
1 
 

Mathematical Modeling & the Transmission Dynamics of SARS-CoV-2 in 
Cali, Colombia:  

Implications to a 2020 Outbreak & public health preparedness 
 

Jorge Humberto Rojas1, Marlio Paredes2,3,4, Malay Banerjee5,  
Olcay Akman6, Anuj Mubayi4,7,* 

 
1Epidemiology and Public Health in Promotion, Prevention and Social Production of Health SubSecretary, Public 

Health Secretary of Mayor Cali, Colombia 
2Department of Mathematics, Universidad del Valle, Cali, Colombia 

3Instituto de Ciencia, Tecnología e Innovación Universidad Francisco Gavidia, San Salvador, El Salvador 
4Simon A. Levin Mathematical, Computational & Modeling Sciences Center, Arizona State University, Tempe, USA 

5Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India 
6Center for collaborative Studies in Mathematical Biology, Illinois State University, Normal, USA 

7School of Human Evolution and Social Change, Arizona State University, Tempe, USA 
 

 
 
Abstract  
 
Introduction: As SARS-COV-2 and the disease COVID-19 is sweeping through 
countries after countries around the globe, it is critical to understand potential burden 
of a future outbreak in cities of Colombia. This pandemic has affected most of the 
countries in the world because the high global movement of individuals and excessive 
cost in interventions. 
Objective: Using demographic data from city of Cali, disease epidemiological 
information from affected countries and mathematical models, we estimated the rate of 
initial exponential growth of new cases and the basic reproductive rate for a potential 
outbreak in city of Cali in Colombia. 
Materials and methods: We used dynamical models with different modeling 
assumptions such as use of various types of interventions and/or epidemiological 
characteristics to compare and contrast the differences between Colombian cities and 
between Latin American countries. 
Results: Under the assumption of homogeneously mixing population and limited 
resources, we predicted expected number of infected, hospitalized, in Intensive Care 
Units (ICU) and deaths during this potential COVID-19 outbreak. Our results suggest 
that on a given day in Cali there may be up to around 73000 cases who might need 
hospitalization under no intervention. However, this number drastically reduces if we 
carry out only-isolation intervention (with 16 days of symptomatic infection; ~13,000 
cases) versus both quarantining for 6 days and isolation within 16 days (~3500 cases). 
The peak in Cali will reach in 2-3 months. 
Conclusions. The estimates from these studies provides different scenarios of 
outbreaks and can help Cali to be better prepared during the ongoing COVID-19 
outbreak. 
 
Keywords: Coronavirus outbreak, dynamical model, epidemic burden, exponential 
initial rise in new cases, basic reproduction number, SARS-COV-2, COVID-19 
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1. Introduction 
 
An outbreak of pneumonia with unknown etiology in the Wuhan city, Hubei’s 
province in Mainland China was first reported on December 31, 2019 by World 
Health Organization (WHO). On January 7, 2020 a virus associated with this 
outbreak was isolated [1] and found to be novel strain of Coronavirus that may have 
crossed over to human population from its sylvatic host. On January 30, 2020, WHO 
declared the Public Health emergency of International importance [2] and 
denominated this coronavirus as SARS-COV-2 while the disease was referred as 
COVID-19 on February 12, 2020 [3]. This virus belongs to the genus betacoronavirus 
of the subfamily coronavirus and family Coronaviridae. 2002-2004 SARS epidemic 
and 2012-2016 MERS epidemic were also caused by the viruses belonging to the 
family coronavirus, however, both showed lower transmissibility and absolute 
lethality [4]. 
 
In order to protect people from this unknown outbreak of COVID-19 it is critical to 
understand its trends and estimate potential burden. Mathematical models have 
been used before to this purpose for various epidemic diseases and can be 
extremely helpful in disease preparedness. An important threshold quantity 
associated with a disease transmissibility is the basic reproduction number, denoted 
by 𝑅! (pronounced “R naught”). The epidemiological definition of 𝑅! is the average 
number of new cases of the disease that will be generated by one contagious person 
during his/her infectious period. It specifically applies to a population of people who 
were previously free of infection and not vaccinated. Three possibilities exist for the 
potential spread or decline of a disease, depending on its 𝑅! value: (i). If 𝑅! is less 
than 1, each existing infection causes less than 1 new infection. In this case, the 
disease will decline and eventually disappear. (ii). If 𝑅! equals 1, the disease will 
stay alive, but there won’t be an epidemic. (iii). If 𝑅! is greater than 1, cases could 
grow exponentially and cause an epidemic or even a pandemic [5]. A preliminary 𝑅! 
estimate of 1.4 - 2.5 was presented on Jan 23, 2020 in a WHO’s statement regarding 
the outbreak of 2019-nCoV [1]. S. Zhao et al. [6] estimated the mean 𝑅! for 2019-
nCoV in the early phase of the outbreak ranging from 3.3 to 5.5 (likely to be below 5 
but above 3 with rising report rate) [6,7], which appeared slightly higher than those 
of SARS-CoV (𝑅!: 2 − 5) [4]. J. Read et al. [44] estimated the 𝑅! for 2019-nCoV to 
be in the range 3.6 - 4.0, indicating that 72-75% of transmissions must be prevented 
in order to stop the increasing trend. The explosive and dramatic behavior of the 
spread of this virus SARS-CoV-2 in mainland China, has forced health and 
administrative authorities take severe and strict control measures. Until January 31, 
2020, 11950 cases had been reported and 259 deaths but the number of cases had 
increased to 75,184 and 2009 deaths on February 18, 2020 [8]. The pharmacological 
treatment with antivirals is unknown and the vaccine is in the early stages of 
investigation.   
 
Cali is a city with a population of about 2.5 million (2,492,442 people, 98.4% in urban 
areas and 1.6% in rural areas) [9], located at 3°27’26’’ of latitude North and 
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76°31’42’’ of longitude West (Greenwich Meridian), at an altitude of 1,070 meters 
above the sea level, with an average temperature of  24.7°C, an annual  precipitation  
of  1,019.2  mm 12. Cali presents two rainy seasons during the year [10], the first 
one between the months March and May, and then the second one rainy period 
occurs between September and November when the temperatures come down. 
Other strains of Coronavirus are known to be significantly related to climatic 
conditions with colder weather more suitable for their spread. It is worth considering 
that the covid-19 epidemic in Mainland China began in winter, the period of year with 
lower temperature and that in Cali the first winter season is approaching now in 
April/May when the temperature drops, and the population tends to be more 
crowded. Cali is a touristic city and the number of passengers moved by international 
routes in Colombia [11] reached 11,527,416 people alone in the first half-year. The 
countries of origin of these flights were of North America with 3,108,146 people, 
Europe 4,024,519 people, South America 2,608,066 people. Between the factors 
[12] explain the emergence or re-emergence of infectious diseases the modern 
aeronautical technology allows the connection between countries in very short time 
and thus sick people carry infectious agents over long distances [13]. This 
information will allow prepare plans of education to community that interrupts the 
transmission of the virus. 
 
The objectives of this study are to (i) use available current COVID-19 information 
from other countries and estimate, for the city of Cali, Colombia, the expected 
number of cases that needs to be hospitalized over an outbreak, maximum daily 
number of cases that can be expected, time needed to reach the epidemic peak and 
mean duration of an epidemic for the current outbreak in the presence of different 
control actions by the public health department and different modeling assumptions, 
(ii) compare situation in Cali with other four major cities of Colombia, and (iii) 
compare the situation in Colombia with other similar countries.  
 
 
2. Materials and Methods 
 
We considered different modeling assumptions to capture COVID-19 outbreak in 
Cali and four other cities of Colombia. In order to understand the ongoing burden of 
the disease, a systematic procedure was implemented. The procedure in this study 
primarily involves four steps: (i) Using reported estimates of 𝑅! and model-derived 
formulation of 𝑅! (corresponding to different model and under the assumption of 
initial exponential growth rate of epidemic), estimate effective transmission rate in 
the population, (ii) Use estimated effective transmission rate, demographic data from 
city of Cali and epidemic models, to predict different outbreak scenarios for Cali, and 
(iii) From these outbreak scenarios (in step (ii)), estimate the total number of cases, 
hospitalizations, time needed to reach the peak and expected duration of the 
outbreak. 
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Basic Modeling Framework 
 
Mathematical Model to Capture Potential Epidemic in Cali, Colombia: For the 
mathematical modeling of the transmission dynamics of the new SARS-CoV-2 
coronavirus, we have established the structure compartmental of SEIR model 
(Susceptible, Exposed, Infectious, Recovered) and applying the method of 
differential equations 5 based on the COVID-19 epidemic data in continental China 
[14,15]. 
 

𝑑𝑆(𝑡)
𝑑𝑡 = 	−𝜆(𝑡)𝑆(𝑡)																																	(1)	

𝑑𝐸(𝑡)
𝑑𝑡 = 	𝜆(𝑡)𝑆(𝑡)– 	𝑓𝐸(𝑡)																				(2)	

𝑑𝐼(𝑡)
𝑑𝑡 	= 	𝑓𝐸(𝑡)– 	𝑟𝐼(𝑡)																										(3)	
𝑑𝑅(𝑡)
𝑑𝑡 = 	𝑟𝐼(𝑡)																																									(4) 

 
Model variables and parameters are defined in Table 1. The rest of the models are 
defined in Table 2 and in the Appendix, section B.  
 

Table 1. Variables and parameters of the SEIR model 

 Symbol Definition 

Variables 

𝑆 Susceptible population 
𝐸 Exposed (pre-infectious) population 
𝐼 Infectious population 
𝑅 Recovered population 

Parameters 

𝜆 Rate at which susceptible individuals 
becoming infected per unit time, at time 𝑡 

𝑓 Rate at which individuals in the pre-infectious 
category become infectious per unit time  

𝑟 Rate at which infectious individuals recover 
per unit time 

 
Model–related metrics: Consider a simple epidemic model, Susceptible-Infectious-
Recovered (SIR) or Susceptible-Exposed-Infectious-Recovered (SEIR) model with I 
individuals are only infectious. The number of susceptible individuals who are 
infected per unit time is given by the product of the force of infection, 𝜆(𝑡), and the 
number of susceptible individuals at time 𝑡 (𝑖. 𝑒. , 𝜆(𝑡)𝑆(𝑡)) under the assumption that 
individuals contact each other randomly. Let λ(t) is the force of infection or rate at 
which a susceptible individual is infected or rate at which they move to an infected 
compartment then it can be written as: 
 

𝜆(𝑡) = 	𝛽𝐼(𝑡)																										(5) 
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where 𝛽 is the rate at which two specific individuals come into effective contact per 
unit time and 𝐼(𝑡) is the number of infectious individuals at time 𝑡. The formula for 
basic reproduction number of the model is 𝑅! = 𝛽𝑁𝐷 and can used it to estimate 
effective contact rate as 
 

𝛽	 =
𝑅!
𝑁𝐷																											(6) 

where 𝑁 is the population size at the beginning of an outbreak and 𝐷 is the length of 
the infectious period. 
 
Now if Exposed state (defined as individuals who are infected not infectious) is 
present in the model then the model will be referred as SEIR model. Suppose 𝑓 is 
the rate at which the individuals move from exposed compartment to infectious 
compartment.  The rate 𝑓	 = 	1/𝐷ʹ, where 𝐷´ is the duration of the latent or pre 
infectious period. Let 𝑟 be the rate at which the individuals move from infectious 
compartment to recovered or immune compartment, i.e., 𝑟 = 1/𝐷, where 𝐷 is the 
duration of the infectious period.  
 
Since 𝑅! is a metric computed early in the epidemic, it can be used to relate it with 
the initial growth rate of an epidemic. Different formulae are used to estimate 𝑅! 
using data from the early stages of an epidemic, each of them requires estimates of 
something which is often referred to as exponential growth of rate of the epidemic 
sometimes denoted by Λ (capital lambda). During the early stages of an epidemic, 
the number of infectious individuals increases at an approximately constant 
exponential growth rate.  
 
 
Estimation of Various Relevant Quantities 
  
Initial Exponential Growth Rate: We can estimate this growth rate as follows. 
Consider an exponential growing function of number of reported cases 𝐼(𝑡) where Λ 
is the exponential growth rate parameter, i.e.,  
 

𝐼(𝑡) = 𝐼(0)𝑒"#																																(7) 
 
where 𝐼(0) is the initial number of infectious individuals at the beginning of infection. 
If we take natural logarithm of this equation, we obtain the following equation 
 

lnE𝐼(𝑡)F = lnE𝐼(0)F + Λ𝑡																		(8) 
 
relating the number of infectious individuals and Λ. Note, this is the equation of a 
straight line with slope Λ, suggesting that if we plot the natural logarithm of the 
number of infectious individuals against time, we should obtain a straight line with 
slope Λ. 
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On the other hand, we can also write an expression of 𝑅!, in terms of Λ. This 
expression of 𝑅! will depend on the type of model considered and other model 
parameters including 𝐷’ and 𝐷 the average durations of the pre-infectious and 
infectious periods respectively. Sometimes 𝑅! can also be expressed in terms of  the 
serial interval, 𝑇$ (defined as the time between the start of symptoms in the primary 
patient (infector) and onset of symptoms in the patient receiving that infection from 
the infector (the infected) [7]. In Table 2 the different formulas are shown. For 
example, in case of the SEIR model with only 𝐼 infectious, the basic reproduction 
number can be written as 
 

𝑅! =	(1 + Λ𝐷)(1 + Λ𝐷′)																					(9) 
 
and in case of the SIR model, 𝑅! = 1 + Λ𝐷.  
 
Furthermore, we can use equation (8) to obtain the relationship between the growth 
rate Λ and the doubling time 𝑇% of an epidemic, which is defined as the time until the 
number of cases in the population doubles, relative to that at some other time. 
Suppose that there is only one infectious individual at time 𝑡 = 0	(𝐼(0) = 1) and there 
are two infectious individuals at time 𝑡 = 𝑇% 	(𝐼(𝑇%) = 2). Substituting for 𝐼(0) = 1 and 
𝐼(𝑇%) = 2 into equation (8) we obtain ln 2 = ln 1 + Λ𝑇% which implies 
 

Λ =
ln 2
𝑇%

																																											(10) 

 
Since R0 can be written in the form of Λ and the doubling time can be computed as 
in equation (10), we can find 𝑇% in terms of 𝑅!. For example, in case of SIR model,  
 

		𝑇% =
(ln 2) ∗ 𝐷
(𝑅! − 1)

																																(11) 

 
and in case of SEIR model with only 𝐼 infectious, it can be written as 
 

𝑇% =
ln 2
ΛN
																																											(12) 

 

where ΛN =
&'!()'!"(*(,#&-)'"

/'"
, 𝐷- = 𝐷 + 𝐷′ and 𝐷/ = 𝐷 ∗ 𝐷′. This formula can be used 

to study the role of epidemiological factors such as transmission rate (𝛽), 
asymptomatic and symptomatic periods. 
 
Estimation of Model Parameters: In groups of Japanese migrants who were 
repatriated, the proportion of positive asymptomatics to PCR test, was estimated by 
Hiroshi Nishiura et al, in 41.6% (CI 95%: 16.7-66.7) [16]; Anne Kimball et al, [17] 
found 57.0% and Kenji Mizumoto et al 51.7% [18]. For purpose of our study we will 
take 50 % as parameter value [19]. It has also been established that 14% of the 
symptomatic people are hospitalized for complications related to pneumonia and 
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respiratory distress [20,21]. From those hospitalized, 15% die [22-24]. Because the 
covid-19 is novel disease, some parameters are unknown or are known with less 
precision, and hence, they are estimated. Using case reports, outbreaks' studies and 
some based on the behavior of coronavirus in past epidemics, these parameters are 
estimated. Multiple research articles report incubation period estimates obtained 
from different methods. The most of them report incubation period mean between 5 
– 7 days and the range between 2 – 14 days [25-34]. We have used the incubation 
period to be 6.4 days based on most of the studies. Although the virus SARS-2 can 
be detected in nasopharyngeal swab between 2.5 days before and 18 days after 
starting symptoms, infectivity is considered very low after 7 days. The infectious 
period is assumed for this study, an average of 7.6 days based on reported 14 days 
quarantine period COVID-19 [35-39]. 
 
Estimation of 𝑅!: The data used for calculating 𝑅! were collected from published 
research in the New England journal of Medicine on January 29, 2020 [14]. The 
novel coronavirus SARS-CoV-2, causes COVID-19, which is characterized mainly 
by fever, muscle pain and cough and it can move along to severe phases of 
pneumonia or even die. Because it is a new disease, there is a small knowledge 
about the time of latent period, infectious period in the natural history of disease, 
though some estimates have been made based on cluster of cases and hospitalized. 
 
Models 
 
In this study, we consider various modeling assumptions leading to seven different 
models, six of them are defined in Table 2 and their details are given in Appendix B. 
The last (seventh) model is referred as Age of infection model, whose some 
information are given below and other details are given in Appendix B. Suppose 
𝑆, 𝐸, 𝐼, 𝑅, 𝑇, 𝐽, 	𝑄-, 	𝑄/ and 𝑄0 represent Susceptible, Exposed, Infectious, Recovered, 
Treated, Hospitalized, Susceptible-Quarantined, Exposed-Quarantined and 
Infectious-Isolated. The models are (i) simple SIR, (ii) simple SEIR with I only 
infectious, (iii) simple SEIR with E and I infectious, (iv) SITR, (v) SIR with general 
distribution of age of infection (vi) SEIR-Q1Q2Q3, and (vii) SEIJR.  
 
Age of Infection Model: 𝑆(𝑡) and 𝜑(𝑡) denote the number of susceptibles and total 
infectivity at time 𝑡. The total infectivity is measured as the average of product of the 
number of infected individuals and the mean infectivity of the infected individuals at 
their age of infection 𝜏 where 𝜏 ∈ [0, 𝑡]. Denoting the mean infectivity at time 𝜏 by 
𝐴(𝜏), we can write the epidemic model with age of infection as follows 
 

𝑆1(𝑡) = −𝛽𝑆(𝑡)𝜑(𝑡),																																																																				 

𝜑(𝑡) = 𝜑!(𝑡) + W 𝛽𝑆(𝑡 − 𝜏)𝜑(𝑡 − 𝜏)𝐴(𝜏)𝑑𝜏.																								
#

!
 

 
Then the basic reproduction number is defined as  

𝑅! = 𝛽𝑁W 𝐴(𝜏)𝑑𝜏																																									(13)	
2

!
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The basic reproduction number in terms of initial growth rate is as follows, 
 

𝑅! =
∫ 𝐴(𝜏)𝑑𝜏2
!

∫ 𝑒&"3𝐴(𝜏)𝑑𝜏2
!

,																																						(14) 

 
where Λ is a positive eigenvalue satisfying the relation 

1 = 𝛽𝑁W 𝑒&43𝐴(𝜏)𝑑𝜏.																																													
2

!
 

 
Interventions: The modeling assumptions in the models were related to 
epidemiological characteristics and/or type of interventions. The interventions that 
we have considered include quarantine, isolation, treatment, or infectious 
hospitalized individuals with mild infection.  

We also consider three different types of interventions [40] such as  

• “Wuhan-style” Containment: It assumes closed borders with full shutdown 
and no movement of individuals (first reporting Jan 1 in Wuhan and this type 
of lockdown started on Jan 23). In order to capture this intervention, the 𝑅! 
was assumed as follows 

𝑅! =

⎩
⎪
⎨

⎪
⎧ 1.3			𝑖𝑓	1

$#	𝑤𝑒𝑒𝑘											
0.3			𝑖𝑓	2 − 6#5	𝑤𝑒𝑒𝑘			
0.2				𝑖𝑓	7#5	𝑤𝑒𝑒𝑘											
0.04			𝑖𝑓	8#5	𝑤𝑒𝑒𝑘											

                     (15) 

• “Shelter-in-place” Containment: It assumes voluntary community-wide 
home quarantine with only essential services open. In order to capture this 
intervention, the 𝑅! was assumed as follows 
 

𝑅! = _
1.3			𝑖𝑓	1 − 4#5	𝑤𝑒𝑒𝑘			
1.1			𝑖𝑓	5 − 8#5	𝑤𝑒𝑒𝑘			
0.8			𝑖𝑓	9 − 12#5	𝑤𝑒𝑒𝑘

                      (16) 

 
• “Social Distancing” Order: It assumes ban on events over 50 people and 

public advocacy around “social distancing”. In order to capture this 
intervention, the 𝑅! was assumed as follows 

 𝑅! = 1.7 if 1-12th week  
 

Using these estimates of R0 and the formula for R0 for the SEIR model with both E 
and I infectious, it is possible to readily obtain corresponding 𝛽 estimates 
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(transmission rate over time). For intervention 𝛽 will be also piecewise defined 
function.   

 
Figure 1. Three different types of transmission metrics corresponding to the three 

different interventions 

Table 2. Formulas to the estimate basic reproduction number 
 

𝑹𝟎/𝑹𝒄	in terms of Λ Assumptions Model (Actual R0) 

1 + Λ𝐷 

This expression assumes that the pre-
infectious period is very short in comparison 
with the infectious period, or individuals are 
infectious immediately after they are infected. 
The infectious period is assumed to follow the 
exponential distribution. (Appendix, section 
B.1) 

SIR  
(𝑅# =

$%
&

) 

1 + Λ𝑇' 

This expression is typically used when the 
pre-infectious and/or infectious periods are 
not known but are assumed to follow the 
exponential distribution. It can be shown that 
if the pre-infectious and infectious periods 
follow the exponential distribution, then the 
serial interval (𝑇') equals 𝐷 + 𝐷’. (Appendix, 
section B.2) 

SEIR with only I Infectious 
(𝑅# =

$%
&

) 

1 + -
ln 2
𝑇(
1𝐷 

This equation can be derived from the first 
one in this table using the fact that the time 
until the number of infectious persons doubles 
relative to that at some other time (𝑇() is 
related to the growth rate through the 
equation Λ = )* +

,!
. (Appendix, section B.2) 

1 + Λ𝑇' + 𝑓-(1 − 𝑓-)(Λ𝑇')+ 

This expression is a more detailed version of 
the third one in this table and is typically used 
when the pre-infectious and/or infectious 
periods are poorly understood but are 
assumed to follow the exponential 
distributions. 𝑓- =

.
,"

 is the ratio between the 
infectious period and the serial interval. 
(Appendix, section B.2) 

(1 + Λ𝐷)(1 + Λ𝐷′) 

The pre-infectious and infectious periods 
follow the exponential distribution. Neither the 
pre-infectious nor infectious periods are short, 
relative to the other.  
(Appendix, section B.2) 
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(1 + Λ	D′)(1 + Λ	D) -1

+
1

D	D/𝜀1
1

71 + Λ	D + 1
D	D/𝜀8

 

It is assumed that E individuals are infectious 
and transmit infection, however, their 
infectivity is lower than that of I individuals.  
(Appendix, section B.3) 

SEIR with E & I infectious 
(𝑅# =

$%
&
+ 0$%

1
) 

(𝜂 + 𝛿𝛾)(Λ + 𝜂)(Λ + 𝛼 + 𝛾)
𝜂(𝛼 + 𝛾)(Λ + η + δγ)  

It assumes that there is no E stage (i.e., no 
asymptomatic stage) but there are some 
therapeutic effects on patients in isolation.  
(Appendix, section B.4) 

SITR, model with treatment 
(𝑅# =

$%
&23

71 + 43
5
8) 

7𝜎 + 𝛼6 +
𝛾6
𝑞 8 (Λ	 + 𝜎 + 𝛼6)(Λ	 + 𝛾6 + 𝜙)

(𝛾6 + 𝜙)	(𝜎 + 𝛼6) 7Λ + 𝜎 + 𝛼6 +
𝛾6
𝑞 8

 

It assumes SEIR type model but with 
quarantining for suspected cases and 
isolation for confirmed cases. Due to these 
measures 
(Appendix, section B.6) 

SEIR-Q1Q2Q3 Model with 
standard incidence 

(𝑅7 =
$8
3#29

+ $3#
(3#29)(<2&#)

) 

𝑅7(Λ) which is given in appendix 

It assumes that hospitalization of individuals 
is possible quickly and 
asymptomatic/symptomatic both are 
infectious. (Appendix, section B.7) 

SEIJR Model with standard 
incidence 

(𝑅7 =
$8

5212=
+ $1

(5212=)(3#2&24)
+

$>(&52&125423#5)
(5212=)(3#2&24)(3$24)

) 

 
3. Results 
 
We assume that the initial values for simulations were 𝐼! = 1, 𝑆! = 𝑁 − 𝐼! and other 
state variables zero at the starting time. The parameter estimates of the models were 
collected in Table 3 and Table 4.  
 
Initial Exponential Growth Rate 
 
Exponential growth model was used to estimate initial exponential growth rate in city 
of Cali. The exponential function (Equation (7) or (8)) is fitted to reported cases from 
different countries. The early estimated growth rate using data from China is found 
to around 0.17 (Figure 2) and this is used for further simulation scenarios. The 
confidence interval is given by 95% CI (0.162, 0.185). The comparison of different 
exponential growth and estimated start of epidemics in some countries are computed 
(Table 3).  
 
Outbreak in City of Cali, Colombia 
 
SEIR model with I Infectious: Using literature, we can estimate some of the model 
parameters. We obtained 𝑇5 (the hospitalization rate) around 14%, 𝐿5 (the lethality 
in hospitalized individuals) around 15%, the estimated 𝑇$ = 7.5 days (95% CI, 5.3 to 
19) and the estimated 𝑇% = 7.4 days (95% CI, 4.2 to 14) (6).  

Table 3. Date of reporting starts and first exponential day 
 

Country 
Date of 

reporting 
starts 

Estimated date of first Case 
(number of days of delay) 

Initial reported 
cases 𝒚(𝟎) 𝚲 𝑹-

squared 

South Korea  02/19/2020 02/03/2020 (16 days) 86 0.2861 0.89 
South Africa 03/09/2020 03/04/2020 (5 days) 4 0.3105 0.98 
Mexico 03/11/2020 03/02/2020 (9 days) 8 0.2418 0.92 
Panama 03/11/2020 02/25/2020 (15 days) 18 0.2056 0.95 
Brazil 03/10/2020 02/24/2020 (15 days) 36 0.2419 0.93 
Chile 03/10/2020 02/28/2020 (11 days) 14 0.2473 0.92 
Ecuador 03/13/2020 03/01/2020 (12 days) 21 0.2618 0.86 
Peru 03/09/2020 02/28/2020 (10 days) 8 0.2231 0.89 
Argentina 03/09/2020 03/28/2020 (10 days) 8 0.2158 0.96 
Colombia 03/09/2020 03/02/2020 (7 days) 5 0.2391 0.92 
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It is assumed that the individuals contact randomly and furthermore the controls are 
not implemented. We carried out simulations with the population size of Cali and it 
was applied the hospitalization rate (𝑇5) and the lethality rate (𝐿5) in hospitalized 
individuals reported from Wuhan. 
 
Based on the data for confirmed cases from December 08, 2019 through January 
21, 2020 from city of Wuhan, China [14], we estimated the growth rate [15] of natural 
logarithm of the incidence accumulate be 0.175 and the corresponding 𝑅! was 4.95. 
 

𝑅! =	 (1 + Λ𝐷)(1 + Λ𝐷′) = 	 (1 + 0.175 × 7)(1 + 0.175 × 7) = 4.95 
 

 

 
 

Figure 2. Growth rate of Covid-19 in initial epidemic phase 
 
 

Table 4. SEIR model parameters estimate for 𝑅! = 4.95 
 

Parameters Description Estimated value (units) Reference 

Λ Growth rate: duration of an epidemic 
cycle 0.175 (day-1) Estimated 

𝜆 
Force of infection: rate at which 
susceptible individuals becoming 
infected per unit time 

1.54 × 10?@ (day-1) Estimated 

𝑇 Interepidemic period 5.1 (years) [7] 
𝐴 Median Age of infection 17.7 (years) [7]  

𝐼A 
Immunity Threshold:  proportion of 
immune population minimum 
necessary to extinguish epidemic 

0.8 (proportion population) [7]  

𝑇' Serial interval 7.5 (days) [6]  
𝑇( Doubling time of cases 7.4 (days) [6]  
𝐷 Duration of infectious period 7 (days) [7,8,15] 
𝐷ʹ Duration of the asymptomatic period 7 (days) [7,8,9] 
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Comparison of SIR, SEIR with I only infectious and SEIR with E and I both Infectious 
models: Various outbreak related-metrics including number of cases and deaths for 
the city of Cali are given in Table 5 when there are no interventions. If we assume 
that infections can be generated by asymptomatic then the outbreak will persist for 
relatively longer time (around 8 months versus 7 months). The total number of 
hospitalized cases during the outbreak between the three models are presented in 
Table 6 for 30, 60 and 90 days after start of epidemic, respectively.   
 

Table 5. Description of parameters and values for all other models in Table 2. 
 

Parameter Description Value(units) References 
𝛽 Rate at which two specific individuals 

come into effective contact per unit time 2.83 × 10?B (day-1) [5,14] 

𝑞 Reduce infectivity of E class individual as 
compared to I individual 0.5 Assumed (varied) 

𝑙 Reduced infectivity of J individual as 
compared to I individual 0.4 Assumed (varied) 

𝜅 
The rate at which individuals in the pre-
infectious category become infectious 
per unit time. 1/D 

0.143 (day-1) [7,8,15] 

𝜇 Per capita rate at which asymptotic get 
recovered without showing symptoms 0.2 (day-1) [42] 

𝜂 
Recovery rate in treated: the rate at 
which the infectious are treated and 
cured 

0.85 (day-1) [9] 

𝛾6 
Per capita rate at which symptomatic 
recovered 0.125 (day-1) [42] 

𝛼 
Recovery rate: The rate at which 
infectious individuals recover (become 
immune) per unit time. 1/D' 

0.143 (day-1) [7,17] 

𝛿 Per capita disease related mortality rate 0.025 (day-1) [42] 

𝜎 Per capita rate at symptomatic 
individuals are isolated 0.066 (day-1) [43] 

𝜙 Per capita quarantine rate  0.20  (day-1) [43] 
1/𝜃 Average time in quarantine 6 (days) [43] 

𝛾+ 
Per capita rate of recovery for 
hospitalized patients 0.75 (day-1) [42] 

𝐷 Duration of infectious period 7 (days) [7,8,15] 

𝐷ʹ Duration of the preinfectious with 
asymptomatic period 7 (days) [7] 

 
 
Table 6. Scenario for different models, SIR, SEIR with only I infectious, and SEIR 
with 𝐸 and 𝐼 both Infectious. For each model, the first line represents 30 days after 
start of epidemic, the second line 60 days from beginning and the third line have 
values after 90 days in epidemic. The number of hospitalized is calculated using 
the hospitalization rate, 𝑇5 ,  of 14% [15] and number of deaths is calculated using 

the COVID-19 mortality rate, 𝐿5 , of 15% among hospitalized individuals [15]. 
 

Model 𝑹𝟎 value Number of Infected Number of 
hospitalized 

Number of 
deaths 

Time to 
peak of the 
epidemic  

(days) 

Duration of 
epidemic 

(days) 

SIR  
section B.1 𝑅# = 2.25 

6,208 
CI (2,716; 9,700) 

869 
CI (380; 1,358) 

130 
CI (57;204) 72 

CI (69;73) 
220 

CI (211;225) 800,681 
CI (455,115; 1,146,248) 

112,095 
CI (63,716;160,475) 

16,814 
CI (9,557;24,071) 
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Figure 3. Simulation for SEIR model with 𝐸 and 𝐼 both infectious 

 
 
Comparison of Outbreak burden using SEIR Model with no intervention, only 
isolation and both quarantine and isolation interventions: We consider SEIR-
Q1Q2Q3 model (see Appendix, section B6 for details) under three different 
scenarios: baseline (no intervention), with only isolation and with both quarantine 
and isolation (Figure and Table shows the statistics and trends).  

2,199,549 
CI(1,890,424;2,508,673) 

307,937 
CI(264,659;351,214) 

46,191 
CI(39,699;52,682) 

SEIR  
section B.2 𝑅# = 4.95 

4,031 
CI(1,762;6,300) 

564 
CI(247;882) 

85 
CI(37;132) 

78 
CI (75;80) 

215 
CI (204;220) 

574,581 
CI(297,766;851,397) 

80,441 
CI(41,687;119,196) 

12,066 
CI(6,253;17,879) 

2,425,096 
CI(1,932,410;2,917,782) 

339,513 
CI(270,537;408,489) 

50,927 
CI(40,581;61,273) 

SEIR 
infectivity 

section B.3 
𝑅# =2.27 

2,149 
CI(939;3,359) 

301 
CI(131;470) 

45 
CI(20;71) 

84 
CI(81;86) 

234 
CI(224;239) 

284,795 
CI(138,340;431,250) 

39,871 
CI(19,368;60,375) 

5,981 
CI(2,905;9,056) 

2,173,543 
CI(1,710,300;2,636,787) 

304,296 
CI(239,442;369,150) 

45,644 
CI(35,916;55,373) 
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Figure 4. SEIR-Q1Q2Q3 Model results. Showing total cases and effective 

reproduction number 
 

Table 7. SEIR-Q1Q2Q3 Model results 
 

 𝑹𝟎/𝑹𝒄 Beta 
End of 

outbreak 
(days) 

Total 
Cases 

Maximum number 
of symptomatic on 

a given day 

Number 
Hospitalized 

(14%) 
SEIR  3.54 0.3169 246 2,244,879 521,313 72,983 

SEIR with Q3 2.19 0.4916 209 2,090,252 95,044 13,306 

SEIR with Q1, 
Q2, Q3 1.55 0.7930 160 1,196,356 25,021 3,502 

 

 
 

Figure 5. SEIR-J.  
 

Table 8: Expected number and 95% confidence interval 
 
Model 𝑹𝟎/𝑹𝒄 

(95% CI) 
Time when 

Reff<1 
(95% CI) 

Duration of an 
outbreak [Tend] 

(95% CI) 

Total Number of 
Cases in Outbreak 

[E(Tend)+I(Tend)] 

Time to Peak 
of Epidemic 

(95% CI) 

Cases when  
Peak is reached 

(95% CI) 
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(95% CI) 
SEIR with 𝑰 
Infectious 

3.027 
[2.831;3.231] 

85.36 
[84.75;85.93] 

163 
[159;168] 

2185473 
[2152489;2213376] 

87.7 
[82.33;93.44] 

187839 
[214347;187542] 

SEIR with  
𝑬 & 𝑰 
infectious 

2.354 
[2.259;2.463] 

87.51 
[86.51;88.47] 

169 
[163;174] 

2021374 
[1983782;2058871] 

92.54 
[86.29;100.4] 

165129 
[157569;188438] 

SEIR-J 1.336 
[1.175;1.520] 

92.86 
[69.44;104.6] 

302 
[279;326] 

401937 
[256819;5318737] 

90.05 
[87.16;151.6] 

5680 
[1,128;9,727] 

 
Comparison Between 5 Big Cities of Colombia 
 
Comparison of SEIR with E and I both Infectious and quarantine and isolation 
interventions models for 5 different cities of Colombia: The difference between 
outbreaks under similar level of quarantine and isolation interventions are shown in 
Table 8 and Figure 6. Cartagena and Barranquilla will have roughly similar type of 
an outbreak and Cali and Bogota will have similar. Maximum number of a beds that 
will be needed on a given day in Bogota and Cartagena will be 3 and 1/2 times, 
respectively, the corresponding number in Cali. Cali might need up to 3502 beds a 
day for the COVID-19 patients at the time of the peak of the outbreak, which will last 
for 7 to 8 months.    
 
Table 9: SEIR-Q1Q2Q3 Model results for Different Cities. Not all symptomatic will 
be needing hospitalization as some will recover themselves. In all the cities roughly 

52% will be infected either as mild or severe infections during the outbreak 
 

SEIR with Q1, 
Q2, Q3 

Population 
size (N) 

End of 
outbreak 
(days) 

Total Cases 
[Symptomatic + 
Asymptomatic]  

Maximum number of 
symptomatic on a 
day 

Max number 
hospitalized in a 
day (14%) 

Cali 2.3M 236 1196356     ~25021 ~3502 
Bogota 7.2M 254 3703776 ~77423 ~10839 
Medellin 2.4M 237 1251704 ~26178 ~3664 
Barranquilla 1.2M 226 621984 ~13006 ~1820 
Cartagena 0.9M 221 471673 ~9863 ~1380 

 
Figure 6. Comparison of outbreaks in 6 major cities of Colombia using 

SEIR_Q1Q2Q3 model 
 
4. Discussion  
 
The estimates of 𝑅! considered here might be slightly higher than those published 
by other authors, from Asia and Europe [21,32,34] but it is noteworthy that during 
the SARS epidemic in 2002 the estimates of the average R0 varied between 2.24 
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(95 % CI: 1.96–2.55) and 3.58 (95% CI: 2.89–4.39) [4] and 8,000 cases were 
reported while for the new SARS-Cov-2 which is a similar coronavirus, originated in 
the same country  the estimates of 𝑅! are similar or even lower than 2.2 (95% CI, 
1.4 to 3.9) [14], and 80,000 cases have already been reported in the first 11 weeks 
of the epidemic. 
 
We have observed the application of different techniques to calculate R0, that could 
explain the different scenarios of a potential outbreak in Colombia. While Li et al. 
(14) used the duration of the serial interval, whose result is similar to ours when we 
use the same technique, our highest estimate was based on the growth rate and the 
duration of similar pre-symptomatic and infectious periods. 
 
We estimated that in the city of Cali the outbreak under current intervention of 
isolation and quarantine will last for 5-6 months and will need around 3500 beds on 
a given during the peak of the outbreak. Outbreak in Cali will be similar to outbreak 
in Medellin but at least 1/3 times less cases will be observed as compared to the 
outbreak in Bogota. The cases in the current outbreak in Cali was reported about a 
week late.  
 
5. Conclusions 
 
COVID-19 is a highly transmissible virus with the capacity to produce outbreaks and 
with high repercussions on lethality in the vulnerable (individuals with pre-health 
conditions or elderly) population and with comorbidities.  
 
Mathematical models and simulation applied to data ongoing epidemics allow 
anticipation in the phase of preparing mitigation plans. 
 
Based on the estimates, the distribution of hospital beds and intensive care units in 
the city available for response to an eventual emergency have been planned. Also, 
the inclusion of 500,000 Euros in municipal budget for mitigating the epidemic if it 
reaches. 
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Appendix 
 
A. Some other figures 
 

 

 
 

Figure 7. Simulation for SIR model 
 
 
 

 

 
 

Figure 8. Simulation for SEIR model with only 𝐼 infectious 
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Figure 9. SEIR with only I infectious 
 
 

 
 

Figure 10. SEIR with E and I infectious 
 

 
Figure 11. Exponential fitting for data from South Korea and South Africa 

 
 

 
 

Figure 12. Exponential fitting for data from Mexico and Panama 
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Figure 13. Exponential fitting for data from six South America countries 
 
 
B. Models 
 
B.1. SIR Model 
 
We start with a simple SIR epidemic model 
 

𝑆1 = −𝛽𝑆𝐼																							(17) 
𝐼1 = (𝛽𝑆 − 𝛼)𝐼															(18) 
𝑅1 = 𝛼𝐼																												(19) 
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with initial conditions 𝑆(0) = 𝑆!,				𝐼(0) = 𝐼!,								𝑆! + 𝐼! = 𝑁. It is known that the basic 
reproduction number for this model is 𝑅! =

67
8

 and in terms of the initial exponential 
growth rate Λ 
 

𝑅! =
Λ + 𝛼
𝛼 = 1 +	

Λ
𝛼 = 1 + 	Λ	D																											(20) 

 
For this simple SIR model, if 𝑡 is small, 𝑆 ≈ 𝑁, and the equation for 𝐼 is approximately 
 

𝐼1 = (𝛽𝑁 − 𝛼)𝐼 = (𝑅! − 1)𝛼𝐼															(21) 
 
and grow exponentially with growth rate (𝑅! − 1)𝛼. The exponential growth rate Λ 
can be measured and then we have an estimate 
 

𝑅! = 1 +
Λ
𝛼																																															(22) 

 
More complicated models are approximated for small 𝑡 by linear systems, whose 
solutions have an exponential growth rate given by the largest eigenvalue of the 
coefficient matrix. Thus for the SEIR model, the initial exponential growth rate Λ	 <
𝛼(𝑅! − 1) is the (unique if 𝑅! > 1) largest positive eigenvalue of Jacobian at disease 
free equilibrium. 
 
The final size relation in terms of the initial exponential growth rate is 
 

ln
𝑆!
𝑆2

=
Λ + 𝛼
𝛼 g1 −

𝑆2
𝑁 h																(23) 

 
B.2. SEIR Model 
 
Now we add an exposed class and we have the following model 
 

𝑆1 = −𝛽𝑆𝐼																								(24) 
𝐸1 = 𝛽𝑆𝐼 − 𝜅𝐸																(25) 
𝐼1 = 𝜅𝐸 − 𝛼𝐼																				(26) 
𝑅1 = 𝛼𝐼																														(27) 

𝑆(0) = 𝑆!,					𝐸(0) = 𝐸!, 𝐼(0) = 𝐼!,						𝑅(0) = 0 
 
The basic reproduction number for this model is 𝑅! =

67
8

 and in terms of the initial 
exponential growth rate Λ takes the form 
 

𝑅! =
(Λ + 𝜅)(Λ + 𝛼)

𝛼𝜅 = g1 +
Λ
𝜅h		g1 +

Λ
𝛼h =

(1 + Λ	D′)	(1 + Λ	D)																						(28) 
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For this SEIR model, the initial exponential growth rate Λ	is the largest positive 
eigenvalue of 
 

j−𝜅 𝛽𝑁
𝜅 −𝛼k																																		(29) 

 
The final size relation for this model in terms of the initial exponential growth rate is 
 

ln
𝑆!
𝑆2

=
(Λ + 𝜅)(Λ + 𝛼)

𝛼𝜅 g1 −
𝑆2
𝑁 h																									(30) 

 
If we estimate 𝑅! from other formulas obtain 
 

𝑅! = 1 + Λ𝑇$ + 𝑓9(1 − 𝑓9)(Λ𝑇$)/ 
𝑅! = 1 + (0.175 × 7.5) + [(7/7.5)(1 − (7/7.5))(0.175 ∗ 7.5)2] 

𝑅! = 1 + (1.3125) + [0.933(0.066)(1.7227)] = 1 + 1.3125 + 0.1061 = 2.41 
 

𝑅! = 1 + g
ln 2
𝑇%
h𝐷 = 1 +

0.693
7.4 × 7 = 1 + (0.0936 × 7) = 1.66 

 
𝑅! = 1 + Λ𝑇$ = 1 + (0.175 × 7.5) = 2.25 

 
We have estimated the expected number of 255 infected, 9 hospitalized and 1 death, 
during the first month of the epidemic if one infected individual with SARS-COV-2 
enters Cali and no control would be taken. 
 
B.3. SEIR Model with infectivity in exposed stage 
 
Now we consider the last model with infectivity in exposed stage 
 

𝑆1 = −𝛽𝑆(𝐼 + 𝜀𝐸)																									(31) 
𝐸1 = 𝛽𝑆(𝐼 + 𝜀𝐸) − 𝜅𝐸																	(32) 
𝐼1 = 𝜅𝐸 − 𝛼𝐼																																			(33) 
𝑅1 = 𝛼𝐼																																												(34) 

𝑆(0) = 𝑆!,					𝐸(0) = 𝐸!, 𝐼(0) = 𝐼!,						𝑆(0) = 0 
 
In this case the basic reproduction number is 𝑅! =

67
8
+ :67

;
 and in terms of the 

initial exponential growth rate Λ takes the form 
 

𝑅! =
(𝜅 + 𝜀𝛼)(Λ + 𝜅)(Λ + 𝛼)

𝛼𝜅𝜀 jΛ + 𝛼 + 𝜅𝜀k
= g1 +

Λ
𝜅h		g1 +

Λ
𝛼h j1 +

𝜅𝛼
𝜀 k

1

j1 + Λ𝛼 +
𝜅𝛼
𝜀 k

= 	 (1 + Λ	D′)		(1 + Λ	D) g1 +
1

D	D1𝜀h
1

j1 + Λ	D + 1
D	D1𝜀k

															(35) 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.06.20093526doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20093526


26 
 

The final size relation in terms of the initial exponential growth rate is 
 

ln
𝑆!
𝑆2

=
(𝜅 + 𝜀𝛼)(Λ + 𝜅)(Λ + 𝛼)

𝛼𝜅𝜀 jΛ + 𝛼 + 𝜅𝜀k
g1 −

𝑆2
𝑁 h −

𝜀𝛽
𝜅 𝐼!																								(36) 

 
B.4. A model with treatment 
 
Now we add treatment to the basic model at a rate 𝛾. We consider the following 
assumptions  

• Treatment moves infectives to a class 𝑇 with infectivity decreased by a 
factor 𝛿 and with a recovery rate 𝜂. 

• Treatment continues so long as an individual remains infective. 
• Treatment is beneficial, 𝜂 > 𝛿𝛼. 

 
𝑆1 = −𝛽𝑆(𝐼 + 𝛿𝑇)																										(37) 
𝐼1 = 𝛽𝑆(𝐼 + 𝛿𝑇) − (𝛼 + 𝛾)𝐼								(38) 
𝑇1 = 𝛾𝐼 − 𝜂𝑇																																			(39) 
𝑅1 = 𝛼𝐼 + 𝜂𝑇																																		(40) 
𝑆(0) = 𝑆!, 𝐼(0) = 𝐼!, 𝑇(0) = 0 

 
Integration of the first equation, sum of the of the first two equations and the third 
equation gives 
 

ln
𝑆!
𝑆2

= 𝑅! g1 −
𝑆2
𝑁 h																									(41) 

 
where the basic reproduction number is 𝑅! =

67
8(<

j1 + =<
>
k and in terms of the initial 

exponential growth rate Λ takes the form 
 

𝑅! =
(𝜂 + 𝛿𝛾)(Λ + 𝜂)(Λ + 𝛼 + 𝛾)

𝜂(𝛼 + 𝛾)(Λ + η + δγ) 																								(42) 

 
The final size relation in terms of the initial exponential growth rate is 
 

ln
𝑆!
𝑆2

=
(𝜂 + 𝛿𝛾)(Λ + 𝜂)(Λ + 𝛼 + 𝛾)

𝜂(𝛼 + 𝛾)(Λ + η + δγ) g1 −
𝑆2
𝑁 h																						(43) 

 
B.5 Age of infection model 
 
The age of infection plays a crucial role to determine the rate of disease propagation 
due to infecting the susceptible individuals. Let 𝑆(𝑡) and 𝜑(𝑡) denote the number of 
susceptibles and total infectivity at time 𝑡. The total infectivity is measured as the 
average of product of the number of infected individuals and the mean infectivity of 
the infected individuals at their age of infection 𝜏 where 𝜏 ∈ [0, 𝑡]. Denoting the mean 
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infectivity at time 𝜏 by 𝐴(𝜏), we can write the epidemic model with age of infection as 
follows 

𝑆1(𝑡) = −𝛽𝑆(𝑡)𝜑(𝑡),																																																																					(44) 

𝜑(𝑡) = 𝜑!(𝑡) + W 𝛽𝑆(𝑡 − 𝜏)𝜑(𝑡 − 𝜏)𝐴(𝜏)𝑑𝜏.																								(45)
#

!
 

Then the basic reproduction number is defined as  

𝑅! = 𝛽𝑁W 𝐴(𝜏)𝑑𝜏.																																																										(46)
2

!
 

From (44) and (45) we can write 
 

−
𝑆[(𝑡)
𝑆(𝑡)

= 𝛽𝜑(𝑡) = 𝛽𝜑\(𝑡) + 𝛽/ 𝛽𝑆(𝑡 − 𝜏)𝜑(𝑡 − 𝜏)𝐴(𝜏)𝑑𝜏 = 𝛽𝜑\(𝑡) − 𝛽
]

\
/ 𝑆[(𝑡 − 𝜏)𝐴(𝜏)𝑑𝜏.
]

\
 

 
Integrating above expression from 0 to ∞ we get, 

𝑙𝑜𝑔
𝑆!
𝑆2

= 𝛽W 𝜑!(𝑡)𝑑𝑡 − 𝛽W W 𝑆1(𝑡 − 𝜏)𝐴(𝜏)
#

!

2

!

2

!
𝑑𝜏	𝑑𝑡. 

 
Interchanging the order of integration in the second term at right hand side, we find 
 

𝑙𝑜𝑔
𝑆!
𝑆2

= 𝛽W 𝜑!(𝑡)𝑑𝑡 + 𝛽W 𝐴(𝜏)𝑑𝜏	W 𝑆1(𝑡 − 𝜏)𝑑𝑡.
3

2

2

!

2

!
 

 
Finally using the straight forward result ∫ 𝑆1(𝑡 − 𝜏)𝑑𝑡 = 𝑆! − 𝑆2 = (𝑁 − 𝑆2) + (𝑆!

2
3 −

𝑁), we get the final size relation as 
 

𝑙𝑜𝑔
𝑆!
𝑆2

= 𝛽𝑁(1 −
𝑆2
𝑁 )	W 𝐴(𝜏)𝑑𝜏 +

2

!
𝛽W E𝜑!(𝑡) − (𝑁 − 𝑆!)𝐴(𝑡)F𝑑𝑡 = 𝑅! g1 −

𝑆2
𝑁 h .

2

!
 

 
Note that the initial measure of total infectivity at the age of infection 𝑡 is given by 
𝜑!(𝑡) = (𝑁 − 𝑆!)𝐴(𝑡). 
 
This part was done following the book by Brauer, Castillo-Chavez and Feng [41].  
 
The age of infection model is given by 
 

𝑆1(𝑡) = −𝛽𝑆(𝑡)𝜑(𝑡),																																																																	(47) 
 

𝜑(𝑡) = W 𝛽𝑆(𝑡 − 𝜏)𝜑(𝑡 − 𝜏)𝐴(𝜏)𝑑𝜏,																																	(48)
2

!
 

 
And the basic reproduction number is defined as in equation (46).  Now, we 
linearizing the system (47) – (48) around (𝑆, 𝜑) = (𝑁, 0)  and find, 
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𝑢1(𝑡) = −𝛽𝑁𝑣(𝑡),														𝑣(𝑡) = 𝛽𝑁W 𝑣(𝑡 − 𝜏)𝐴(𝜏)𝑑𝜏.
2

!
 

 
Assuming solution of the above system of equations of the form 𝑢(𝑡) = 𝑒4# ,  𝑣(𝑡) =
𝑒4# ,  we find one negative eigenvalue 𝜆 = −𝛽𝑁 and the other eigenvalue can be 
obtained by solving 
 

1 = 𝛽𝑁W 𝑒&43𝐴(𝜏)𝑑𝜏.																																																		(49)
2

!
 

 
Eliminating 𝛽𝑁 between above equation and (46), we find the basic reproduction 
number in terms of initial growth rate as follows, 

𝑅! =
∫ 𝐴(𝜏)𝑑𝜏2
!

∫ 𝑒&"3𝐴(𝜏)𝑑𝜏2
!

, 

 
where Λ is a positive eigenvalue satisfying the relation (49). 
 
To derive the final size relation, we can divide equation (47) by 𝑆(𝑡) and then 
integrating we get, 
 

𝑙𝑜𝑔
𝑆$
𝑆%

= 𝛽' 𝜑(𝑡)𝑑𝑡 = 𝛽&' ' 𝑆(𝑡 − 𝜏)𝜑(𝑡 − 𝜏)𝐴(𝜏)𝑑𝜏
%

$
	𝑑𝑡 = −𝛽' ' 𝑆'(𝑡 − 𝜏)𝐴(𝜏)

%

$
𝑑𝜏𝑑𝑡.

%

$

%

$

%

$
 

 
Interchanging the order of integration and using the fact that 𝑆(−𝜏) = 𝑁, we can write 
 

𝑙𝑜𝑔
𝑆!
𝑆2

= 𝛽[𝑁 − 𝑆2]W 𝐴(𝜏)𝑑𝜏
2

!
= 𝑅! g1 −

𝑆2
𝑁 h. 

 
 
B.6. First model with quarantine 
 
Now we consider a model for the transmission of an emerging infectious disease 
like, the population in the dynamic model is divided into seven classes: Susceptible 
(𝑆), Exposed (𝐸), Infectious (𝐼), Recovered (𝑅), Quarantined (𝑄-, 𝑄/), and Isolated 
(𝑄0). The flow chart for our model is  
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Then the corresponding system of equations is  
 

𝑆1(𝑡) = −𝜙𝑆 + 𝜃𝑄- − 𝛽
𝑆(𝐼 + 𝑞𝐸)
𝑁 − 𝑄 																			(50) 

𝑄-1(𝑡) = 𝜙𝑆 − 𝜃𝑄-																																																		(51) 

𝐸1(𝑡) = 𝛽
𝑆(𝐼 + 𝑞𝐸)
𝑁 − 𝑄 − (𝛾- + 𝜙)𝐸																					(52) 

𝑄/1 (𝑡) = 𝜙𝐸 − 𝛾/𝑄/																																																(53) 
𝐼1(𝑡) = 𝛾-𝐸 − (𝜎 + 𝛼-)𝐼																																							(54) 
𝑄01 (𝑡) = 𝜎𝐼 + 𝛾/𝑄/ − 𝛼/𝑄0																																		(55) 
𝑅1(𝑡) = 𝛼-𝐼 + 𝛼/𝑄0																																															(56) 

 
The control reproduction number for this model is  
 

𝑅? =
𝛽𝑞

𝛾- + 𝜙
+

𝛽𝛾-
(𝛾- + 𝜙)(𝜎 + 𝛼-)

																																			(57) 

 
Suppose if 𝜆(𝑡) = 𝛽}(𝐼 + 𝑞~𝐸) in our system then the control reproduction number 
becomes 
 

𝑅}? =
𝛽}𝑞~𝑁
𝛾- + 𝜙

+
𝛽}𝛾-𝑁

(𝛾- + 𝜙)(𝜎 + 𝛼-)
																											(58) 

 
The control reproduction number (58) in terms of the initial exponential growth rate 
Λ is 
 

𝑅? =
j𝜎 + 𝛼- +

𝛾-
𝑞 k (Λ	 + 𝜎 + 𝛼-)(Λ	 + 𝛾- + 𝜙)

(𝛾- + 𝜙)	(𝜎 + 𝛼-) jΛ + 𝜎 + 𝛼- +
𝛾-
𝑞 k

																																							(59) 

 
 
B.7. Model with hospitalization and exposed infectiousness 
 
We consider a model for the transmission of an emerging epidemic disease 
consisting with susceptible (𝑆), exposed (𝐸), infected (𝐼), quarantined (𝐽), and 
recovered (𝑅), class as follows, 
 

𝑆1(𝑡) = −
𝛽𝑆(𝑞𝐸 + 𝑙𝐽 + 𝐼)

𝑁 ,																																																	(60) 

𝐸1(𝑡) =
𝛽𝑆(𝑞𝐸 + 𝑙𝐽 + 𝐼)

𝑁 − (𝜅 + 𝜇 + 𝜂)𝐸,																							(61) 
𝐼1(𝑡) = 𝜅𝐸 − (𝛾- + 𝛼 + 𝛿)𝐼,																																																		(62) 
𝐽1(𝑡) = 𝛼𝐼 + 𝜂𝐸 − (𝛾/ + 𝛿)𝐽,																																																(63) 
𝑅1(𝑡) = 𝛾-𝐼 + 𝛾/𝐽 + 𝜇𝐸.																																																									(64) 
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The control reproduction number for this model is 
 

𝑅? =
𝛽𝑞

𝜂 + 𝜅 + 𝜇 +
𝛽𝜅

(𝜂 + 𝜅 + 𝜇)(𝛾- + 𝛼 + 𝛿)

+
𝛽𝑙(𝛼𝜂 + 𝛼𝜅 + 𝜂𝛿 + 𝛾-𝜂)

(𝜂 + 𝜅 + 𝜇)(𝛾- + 𝛼 + 𝛿)(𝛾/ + 𝛿)
.											(65) 

 
This can be calculated following the approach outlined by Watmogh and P. Ven Den 
Driesse in Math. Biosci. With the help of following two relevant matrices, 
 

𝐹 = �
𝛽𝑞 𝛽 𝛽𝑙
0 0 0
0 0 0

� ,						𝑉 = �
𝜂 + 𝜅 + 𝜇 0 0

−𝜅 𝛾- + 𝛼 + 𝛿 0
−𝜂 −𝛼 𝛾/ + 𝛿

�																(66) 

 
The control reproduction number is the largest eigenvalue of the matrix 𝐹𝑉&-. In 
order to find the final size relation, integrating both sides of equation (60), we find 
 

𝑙𝑜𝑔
𝑆!
𝑆2

=
𝛽
𝑁W

(𝐼 + 𝑞𝐸 + 𝑙𝐽)𝑑𝑡.																																	(67)
2

!
 

 
Integrating equation (63) and using the fact that 𝐼! = 0,	 𝐼2 = 0, we get 
 

W 𝐼𝑑𝑡 =
𝜅

𝛾- + 𝛼 + 𝛿
W 𝐸𝑑𝑡.																												(68)
2

!

2

!
 

 
Next we integrate (64), use 𝐽! = 0,	 𝐽2 = 0, and with the help of (68), we find 
 

W 𝐽𝑑𝑡 =
𝜅𝛼 + 𝜂𝛾- + 𝜂𝛼 + 𝜂𝛿
(𝛾/ + 𝛿)(𝛾- + 𝛼 + 𝛿)

2

!
W 𝐸𝑑𝑡.									(69)
2

!
 

 
Adding the equations (61) and (62) and then integrating, we find 
 

𝑆! + 𝐸! − 𝑆2 = 𝑁 − 𝑆2 = (𝜅 + 𝜇 + 𝜂)W 𝐸𝑑𝑡.									(70)
2

!
 

 
Finally, substituting the results (68) and (69) in (67) and then using (70), after some 
algebraic calculations, we find 
 

𝑙𝑜𝑔
𝑆!
𝑆2

= 𝑅? g1 −
𝑆2
𝑁 h. 

 
Part of the characteristic equation of the Jacobian matrix for the model (60) – (64) 
evaluated at disease free equilibrium point which is involved with the determination 
of initial exponential growth rate Λ takes the form 
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(𝜆 + 𝜇 + 𝜅 + 𝜂 − 𝛽𝑞)(𝜆 + 𝛾/ + 𝛿)(𝜆 + 𝛾- + 𝛼 + 𝛿) − 𝛽(𝜆 + 𝛾/ + 𝛿)

+ 𝛽𝑙[𝜂(𝜆 + 𝛾- + 𝛼 + 𝛿) − 𝜅𝛼] = 0. 
 
The initial exponential growth rate Λ satisfies above equation and hence we find 
 

(Λ + 𝜇 + 𝜅 + 𝜂 − 𝛽𝑞)(Λ + 𝛾/ + 𝛿)(Λ + 𝛾- + 𝛼 + 𝛿) − 𝛽(Λ + 𝛾/ + 𝛿)
+ 𝛽𝑙[𝜂(Λ + 𝛾- + 𝛼 + 𝛿) − 𝜅𝛼] = 0.																																															(71) 

 
From the controlled basic reproduction number we can write  𝛽 = ,(

@
, where 

Δ =
𝑞
𝐴--

+
𝜅

𝐴--𝐴//
+
𝑙(𝜂𝐴// + 𝛼𝜅)
𝐴--𝐴//𝐴00

 

 
with 𝐴-- = 	𝜂 + 𝜅 + 𝜇, 𝐴// = 𝛾- + 𝛼 + 𝛿, 𝐴00 = 𝛾/ + 𝛿. Using these expressions now 
we can write (71) as follows, 
 

(Λ + 𝐴-- − 𝛽𝑞)(Λ + 𝐴//)(Λ + 𝐴00) − 𝛽𝜅(Λ + 𝐴00) − 𝛽𝑙[𝜂(Λ + 𝐴//) + 𝜅𝛼] = 0. 
 
Substituting 𝛽 = ,(

@
	in above equation and then after some algebraic calculation, we 

find 
 

𝑅? =
Δ(Λ + 𝐴--)(Λ + 𝐴//)(Λ + 𝐴00)

𝑞(Λ + 𝐴//)(Λ + 𝐴00) + 𝜅(Λ + 𝐴//) + 𝑙[𝜂(Λ + 𝐴//) + 𝜅𝛼]
.																									(72) 
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