically significant 
(p<0.05) out of the number of regressions in the 'Total Regressions' column. All ICD codes longer than the 
indicated maximum were truncated to the meet the maximum character length at each respective level.
E1, Airman Basic; E4, Senior Airman; E7, Master Sergeant; E9, Chief Master Sergeant; O1, Second Lieutenant; 
O3, Captain; O4, Major; O5, Lieutenant Colonel; O6+, Colonel and above; ICD, International Classification of 
Diseases, Tenth Revision, Clinical Modification.

Table III. Regression summary statistics, quantile 0.50 (median), by diagnostic level of specificity

Similar
co-morbid 
conditions

Age, years

Total regressions

ref

ref

ref

ref

ref

ref

Gender

Military
rank

group

Job
class

Special
duty

status

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.07.20090530doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.07.20090530


 

0.10 0.25 0.50
(Median)

0.75 0.90

100 100 100 100 100

0.2 (17.4) 0.2 (28.3) 0.7 (32.6) 1.0 (45.7) 2.0 (39.1)

Female

Male -11.4 (8.7) -4.4 (20.7) 7.0 (27.2) 13.1 (35.9) 3.4 (25.0)

E1 - E4 -1.1 (16.3) -4.3 (25.0) -4.5 (15.2) -8.7 (19.6) -16.2 (17.4)

E5 - E6 5.4 (6.5) 9.0 (12.0) 9.4 (6.5) 14.3 (10.9) 9.1 (6.5)

E7 - E9 67.0 (17.4) 14.2 (15.2) 15.5 (15.2) 22.2 (15.2) 7.5 (7.6)

O1 - O3

O4 - O5 12.6 (23.9) 12.2 (28.3) 15.6 (30.4) 22.8 (28.3) 52.3 (19.6)

O6+ 18.5 (26.1) 13.9 (22.8) 27.4 (35.9) 42.3 (17.4) 92.2 (30.4)

Sedentary

Light -0.7 (4.4) 5.9 (5.4) 6.4 (8.7) 5.1 (7.6) 5.3 (9.8)

Medium -2.1 (5.4) -3.1 (8.7) 0.1 (6.5) -0.6 (7.6) 6.0 (7.6)

Heavy -2.9 (5.4) -2.4 (8.7) -2.6 (8.7) -2.9 (13.0) -3.6 (5.4)

Very Heavy -5.6 (58.7) -7.3 (55.4) -8.5 (38.0) -18.3 (37.0) -19.6 (21.7)

No

Yes -1.9 (4.4) 0.7 (14.1) 3.6 (10.9) 12.7 (9.8) 14.4 (15.2)

No

Yes 6.34 (44.6) 9.2 (68.5) 19.3 (79.4) 28.3 (89.1) 51.5 (83.7)

No

Yes 15.8 (15.2) 6.6 (8.7) -8.1 (12.0) -21.0 (17.4) -60.4 (17.4)

Table IV. Regression summary statistics, original ICD code, by quantile

Total regressions

Age, years

Job
class

ref

Special
duty

status

ref

Gender
ref

Military
rank

group ref

Note: Data are average β value (% significant) unless otherwise noted. The average β value is the 
average coefficient value across the total number of regressions. Only statistically significant 
coefficients (p<0.05) were included in the average. The % significant is the percentage of 
coefficients that were statistically significant (p<0.05) out of the number of regressions in the 
'Total Regressions' column. All ICD codes longer than the indicated maximum were truncated to 
the meet the maximum character length at each respective level.
E1, Airman Basic; E4, Senior Airman; E7, Master Sergeant; E9, Chief Master Sergeant; O1, 
Second Lieutenant; O3, Captain; O4, Major; O5, Lieutenant Colonel; O6+, Colonel and above; 
ICD, International Classification of Diseases, Tenth Revision, Clinical Modification.

Co-morbid 
conditions

ref

Similar
co-morbid 
conditions

ref
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