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Since the first case of COVID-19 was confirmed in Brazil at 19 February 2020, this epidemics has
spread out throughout all states and at least 2142 of 5570 municipalities up to 30 April 2020. In order
to understand this spreading, we investigate a stochastic epidemic model using a metapopulation
approach. Simulations are supplied with real data for mobility, demography, and confirmed cases of
COVID-19 extracted from public sources. Contagion follows a compartmental epidemic model for
each municipality which, in turn, interact with each other through recurrent mobility. Considering
the number of municipalities with confirmed COVID-19 cases, simulations can infer the level of
mitigation (strong, moderate, or none) that each state is effectively adopting. Properties of the
epidemics curves such as time and value of epidemic peak and outbreak duration have very broad
distributions across different geographical locations. This outbreak variability is observed in several
scales from state, passing through intermediate and immediate up to municipality levels. The
epidemic waves start from several foci concentrated in highly populated regions and propagate
towards countryside. Correlations between delay of the epidemic outbreak and distance from the
respective capital cities are strong in several states, showing propagation towards the countryside,
and weak in others, signaling strong influences of multiple centers, not necessarily within the same
state. Our take home message is that the responses of different regions to a same mitigation protocol
can vary enormously such that the policies of combat to COVID-19, such as quarantine or lockdown,
must be engineered according to the region specificity but integrated with the overall situation. Even
though we considered a single case of study, we believe that these ideas can be generalized to other
countries with mainland scales and heterogeneous demographic distributions.

I. INTRODUCTION

Since coronavirus disease (COVID-19) outbreak was reported in Wuhan, Hubei province, China, by end of December
of 2019, the scientific community immediately has turned its attention to understand and break this novel threat [1–5].
A benchmark of this infectious disease, caused by the pathogen coronavirus SARS-CoV-2, is the high transmission
rate of asymptomatic and preasymptomatic individuals [4, 6] who traveled unrestrictedly and spread out COVID-19
through all continents resulting in the pandemics declaration by World Health Organization (WHO) on 11 March
2020. Efforts to track the transmission started in Wuhan to the rest of mainland China and world has been relied
on mathematical modeling [2, 3, 5, 7] and was soon extended to other countries [8, 9], using the metapopulation
approach [10–12]. In this modeling, the population is grouped in patches representing geographic regions and the
epidemic contagion obeys standard compartmental models [13, 14] within the patches, while mobility among them
promotes the epidemics to spread out through the whole population.

The first case in Brazil was confirmed on 25 February 2020 in São Paulo, a case imported from Milan, Italy, the
second epicenter of the epidemics after Hubei province efficiently to mitigate COVID-19 with severe restrictions. On 5
March 2020 the first case was reported in Rio de Janeiro, next day in Feira de Santana and so on, spreading to all 27
federative units of Brazil. On 3 May 2020, the barriers of 100 000 confirmed cases with more than 7 000 deceases by
COVID-19 was surpassed in Brazil [15].

Brazil is a country of mainland territory with area of 8.5 × 106 km2 being demographically, economically, and
infrastructurally very heterogeneous. Brazil is a federation divided into 26 states and one Federal District, its capital
city. States are divided into municipalities and have its own capital city. The total number of municipalities is
5570 [16]. According to estimates of 2019 [16], the total population of the country is 210 millions of inhabitants. The
most populated state is São Paulo with 46 millions inhabitants and its homonym capital city is the most populated
municipality with 12.2 millions inhabitants whereas the lowest populations are in the state of Roraima, with 605 700,
and in the municipality of Serra da Saudade, with 781 inhabitants. Other characteristics of the Brazilian demography
are the broad distributions of the rural and urban population fractions and urban population densities of municipalities.
Therefore, investigation of a pandemics and its consequences have necessarily to take into account the particularities of
each region in an integrated way, which can be reckoned with a metapopulation approach.

In the present work, we investigate the epidemics of COVID-19 through Brazilian municipalities using a stochastic
metapopulation model where the municipalities are represented by the patches and contagious processes described by
a SEAUCR compartmental model; see Fig. 1. Demographics and mobility data mined from public sources are used in
the simulations. We intend to quantify how diversified can be the epidemics across the country rather than accurately
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predict epidemic outbreaks in specific places. We use simulations to determine the level of dispersion in the epidemic
curves in different places within a hypothetical scenario of uniform mitigation measures. We take the situation of 31
March 2020 as initial condition with foci in 410 municipalities, allowing to track in a single integrated simulation the
epidemics in all municipalities. Our approach consists in calibrating the model with a few weeks of COVID-19 cases
officially reported in Brazil and perform long-term analysis of epidemic outcomes using different mitigation scenarios.
We report that the epidemic curves can vary enormously across several scales from state’ to municipality’ levels passing
by intermediate and immediate regions. We could also identify that some states are featured by outbreaks starting
mainly in their capital cities, followed by epidemic waves propagating toward the countryside while in other states
there are multiple initial foci of epidemics. Our results pave a road for public policies to fight COVID-19 that should
be simultaneously decentralized, in the sense that each locality has to consider its specificities, and integrated since the
fate of one region depends on the attitudes adopted by others.

II. THE MODEL

We study a stochastic metapopulation model for the spreading of epidemics of COVID-19, in which a key ingredient
is the recurrent mobility [12] where individuals travel to other patches but return to their residence recurrently. The
population is divided into patches which represent the place where they live as schematically shown in Fig. 1a). This
model is inspired on a recent work [9] where a deterministic microscopic Markov chain approach [17] was used to
investigate the COVID-19 epidemics in Spain. A patch can represent a municipality, a neighborhood or any other
demographic distribution of interest. Each patch is labeled by i = 1, 2, . . . ,Ω, where Ω is the number of patches and
has a fixed resident population given by Ni. The inter-patch (long distance) mobility rate is given by Wij defined as
the number of individuals that moves from i to j and return to i after a typical time T . So, Wii = Ni −

∑
j 6=iWij

is the population of patch i that does not leave it. A patch j for which Wij > 0 is a neighbor of i. Different forms
of mobility with the corresponding characteristic times can be implemented. For sake of simplicity, recurrent flux
of individuals per day (Tr = 1 d) was used in the present work. Mobility within patches is not explicitly considered.
Instead, we assume the well-mixed population hypothesis [13] where an individual has equal change to be in contact
with any other in the same patch.
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FIG. 1. Schematic representation of the a) metapopulation structure and b) SEAUCR epidemic transitions with their respective
rates. Patches i and j of different population sizes (represented by the areas) can interchange individuals with rates Wij and
Wji. The epidemic events occur within patches under the hypothesis of well-mixed populations as illustrated in zoom of patch l.
Six compartments used in the SEAUCR model are susceptible (S), exposed (E), asymptomatic (A), unconfirmed (U), confirmed
(C) and recovered (R).

The average number of contacts per individual of patch i by unit of time is ki and can be used to vary the social
distancing. Contacts are related with the local mobility and are strongly correlated with the population density ξi. A
monotonic increase has been proposed [18]. We follow Ref. [9] and use a contact number modulated by ki ∝ f(ξi) with
f(x) = 2 − exp(−aξ). Due to the sparse demographic distribution of Brazil we used the urban population density
of each municipality to compute ξi. Interactions between urban and rural populations are also explicitly considered
through a symmetric 2 × 2 contact matrix Cuu, Crr, and Cur = Cru, 0 ≤ Cxy ≤ 1, determining the contacts between
urban (u) and rural (r) populations whose fractions are represented by ωi and 1− ωi, respectively. The number of
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contacts in patch i is also modulated by

ki ∝ gi = Cuuω
2
i + 2ωi(1− ωi)Cur + (1− ωi)

2Crr, (1)

where the terms represent urban-urban, urban-rural, and rural-rural interactions from left to right. The contacts are
parameterized by its average number per individual 〈k〉 such that

ki = zgif(ξi)〈k〉, (2)

where z is a normalization factor to reckon the relation
∑

i kiNi = N〈k〉 and given by

z =
Ntot∑Ω

i=1 f(ξi)giNi

, (3)

where Ntot =
∑Ω

i=1Ni is the total population.
The epidemic dynamics within patches considers compartments susceptible (S), that can be infected, and recovered

(R), which is immunized or deceased. Compartments of infected individuals are: exposed (E), that carries the
viruses but does not transmit it; asymptomatic (A), that have no symptoms or are presymptomatic but is contagious;
unconfirmed (U), which is a symptomatic but not yet identified by tests; and confirmed (C), that has tested positive
for COVID-19. The epidemic transitions obeys a SEAUCR model, in which susceptible individuals become exposed by
contact with contagious persons (A, U, or C) with rates λA, λU, and λC, respectively. Exposed ones spontaneously
become asymptomatic with rate µA while the latter turn to unconfirmed, confirmed, or recovered states with rates
βC, βU, or βR, respectively. Finally, the unconfirmed or confirmed ones recover (decease or cure) with rate αR. The
transition U→C has rate αC which depends on the number of unconfirmed cases nU

i . For a small nU
i the confirmation

rate is constant assuming that any municipality has the minimal resources for testing. The amount of confirmed cases
will be bounded by the finite testing capacity per inhabitants given by ζ. We assume a simple monotonic function

αC =
α

(0)
C

1 +
α

(0)
C nU

i

ζNi

. (4)

The transition E→U was not included since all studies point out that the asymptomatic or preasymptotic condition is
a central benchmark of the COVID-19 epidemics [4, 9, 19]. The contact of confirmed individuals is reduced to bki with
b < 1. Figure 1b) shows an schematic representation of the epidemic events.

The population fraction moving recurrently from i to j in a unit of time is

Rij =
Wij∑
ilWil

. (5)

So, Ri =
∑

j 6=iRij and Rii = 1 − Ri are, respectively, the population fractions that move or not from patch i in a

time unit. Individuals residing in i can move to neighbors j following a stochastic process with rates Ri/Tr and the
destination is chosen proportionally to Rij . Symptomatic (U or C) individuals do not leave their residence patches
while any individual returns to his/her residence with rate 1/Tr. Infection, healing and other epidemic state transitions
follow Poisson processes with the corresponding rates. The details of the computer implementation using Gillespie
methods [20] are given in section IV of the Supporting Information (SI) [21]. Due to optimizations explained in SI [21],
simulations are doable for very large systems with reasonable computational resources. For example, an epidemic
process lasting two years can be run in a few hours.

III. THE PARAMETERS

A. Mobility

The mobility parameters were extracted from public sources. Local commuting C
(1)
ij was estimated from the national

census data of 2010 provided by the Instituto Brasileiro de Geografia e Estat́ıstica (IBGE) [22] as the number of people
that daily commute among municipalities to work or study. We excluded from the dataset those travels corresponding
to more than 250 km which are reckoned by the airline traveling data. Also commuting data lacking destination were
included assuming proportionality to the complete information portion of the dataset; see [23] for details. For sake
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of generality, the short-range recurrent flux is a function W
(1)
ij = Fij(C

(1)
ij ). We use the simplest case Fij(x) = x.

Air transportation were obtained from the Agência Nacional de Aviação Civil (ANAC) [24] with the statistics of
direct flights of 2014 considering the main nearby metropolitan region as the origin and destination of passengers
(for example, Guarulhos, Viracopos and Congonhas airports were all linked to the municipality of São Paulo despite
of being localized in different municipalities). Using boarding and landing statistics of passengers, one-connection

flights were inferred and the number of passengers C
(2)
ij flying daily from i to j was estimated [25]. In order to build a

recurrent mobility with flights, we assume W
(2)
ij = (C

(2)
ij + C

(2)
ji )/2, which represents an effective flux. However, the

homogeneous mixing hypothesis within the patches means that only the number of individuals that stay part of the

time in two different patches actually matters and not who traveled. The total recurrent mobility is Wij = W
(1)
ij +W

(2)
ij

and we assume that it occurs once a day, Tr = 1 d.

B. Epidemiological parameters

We used epidemiological parameters based on Ref. [9] which were mined from the former analyses of COVID-19
epidemic spreading on Hubei province China [1, 6, 8]. The time between the first contact with the pathogen and
symptoms, that is the time in exposed and asymptomatic compartments, was taken as µ−1

A + β−1
U = 5.2 d [1]. We

used µ−1
A = β−1

U = 2.6 d. The recovering time of a symptomatic individual was estimated as α−1
R = 3.2 d [6, 8]. For

the asymptomatic individuals, it was assumed the same recovering time of those who were symptomatic such that
β−1

R = β−1
U + α−1

R . The infection rates λC = λU = λA = 0.06 d−1 [3, 26] and average number of contacts 〈k〉 = 13
were estimated to reproduce the scaling of Brazilian very initial exponential growth (∼ exp 0.3t) in reported cases
of COVID-19; see Fig. SI-14a) of the SI [21]. These parameters provide an effective infection rate λ〈k〉 = 0.78 that
represents an optimist estimate nearer to the lower bounds estimated in other studies of COVID-19 spreading [6, 8, 9, 27].

The confirmation rate 1/α
(0)
C = 10 d was calibrated together with the initial conditions (subsection III D) to fit the

amplitude after 31 March 2020 and also the total number of municipalities with confirmed cases in a moderate
mitigation scenario; see subsection IV A. To date of 23 April 2020 Brazil had performed less than 1400 tests per 1
million inhabitants [28]. Assuming a time window of 45 d for testing, we have approximately 1/30 000 per inhabitant a
day. Since tests can be applied more than once in a same infected patient, we will use ζ = 1/40 000 d−1 per inhabitant.
This is a very rough estimate since the official number of tests was unknown at the moment of writing. Due to the
testing targeted only to severe cases of respiratory syndromes adopted in Brazil to the date of investigation, the
transition from asymptomatic to confirmed was neglected setting βC = 0 , remarking that the model can easily reckon
such a transition if the testing scenario be different.

C. Contact parameters

Each patch represents a municipality of Brazil with population given by the Instituto Brasileiro de Geografia e
Estat́ıstica (IBGE) in the estimates of 2019 [16] while their respective fractions of rural and urban populations were
obtained from the IBGE census of 2010 [22]. The population density was determined using urban areas, obtained
from high resolution satellite images, provided by Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) [29].
These data are publicly available in the cited references. Both fraction and density of urban population have broad
distributions as can be seen in Figs. SI-14b) and c) of the SI [21]. Therefore, the number of contacts in the municipalities
estimated with Eq. (2) also has a broad distribution as shown in Fig. SI-14d) of the SI [21]. These are key features to
enhance the accuracy of the prediction beyond large metropolitan centers. The contact of the individuals confirmed
with COVID-19 was depleted to a fraction b = 0.3 of the regular contacts. Parameter a that controls the function f(x)
was taken as a = 1/〈ξ〉 where 〈ξ〉 = 2791 inhabitants/km2 is the average urban population density of Brazil. The
rural-urban contact matrix was chosen as Cuu = Crr = 1 and Cru = 0.5. This last choice only assumes that urban-rural
contacts are significantly smaller than urban-urban or rural-rural interactions.

D. Initial conditions

The initial condition is a major hurdle for a detailed epidemic analysis due to high underreporting of cases for
COVID-19. For the Wuhan outbreak it was estimated that undocumented infections were the source of at least 79% of
documented cases [4], which include asymptomatic, preasymptomatic, and paucisymptomatic cases. This number can
be larger depending on the testing policies [30, 31]. We adopt a simple linear correlation between number of confirmed
cases reported by the official authorities and infected cases (E, A, and U). We use as the initial condition, 31 March
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FIG. 2. Comparison of simulations with reported data for COVID-19 in Brazil [15] for the first three weeks with day 0
corresponding to 31 March 2020. a) Number of confirmed cases and b) of municipalities with at least one confirmed case
are presented. Different mitigation scenarios are considered in both a) and b): none with (K,M) = (0, 0), moderate with
(M,K) = (0.3, 0.4), and strong with (M,K) = (0.2, 0.5). c) Evolution of number of municipalities with confirmed cases for a
reduction of contact of K = 0.3 and different levels of long distance mobility M = 0, 0.4, and 0.8.

2020. Let ñconf
i (t) be the number of confirmed cases of COVID-19 in each municipality i [15] at day t, t0 correspond to

31 March and t1 to 4 April 2020. These data are provided in SI [21]. The initial condition at t0 is

ñC
i (t0) = ñconf

i (t0)

ñU
i (t0) = ñconf

i (t1)− ñconf
i (t0)

ñA
i (t0) = 2

[
ñconf
i (t1)− ñconf

i (t0)
]

ñE
i (t0) = 8

[
ñconf
i (t1)− ñconf

i (t0)
]
, (6)

where ñX
i is the number of individuals in patch i and state X. This approach, based on the hypothesis that the increase

of reported cases is strongly correlated with local transmission, is a way to reduce the effects of underreporting. The

prefactors were chosen together with the parameter α
(0)
C to fit both the initial increase (first two weeks of March)

of the total number cases and of municipalities with confirmed cases under a moderate mitigation scenario; see
subsection. IV A.

E. Comments on parameters choices

The extensive set of parameters is aimed to reproduce the essence of the epidemic spreading at a mainland level
but not to track accurately the epidemic outbreak at every state or municipality. We specially assume uniform and
constant control parameters for reduction of long-distance movement and contacts as well as the testing rates. This is
surely not the case. Each federative state or municipality has its own mitigation and testing policies that are very
heterogeneous. So, assuming uniformity and fitting the overall data at a country level, it is possible to infer in which
regions the epidemic is evolving faster or slower than the average. Finally, our initial condition is a guess driven
by data but still limited. The level of underreporting is known to be high, and broad ranges of values have been
reported [4, 30, 31]. One limitation that can be easily identified is that municipalities without confirmed cases on 4
April are assumed to have no infected individuals of any type (E, A, U, or C) at March 31, which is probably not the
case of the real system.

IV. RESULTS

Different mitigation strategies are studied by uniformly reducing the long distance mobility and contact by factors
(M,K), i.e., Wij → (1−M)Wij , for j 6= i, and ki → (1−K)ki. The stronger mitigation scenario that we investigated
was (0.8, 0.5), meaning the reduction of 50% in contacts and a small permeability between patches. We do not tackle
the regime of suppression that can eradicate the epidemics because the current approach adopted in Brazil is mitigation.
Averages were performed over 10 independent simulations.
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A. Nowcasting and model calibration

Figure 2a) compares the reported data and simulations for the number of confirmed cases in the first three weeks
under different mitigation scenarios: none, moderate, and strong represented by (M,K) = (0, 0), (0.4, 0.3), and
(0.8, 0.5) respectively. As explained in subsection III D, the moderate mitigation parameters, which are consistent with
the estimates of the Google Community Mobility Reports for Brazil within this time window [32], reproduces the overall
averages over the whole country. The metapopulation approach allows to investigate the epidemics at a municipality
level [8, 9, 11]. Figure 2b) shows the number of municipalities with confirmed cases obtained in simulations with
different mitigations and reports for Brazil between 1 and 22 April of 2020. Again, the moderate mitigation provides
the best agreement with the reported data. Deviations start to appear after three weeks. No tunning with respect
to specific places was used and, consequently, it does not reproduce accurately the amount of reported cases for all
federative states as expected, see SI-1 of the SI [21], due to the diversified testing and lockdown policies across different
states in contrast with the uniformity hypothesis of the model. A long-term tracking of the reported cases requires a
permanent update of new reported cases and parameters.

Role of long-distance traffic is investigated reducing the contacts by 30% and varying the mobility. The total number
of cases changes very little since the leading contribution comes from local transmission in municipalities with larger
incidence at the initial condition while the number of municipalities with confirmed cases, shown in Fig. 2c), depends
significantly on the long-distance traffic restrictions. These results confirm the epidemiological knowledge that reducing
long-distance transportation contributes for delaying the outbreak onset in different places but alone alters little on
the overall epidemic prevalence once the seeds have been spread out [33], as already discussed for COVID-19 spreading
on mainland China [3, 34].
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FIG. 3. Simulations and observations of the number of municipalities with confirmed cases of COVID-19 for the 26 federative
states of Brazil in the first three weeks of simulations. Data for the whole country are shown in the bottom right corner.
Simulations were performed using none, moderate, and strong mitigations with parameters (M,K) = (0, 0), (0.4, 0.3), and
(0.8, 0.5), respectively. Right: Map indicating the nearer mitigation scenario of each state for these 3 week simulations.

Irrespective of the heterogeneous testing approaches through states, we assume that essentially all municipalities
have capacity to detect COVID-19 in the first hospitalized patients and, therefore, the number of municipalities with
positive cases is expected to be an observable much less prone to the effects of underreporting. Figure 3 compares the
evolution of municipalities with confirmed cases obtained in simulations with different mitigation measures and real
data for each Brazilian state. The moderate mitigation parameters (M,K) = (0.4, 0.3), which fit better the overall data
for Brazil, also perform well for most of the states in this time windows and specially those with higher incidence of
COVID-19 which lead the averages over the country. However, some states (AC, AM, PA, PE, PI, and RR - acronyms
for Brazilian federative states are given in Fig. 3) are more consistent with the simulations without mitigation while
others (PB, PR, and RN) are nearer to a strong mitigation. A map with the classification of mitigation measures that
fit better the data reported for each state is presented in Fig. 3.
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B. Long-term analysis

We have shown that the model can be calibrated to work well for nowcasting but forecasting are beyond the aim
of this work due to large uncertainties of initial conditions, testing efficiency and dynamics of contact parameters.
In forecasting, we should use nonuniform and varying parameters calibrated for each region. From now on, generic
long-term predictions of the models are discussed while forecasting is let as a forthcoming perspective.

Different mitigation scenarios are compared in Fig. 4a) where we present the fraction of symptomatic individuals,
hereafter called epidemic prevalence, for the whole population. It confirms that long-distance mobility plays a minor
role on the overall epidemic prevalence, only slightly reducing the maximum of the peak, as seen in the curves of
K = 0.3 fixed and M varying. Cutting down the amount of contacts is indeed the most efficient way to flatten the
curve. The maximum number of symptomatic individuals drops by a factor 5 when the contacts are reduced to a half
while the time of the epidemic peak doubles.
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FIG. 4. a) Evolution of the epidemic prevalence in the total population for different mitigation measures controlled by
parameters (M,K). b,c) Epidemic prevalences for the 26 federative states of Brazil under a moderate mitigation approach with
(M,K) = (0.4, 0.3). Day 0 corresponds to March 31, 2020.

Remarkable diversity of the epidemic outbreaks can be observed among all geographical scales. At federative state
level the time when the outbreak reaches the maximum epidemic prevalence, the epidemic peak, vary considerably
as shown in Figs. 4b) and c), where the epidemic prevalence is shown as function of time for a moderate mitigation.
Such a feature was observed in other metapopulation approaches for epidemic processes [8, 11]. Let T and ρ
be the time and prevalence of the epidemic peak. According to the simulations with moderate mitigation, the
first state to reach the peak would be CE (TCE ≈ 34 d), followed closely by SP and AM (TSP ≈ TAM ≈ 36
d). The prevalences would be ρCE ≈ 3.6%, ρSP ≈ 4.9% , and ρAM ≈ 5.0%. The state with higher epidemic
prevalence would be RJ with ρRJ ≈ 7.0% at day TRJ ≈ 40. The epidemic peak would happens later (TMA = 71 d),
with maximum less intense (ρMA ≈ 2.3%) and the curve broader for the MA state. The MA case is particularly
interesting because while the peak for the state happens last, for its capital city São Luis it occurs at day 41 slightly
earlier than average peak for the Brazil, which happens by day 44. In the simulations without mitigation, the
times in days and prevalence percentage of the epidemic peaks are (TCE, TSP, TAM, TRJ, TMA) ≈ (28, 29, 26, 29, 48)
and (ρCE, ρSP, ρAM, ρRJ, ρMA) ≈ (5.9, 7.9, 7.5, 10.9, 5.1) while in the case of strong mitigation simulations provide
(TCE, TSP, TAM, TRJ, TMA) ≈ (49, 55, 56, 62, 68) and (ρCE, ρSP, ρAM, ρRJ, ρMA) ≈ (1.5, 2.0, 2.2, 2.8, 0.6). Therefore, the
model predicts that mitigation attitudes will imply in diverse levels of impact in different states even under the
hypothesis of uniform measures in all regions. Table SI-II of the SI shows prevalence and time of the peaks for all
states for these 3 mitigation strategies.

A more refined analysis can be done comparing immediate and intermediate geographical regions of a same federative
state, which are determined by IBGE [35]. An immediate region is a structure of nearby urban areas with intense
interchange for immediate needs such as purchasing of goods, search for work, healthy care, and education. An
intermediate region agglomerates immediate regions preferentially with the inclusion of metropolises [35] laying thus
between immediate regions and federative states. In Brazil there are 133 intermediate and 510 immediate regions.
Municipalities in different federative states do not belong to the same immediate regions even when they have strong
ties. The broad variability of epidemic outbreaks observed at the federative state level is repeated at higher resolutions
of geographical aggregation. Figure 5 shows the multi-scale structure of the outbreaks within the MG state, comparing
the epidemic prevalence of different intermediate regions (top), followed by the next scale with all immediate regions
belonging to the two intermediate ones presenting the epidemic peak first and last (middle), and finally the highest
resolution with curves for municipalities (bottom) within the immediate regions with earliest and latest maxima shown
in Figs. 5b) and c).

A large dispersion through different intermediate regions is seen in Fig. 5a), where the epidemic curves for the 13
intermediate regions of MG state are presented. The times and prevalences values at the peak differ by factors 2 and 6,
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FIG. 5. Multi-scale analysis of epidemic prevalence for the MG state at several scales of geographical organization considering a
moderate mitigation with parameters (M,K) = (0.4, 0.3). Epidemic curves averaged with geographical resolution increasing from
top to bottom are compared with lower resolution averages: a) intermediate regions, b,c) immediate regions, d-g) municipalities.
The curves presenting the earliest and latest maxima are chosen as representative within each panel. Arrows indicate curves
selected for zooming. Day 0 represents 31 March 2020.

respectively, between the regions that attains the maximum first and last while the width of the curve is larger where
the epidemics delayed more. Curves for all intermediate regions of the 26 federative states are shown in Fig. SI-7 of
the SI [21]. Stepping down to immediate regions, a similar behavior is found in Figs. 5b) and c). The intermediate and
immediate regions of Belo Horizonte, that include the capital city and is by far the most populous region of the state,
lead the averages over state and intermediate regions, respectively, hiding the actual prevalence in the other localities.
Variability is still large within immediate regions as shown in Figs. 5d-g) with the epidemic prevalence (transparency
curves) at different municipalities of a same immediate region. This pattern is repeated for other federative states
varying only the dispersion amplitude. Figures describing this multi-scale nature for CE, RJ, RS, and SP states are
available in Figs. SI-2, SI-3, SI-4, and SI-5, respectively, of the SI [21].

Variability of the time, prevalence, and width τ , which represents the outbreak duration, of the epidemic peak
throughout immediate regions are shown in box plots of Fig. 6 for simulations with moderate mitigation. Box plots for
none and strong mitigations are qualitatively similar and presented in Figs. SI-9 and SI-10 of the SI [21]. One can see
that federative states with smaller territorial areas, such as SE, RN, and RJ, tend to present smaller dispersions of the
peak time while those with mainland scales and more sparsely connected territories, as AM, MT, and MS, present
larger dispersions and outliers. We also have states with large territories but better connected such as SP, PR, and RS,
for which the dispersion is significant but not characterized by outliers. Irrespective of the more cohesive pattern of
outbreaks, the epidemic peaks in immediate regions of the SP state can take more than twice as long as the peak at
the capital city. On other hand, the outbreaks in the RJ state are less desynchronized than in its neighbors MG and
SP states with the latest immediate region reaching the epidemic peak only 50% later than the capital Rio de Janeiro.

Another interesting observation in Fig. 6 is that the more delayed the epidemic peak the lower the maximal prevalence
and the longer its duration. For the susceptible-infected-recovered (SIR), the simplest compartmental model with
immunity, these relations can be analytically derived if the prevalence is not too large and asymptotically provides
ρ ∼ T−2 and τ ∼ T [14] (∼ means asymptotic proportionality). Scatter plot of peak width τ versus time T for distinct
immediate regions and mitigation approaches is shown in Fig. 6d). Power-law relations with exponents τ ∼ T 1.3(1),
Fig. 6d), and ρ ∼ T−1.9(2) (not shown) are obtained. While the relation between peak value and time is consistent
with simple compartmental models, the outbreak duration increases superlinearly with T . The outbreak size can be
estimated as Nout ' ρτ ∼ T−1 for standard SIR while Nout ∼ T−0.6 in our metapopulation simulations, indicating
that the reduction of total number of infected individuals on places with delayed outbreaks will be proportionally
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FIG. 6. Box plot for the peak a) time T b) width τ , and c) prevalence ρ averaged over immediate regions for the 26 federative
states using a moderate mitigation with parameters (M,K) = (0.4, 0.3). Circles are data for different regions. As usual, boxes
yield median, lower and upper quartiles while points outside whiskers are outliers. d) Scatter plots for peak width versus time
in days since 31 March2020 for three mitigation scenarios: none, moderate and strong. Squares are the averages binned over
federative states for each mitigation method while the line is a power-law regression of the binned data.

lower than the prediction of simple compartmental models. This can be rationalized in terms of multiple seeding of
epidemics due to flux of people from other municipalities.

The space-time progression of the epidemics presents complex patterns as shown in Figure 7, where color maps with
the prevalences of symptomatic cases in each municipality of the Brazil are presented within intervals of 3 weeks for
moderate mitigation simulations. Full evolution for this and others investigated parameters are provided in Videos
SI-1, SI-2, SI-3, and Figs. SI-12 and SI-13 of the SI [21]. An average epidemic wave propagating approximately from
east, where are the populated lands, to northwest can be seen at a country level. Moreover, when the epidemic is
losing strength in east, the countryside is still facing high epidemic levels. Maps and movies suggest that the epidemics
starts in the more populated places, usually the largest metropolitan regions, and spread out towards the countryside
municipalities. This is quite clear in the SP state, where the focus begins in its capital city, and moves toward west into
the countryside. However, other states as PR and RS follow a different pattern with more foci evolving simultaneously.

We analyzed the correlation between time T of the epidemic peak in immediate regions and their distances D
from the capital city of the respective state. Figures 8a)-c) show scatter plots of D vs T for three typical correlation
patterns found in simulations. The remaining states are given in Fig. SI-11 of the SI [21]. The SP state presents a
strong correlation with Pearson coefficient r = 0.69 being statistically significant with p-value less than 10−7. For
the PR state, no statistical correlation is observed. Finally, the MG state has a moderate correlation with Pearson
coefficient r = 0.47 but statistically significant with p-value of 10−5. We classified the federative states according to
the correlation between T and D in three groups: not significant for which the p-value is larger than 0.02; strong
correlation that has statistical significance with p < 0.02 and r > 0.6; and moderate correlation with p < 0.02 and
r < 0.6. The compiled results are summarized in Fig. 8d) where the map presents states colored according to their
classification. The structure does not change for other mitigation approaches. The complete set of Pearson coefficients
and p-values are given in Table SI-I of the SI [21]. States of the north region (RR, RO, AP, AC, AM, PA, and TO)
have few immediate regions distributed in large territories and less connected. So, lack of correlations is not surprising.
Moderate correlations in states as MG, BA, and GO with large but better connected territories are due to existence of
multiple important regions that play the role of regional capitals. However, the PR state is an extreme case with many
and better connected immediate regions but total lack of correlation with the capital city Curitiba. Indeed, PR has
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FIG. 7. Color maps presenting the evolution of the prevalence of symptomatic cases (U and C) for Brazil in a simulation with a
moderate mitigation using parameters (M,K) = (0.4, 0.3).

economically and culturally independent regions as Londrina and Maringá with strong ties with the SP state, and the
touristic region of Foz do Iguaçu with Paraguay and Argentina.

V. DISCUSSION

The wide territorial, demographic, infrastructural diversity of mainland countries as Brazil demands an epidemic
modeling of the COVID-19 with geographical resolution higher than usual compartmental epidemic models, which can
be achieved using the metapopulation framework. Performing simulations of COVID-19 epidemics at municipality
level for Brazil with diverse mitigation scenarios (none, moderate, and strong) and considering the integration of
different regions through long distance mobility of persons, we have identified a high degree of heterogeneity and
desynchronization of the epidemic curves in the main metropolitan areas and countryside regions. The diversity of
outcomes is observed in several geographical scales from states to immediate regions, that encloses groups of nearby
municipalities with strong economic and social ties. The stronger mitigation attitudes the more remarkable are the
differences. We found moderate or strong correlation between the delay of the epidemic peak in countryside regions
when compared with the capital cities of the respective state for most of states with well connected immediate regions.
However, one exception was PR state where diverse epidemic foci evolving apparently independently of the capital city.

The administrative organization of Brazil gives to the federative state and municipalities some independence to
adopt mitigation approaches but are limited by the economic dependence on superior spheres. So, the tendency is to
have similar approaches within states. Our simulations indicate that uniform mitigation measures may not be the
optimal strategy. In a municipality where the peak naturally happens after the capital of its state, it will delay even
more if strong mitigation measures are adopted synchronously with the capital. On the one hand, such a municipality
probably would have to extend the mitigation for much longer periods since once the epicenters of epidemics start to
relax their restrictions the viruses would circulate faster, reaching these vulnerable municipalities with essentially the
entire population still susceptible. The social and economic impacts could be higher. On the other hand, an eventual
collapse of the local heath system in countryside regions could also occur after the larger metropolitan areas were
under control paving the possibility of unburdening the local healthy care system.

Actually, the desynchronization of the epidemic curves and consequently of the sanitary systems’ collapse can be
used as an important ally in the prospection of optimal resource distributions. One important attitude is to preserve
these reservoirs in countryside as long as possible. It could be done in at least two forms. The first one is reducing to
a lowest possible level the flux of people from areas with high incidence of COVID-19, in other words, strict sanitary
cordons in the epidemic epicenters. This approach is theoretically obvious but can hardly be achieved in practice and
only Wuhan had success in this endeavor [5]. The second option is to flatten the curves as much as possible in the
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main metropolitan regions. Beyond the positive consequences for their own sanitary systems, this attitude would have
the positive side effect of delaying epidemics in the countryside. Our study points that countryside regions are not safe
in medium-term but have a precious additional time to be prepared. Not less important, a constant monitoring of
possible local transmission by massive testing policies [36] even without significant epidemic incidence still is the only
safe path to keep countryside economically active while others epidemic epicenters are locked down.
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FIG. 8. Scatter plots with time for the peak T and distances of immediate regions to capitals D of the respective a) SP, b) MG
and, c) PR states. d) Map with the classification of typical correlation between T and D of each federative state. See main text
for criteria.
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Regiões Geográficas Intermediárias (Instituto Brasileiro de Geografia e Estat́ıstica Rio de Janeiro, 2017).

[36] A. Aleta, D. Mart́ın-Corral, A. Pastore, M. Ajelli, M. Litvinova, M. Chinazzi, N. E. Dean, M. E. Halloran, I. M. Longini,
S. Merler, A. Pentland, A. Vespignani, E. Moro, and Y. Moreno, “Modeling the impact of social distancing , testing ,
contact tracing and household quarantine on second-wave scenarios of the COVID-19 epidemic,” , 1.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.06.20093492doi: medRxiv preprint 

https://doi.org/10.1371/journal.pmed.0040013
http://wwwnc.cdc.gov/eid/article/26/5/20-0146{_}article.htm
https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2100600
https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2100600
https://www.mobs-lab.org/uploads/6/7/8/7/6787877/tracing{_}main{_}may4.pdf
https://doi.org/10.1101/2020.05.06.20093492
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Metapopulation modeling of COVID-19 advancing into the countryside: an analysis of mitigation strategies for Brazil
	Abstract
	Introduction
	The model
	The parameters
	Mobility
	Epidemiological parameters
	Contact parameters
	Initial conditions
	Comments on parameters choices

	Results
	Nowcasting and model calibration
	Long-term analysis

	Discussion
	Acknowledgments
	References


