
Mobility Reduction and Covid-19 Transmission Rates  1

 
Nittai K. Bergman  and Ram Fishman  2 3

 
First Draft: April 29th, 2020     This Draft: May 3rd, 2020 

 
Abstract 
 
Assessing the contribution of mobility restrictions to the control of Covid-19 diffusion is an urgent               
challenge of global import. We analyze the relation between transmission rates (estimated            
effective reproduction numbers) and societal mobility levels using fine-grained daily mobility           
data from Google and Apple in an international panel of 87 countries and a panel of all states in                   
the United States. Reduced form regression estimates that flexibly control for time trends             
suggest that a 10 percentage point reduction in mobility is associated with a 0.04-0.09 reduction               
in the value of the effective reproduction number, ​R​(​t​), depending on geographical region and              
modelling choice. According to these estimates, to avoid the critical value of ​R ​= 1, easing                
mobility restrictions may have to be limited to below pre-pandemic levels or delayed until other               
non-mobility related preventative measures reduce ​R to a level of 0.55 ​– ​0.7 in Europe, a level of                
0.64 ​– ​0.76 in Asia, and a level of 0.8 in the United States. Given gaps in data availability and                  
inference challenges, these estimates should be interpreted with caution.  
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Introduction 
 
By some estimates, more than a third of the global population have been subjected to severe                

mobility restrictions since the start of the Covid-19 pandemic. Numerous governments around            

the world have resorted to such “lockdowns” as their primary strategy of limiting the              

transmission of infection, at enormous economic and social costs. As costs escalate, and             

transmission rates appear to decline in some countries, a growing debate has emerged             

regarding when and how lockdowns should be eased, and whether it is possible to do so                

without unleashing additional waves of infection. An assessment of the relation between mobility             

restrictions and transmission rates can be of substantial value in helping to navigate this policy               

dilemma and in understanding the determinants of diffusion.  

 

Several papers have estimated the declines in transmission rates (effective reproduction           

numbers) that occured following lockdowns and other non pharmaceutical interventions (NPI) by            

using detailed case-level data in specific countries or regions (Pan et al, 2020; Lipsitch et al,                

2020; Wang et al, 2020; Salje et al, 2020; Roux et al, 2020). These studies provide highly                 

informative evidence from a small number of localized contexts (mainly Wuhan and France) that              

are highly heterogeneous, which perhaps explains their mixed conclusions. The extent to which             

these findings can be globally extrapolated remains unclear. An additional challenge faced by             

these “before-after” assessments is the difficulty of separating the effects of the NPIs under              

study from other time trending factors that can reduce transmission rates. Flaxman (2020a;             

2020b) and Kučinskas (2020) make valuable progress on this front by estimating the effects of               

NPIs on the effective reproduction numbers using a panel of 14 European states, finding results               

regarding the association between NPI and transmission rates that are sensitive to the manner              

in which the regression model is specified. In addition, these analyses are limited to a single                

world region and a small number of countries.  

 

Here, we use publicly available data to empirically estimate the relation between transmission             

rates (effective reproduction numbers) and mobility restrictions using a large, international           

87-country panel, as well as a panel covering all states in the United States. We then discuss                 

the implications for easing or tightening mobility restrictions. Our assessment employs a            

reduced-form regression analysis based on fine-grained mobility data provided by Google and            

Apple, estimates of daily transmission rates at the country level from Kučinskas (2020), and              
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daily estimates of transmission rates at the U.S. state level from Systrom and Vladeck (2020).               4

In contrast to existing studies, we focus on the association between transmission rates and              

mobility data rather than government NPIs because evidence suggests an imperfect           

correspondence between NPIs, and in particular lockdowns, and mobility, perhaps explaining           

the inconclusive estimated impact of lockdowns (see e.g., Gupta et al., 2020). The international              

data cover 87 countries over the period February 21st to April 11th while the panel of U.S states                  

spans the period March 13th to April 11th. 

 

A visual inspection of the country level data suggests mixed patterns. In Spain, for example               

(Figure 1, top panel), reductions in transmission rate seem to coincide with steep reductions in               

mobility, although transmission continues to decline even after mobility stabilizes at a low level.              

In South Korea, in contrast (Figure 1, bottom panel), transmission rates have declined to a               

much greater extent, and only initially coincide with relatively modest reductions in mobility,             

implying a weaker relation between the two. 

 

As discussed in detail below, there are significant challenges in empirically estimating the             

transmission-mobility relation, including omitted variable biases, limited data quality, and          

endogenous policy and individual-level responses to infection rates which affect societal mobility            

levels. Given the absence of data on other forms of preventative behavior, we attempt to               

alleviate some of these concerns by including a host of temporal and country-level fixed effects               

in the regressions to absorb some of these unobserved factors, but emphasize that a great deal                

of caution must be exercised in interpreting our estimates as causal. We also emphasize that               

there is no straightforward way to infer policy prescriptions from the correlations we estimate, as               

policy induced changes in mobility may impact other variables which influence transmission            

rates. For this reason, our results do not provide definitive conclusions, but should be viewed as                

a first step that utilizes publicly available measures of mobility levels and transmission to study a                

question of enormous social import.  

 

Our current point estimates from the international cross-country panel suggest that a 10             

percentage point (p.p.) reduction in mobility is associated with a 0.06-0.09 reduction in the              

value of the effective reproduction number, ​R​(​t​), depending on geographical region and            

modelling choice. Estimates from the U.S. state-level panel suggest that a 10 percentage point              

4 Available at rt.live 
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(p.p.) reduction in mobility is associated with a 0.04 reduction in the value of the effective                

reproduction number, ​R​(​t​).  

 

Although the magnitude of the estimated impact of mobility restrictions are relatively modest in              

size, they also imply that in order to avoid allowing ​R​(​t​) to exceed unsustainable levels, easing                

of mobility restrictions may have to be limited or delayed until further declines in ​R are achieved                 

through other means. These include non-mobility related social distancing and other           

non-pharmaceutical interventions (NPIs), or potentially, through environmental changes such as          

warming or increased UV radiation (Carleton, 2020) which may reduce transmission rates.            

Indeed, assuming an additive model for the impact of mobility and non-mobility related             

suppression methods on transmission rates, to avoid the critical value of ​R = 1, our estimates                

suggest that ​R​(​t​) may have to be reduced to levels of about 0.55 ​– ​0.7 in Europe, 0.64 ​– ​0.76 in                 

Asia, and approximately 0.8 in the United States before mobility levels are fully restored to               

pre-pandemic levels.   5

 

 

Data and Methods 
 

Mobility Data  
 

The principal measure of mobility used in this analysis is taken from the ​Covid 19 Community                

Mobility Reports provided by Google. As an alternative measure, we also use the ​Mobility              

Trends Reports ​provided by Apple. The Google data utilize ​anonymized ​location-based           

information to assess changes in the number of visits to several categories of locations in a                

given day and country, as compared to a baseline value for that day of week. The categories                 6

include retail and recreation, groceries and pharmacy, parks, transit stations, workplaces, and            

residential. ​Similarly, the Apple data report the “​relative volume of directions requests” sent             7

using the Apple Maps application, compared to a baseline volume on January 13th, 2020. The               

5 To the extent that there are interaction effects between various methods of transmission              
suppression ​—​for example, if mask usage reduces the impact of increased mobility on ​R​—​required             
reductions in transmission rates will be lower.  This issue is the subject of ongoing work.  
6 The baseline period is the median value for the corresponding day of week, calculated during the 
5-week period Jan 3–Feb 6, 2020. 
7 ​https://www.google.com/Covid19/mobility/ 
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Apple data differentiate between three types of direction requests: driving, walking, and transit.             

Google data is available for 131 countries, whereas Apple data is available for 63 countries.               

Figure 2 plots Google data on visits to workplaces over time, averaged in six world regions.                

Figure 3 plots the six measures of Google mobility data over time, averaged over Europe. 

 

Both Google and Apple data are updated continuously. The present analysis utilizes Google             

data for the period February 15th ​– ​April 11th and Apple data for the period January 13th ​– ​April               

23rd.   8

 

Covid-19 Transmission Rates     

 

The preferred indicator of Covid-19 transmission rates is the effective reproduction number ​R​(​t​),             

which measures the number of individuals an average infected person infects during the period              

of infection. In the present analysis, we make use of two independent sets of estimates of ​R​(​t​),                 

one at the country level and one for U.S. states.  

 

Country level estimates are provided by Kučinskas (2020) between January 23rd and April 21st              

for 111 countries (temporal coverage varies by country and begins after 100 cases are              

confirmed). To construct this proxy, Kučinskas (2020) uses data on new cases, recoveries, and              

deaths and backs out estimates of ​R​(​t​) on the basis of disease models. Importantly, the data                

(and the estimates) are smoothed with Kalman-filtering techniques. This means that discrete,            

high frequency movements in the actual effective reproduction number will be difficult to             

observe in these estimates. In addition, the estimates do not account for the delay between               

actual infection and official diagnosis. As such, they reflect lagged infection rates, with a lag size                

that combines the delay between infection and Covid-19 testing and the time between testing              

and official reporting of test results. In our analysis we assume an overall lag of seven days to                  

account for an incubation period of approximately 4-5 days (Qun Li et al. 2020) and a 2-3 day                  

lag between testing and the official recording of positive test results.  9

  

8 Apple data extended beyond Google data at teh day of data download. 
9 Qun Li et al. 2020 report an average incubation period of 5 days and Linton et al. report a median 
incubation period of 4–5 days. 
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As is well known, a major limitation shared by all proxies based on confirmed case counts is that                  

they are likely to substantially underestimate the true number of cases in the population. To the                

extent that the ratio of confirmed to actual cases is constant within countries (even if not                

between countries), however, this will not bias the ​R estimates. Further, Kučinskas (2020)             

argues that the estimation method is “robust in the sense that the estimates of ​R remain fairly                 

accurate even when new cases are imperfectly measured, or the true dynamics of the disease               

do not follow the SIR model”. 

 
For the state-level analysis in the United States, estimates of ​R​(t) at the state level are provided                 

by Sysrom and Vladeck (2020), which adjusts the estimates for state-level testing capacity and              

for the delay in test reporting.  

 
Sample 
 

The sample studied in our international analysis makes use of Google mobility data and              

includes observations from 87 countries over the period February 21st to April 11th. When using               

Apple mobility data, this sample consists of 56 countries observed between February 21st and              

April 21st. In both cases, data coverage is uneven across countries, starting when the confirmed               

number of cases reaches 100 in each country. 

 

Figure 4 plots our principal mobility measures (Google visits to workplaces and Apple driving              

searches) and estimates of ​R​(​t​) against time for 60 countries that have more than 30 days in                 

which both data exist.  

 

The U.S. sample includes observations from all states between the dates of March 13th and               

April 21st.  

 
Empirical Strategy 

 

We employ standard panel-regression techniques to estimate the association between          

transmission rates (proxied by the ​R estimates described above) and mobility measures. The             

regressions include country specific fixed effects (intercepts) to flexibly account for all            
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time-invariant country attributes, thus basing estimates of the relation between transmission           

rates and mobility on the correlation between these two variables over time within countries.  10

 

We prefer to study the association between mobility data and transmission rates rather than to               

estimate the effects of lockdown and other government NPIs for two main reasons. First,              

changes in mobility are not fully dictated by government orders. Voluntary reductions may             

precede such orders, and in some cases, orders may not be fully enforced and obeyed.               

Second, current estimates of transmission rates do not have sufficient temporal resolution to             

enable detecting high frequency changes in response to discrete events such as lockdowns.  

  

In addition to the inherent limitations of the precision with which transmission rates are              

measured, a significant challenge in estimating the transmission-mobility relationship is the likely            

presence of time varying behavioral, environmental, and epidemiological variables that can also            

affect transmission rates and which are difficult to observe. Behavioral variables can include             

hygienic practices, mask usage rates, and dimensions of social distancing not captured by             

mobility (such as, for example, maintaining minimal distance between individuals and maximal            

room occupancy rates). Epidemiological models predict transmission rates to respond to the            

diffusion of the virus in the population. As one example, in standard SIR models, effective               

reproduction numbers rates decline over time with the fraction of susceptible individuals in the              

population. Environmental factors may include temperature, UV radiation, and humidity          

(Carleton et al, 2020). Failing to control for these variables in the regressions may reduce the                

precision of the estimates, and may also bias them whenever these variables are correlated              

with mobility (and affect transmission rates).  

 

An additional concern in analyzing the relation between infection rates and mobility levels is the               

endogenous nature of mobility behavior. In particular, mobility rates are influenced by individual             

choice as well as by policy directives (such as lockdown easing and tightening), which may in                

turn be influenced by disease transmission rates and rising case counts. 

 

For the above reasons, panel-regression estimates relating within-country variation in infection           

rates to levels of mobility may be subject to bias and should be interpreted with a good deal of                   

caution. Unless all potential confounders are observed, or exogenous variation in mobility is             

10 For the state-level analysis in the United States, all regressions include state-level fixed effects. 
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utilized, the estimates are not amenable to causal interpretation. We note, however, with the              

appropriate caution, that many of the unobserved confounders would tend to bias our estimates              

on the relation between mobility and transmission rates upwards, as variation in these             

confounders likely served to reduce transmission rates in tandem with mobility restrictions            

(examples include increased mask usage and hygiene).  

 

To partially alleviate concerns stemming from unobservable within-country time variation, our           

analysis includes a host of fixed effects and time trends that may capture some of the                

unobserved variation. As mentioned above, all regressions estimated include country (or state)            

specific fixed effects. The regressions also flexibly control for temporal trends using individual             

date fixed effects, at either the global or regional level. Such fixed effects absorb the               11

potentially confounding influences of any time varying factor that behaves in a similar manner              

globally or regionally. In another check, we flexibly control not for calendar time, but for fixed                

effects of) the number of days which have elapsed in each country since the 100th case was                 

confirmed. This allows us to absorb the potentially confounding effects of, for example,             

dynamical factors related to the ecological evolution of the pandemic in the absence of              

interventions. In a final test, we allow the regressions to include a separate (linear) time-trend               

for each country. We remain acutely aware, however, that none of these approaches can fully               

address the possibility that our results are biased by unobserved confounders, and emphasize             

the need for caution in interpreting them. 

 

Formally, we estimate the following baseline regression: 

 

 M α(1)                 T ct = μ c,t−7 +
 c + βt + εct  

 

 M α(2)                 T rct = μ c,t−7 +
 c + βrt + εct  

 

 M α(3)                 T ct = μ c,t−7 +
 c + γc × t + εct  

 

where ​T is a proxy for Covid-19 transmission rates in country ​c (in region ​r​) on date ​t as                   

described above, and ​M is one of the mobility measures described above, measured seven              

11 Countries in the sample belong to six world regions. 
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days before the date at which ​T is observed. The regression include country fixed effects ,               αc  

date fixed effects at either global (eq.1) or regional (eq.2) levels, or country specific time   βt              

trends (eq.3). Because transmission and mobility may exhibit temporal autocorrelation within           

countries, all standard errors are clustered at the country level. 

 

Finally, since mobility measures are strongly correlated temporally within countries (Figure 3),            

separating out the effects of each type of mobility indicator demands statistical power that is               

unlikely to be provided by the current sample. Our main regression models therefore include a               

single measure of societal mobility as the explanatory variable. We focus on the Google              

workplace mobility measure, being a natural proxy for economic activity. In an exploratory             

analysis reported below, we also estimate models that simultaneously include the various            

components of mobility levels (workplace, residential, transit, etc).  

 

 

General Trends in Mobility and Transmission 
 

The data exhibit significant downward trends in both mobility and estimated transmission rates.             

Figure 5 (top panel) exhibits the daily average of Google workplace mobility, Apple             

driving-based mobility and (unlagged) ​R(t) ​estimates ​over the sample period in Europe. As can              

be seen, European mobility levels decline sharply between mid-February and mid-March (with            

Google workplace mobility declining by approximately 50 percentage points) and then stabilize.            

Apple mobility data, which extend beyond Google data, indicate a general increasing trend in              

mobility starting approximately at mid-April. Over the same time period, Figure 5 (top panel)              

shows a decline in estimated ​R ​values from 3.5 towards 1. 

 

Figure 5 (middle panel) provides analogous information for countries in the sample within the              

“Asia and Pacific” region. Similar to Europe, the figure indicates a decline of average ​R of                

approximately 3 units from a peak of 4 towards 1, and a decline of 40 percentage points in the                   

Google workplace mobility measure. The bottom panel of Figure 5 focuses on the United States               

using the state-level panel dataset. As can be seen, the average reproduction number falls by               

approximately 0.50 units during the sample period (from approximately 1.4 to 0.9), while the              

average Google workplace mobility levels decline by 45 percentage points. We note that the              
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sample period of state-level reproduction numbers, ​R​, begins only in mid-March, and so we              

cannot rule out higher levels of ​R​—similar to those observed in Europe and Asia—prior to that. 

 

Changes in average mobility levels mask a good deal of country-level heterogeneity. Figure 4              

plots our two principal mobility measures and estimated ​R values for sixty countries that have at                

least 30 days of both mobility and transmission data.  

 

Figure 6 (top panel) provides two snapshots of the international data, showing scatter plots of               

each country’s estimated reproduction number ​R against its level of Google workplace mobility             

on March 13th and April 18th. Between the two periods, there is clear movement of most                

countries towards lower reproduction numbers and mobility levels. There is no indication of a              

significant cross-sectional relation between ​R​ and mobility levels in either period.  

 

The bottom panel of Figure 6 provides a parallel graph for U.S. states on the same two dates.                  

Here too, during the initial stage of the pandemic in the United States, transmission rates are                

high, mobility levels have not yet declined, and there is no discernable cross-sectional relation              

between the two. In contrast, by April 18th, transmission rates and mobility levels decline              

significantly across the United States, and display a clear positive correlation .  

 

However, cross-sectional correlations of this kind can easily be confounded by numerous other             

sources of heterogeneity (even if such heterogeneity could be lower across U.S. states than              

across countries). It is for this reason that, in order to estimate the relation between R and                 

mobility, the analysis below focuses on variation within countries over time. 

 

 

Results 
 

Table 1 provides results of regressions (1)-(3), using estimates of the effective reproduction             

number (​R​) from Kučinskas (2020) as the outcome variable, and a seven-day lagged measure              

of workplace mobility from Google data. Google mobility data is coded here as the fraction               

decline from baseline levels. The coefficients should therefore be interpreted as the associated             12

12 For example, a 10 percentage point reduction in mobility is coded as -0.1.  

10 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.06.20093039doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20093039
http://creativecommons.org/licenses/by-nc-nd/4.0/


decline in the effective reproduction number associated with a 100 percentage point (p.p)             

decline in mobility. 

 

All specifications include country fixed effects (intercepts) to account for all cross-country            

differences in transmission stemming from time invariant country characteristics. To account for            

time trends, the specification in Column 1 includes global date fixed effects and the specification               

in Column 2 includes region-by-date fixed effects. As an alternative, the specification in Column              

3 flexibly controls for the number of days elapsed in each country since it confirmed its 100th                 

Covid-19 case, using fixed effects for each value of this lapse. The specification in Column 4                

includes country-specific linear time trends.  

 

Across the four specifications reported in Table 1, we estimate a positive and statistically              

significant relation between effective reproduction numbers, ​R​, and Google mobility levels,           

indicating that increased mobility is associated with increased transmission. The coefficient on            

lagged mobility ranges from 0.93 to 0.59, depending on the specification. The estimates imply              

that a ten percentage point drop in the Google mobility measure is associated with a decline of                 

between 0.06-0.09 units of ​R​, depending on the specification used ​. 

 

Figure 7a plots the country-level fixed effects estimated in specification (1) in Table 1. The figure                

provides a ranking of the reduction in transmission rates that is unexplained by mobility              

suppression. As can be seen, countries in Asia appear to be particularly successful in reducing               

transmission rates using non-mobility suppression methods. The figure also plots the fixed            13

effects of a variant of specification (1) which uses region, as opposed to country, fixed effects.                

Again, a clear ranking emerges in regions’ ability to reduce transmission rates using             

non-mobility suppression methods, with Asia most successful, North America least successful,           

and European countries in between.   14

 

Figure 7b plots the time fixed effects estimated in specification (1), which reflect the average               

daily reduction in transmission that is unexplained by mobility reduction or by non-time varying              

country specific factors. As can be seen, the time fixed effects decline over time, indicating               

13 The top 5 countries on this list—i.e., with the lowest fixed effects—are South Korea, Cambodia, Japan, 
Vietnam, and Taiwan.  
14 The omitted regional fixed effect is Europe.  
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increased global suppression of transmission rates stemming from measures unrelated to           

variation in mobility (these measures could potentially include increased usage of masks,            

increased hygiene, favorable weather trends, etc). 

  

Table 2 repeats the analysis in Table 1 but uses the Apple driving mobility measure to proxy for                  

mobility levels. Results are similar to those in Table 1 and indicate positive and statistically               

significant relations between ​R and mobility in all four specifications. The estimates imply that a               

ten percentage point drop in the Apple mobility measure is associated with a decline of               

0.08 ​– ​0.09 units of ​R​, depending on the specification used.  

 

Table 3 examines the relation between transmission rates and mobility levels in an analogous              

manner, but uses the state-level panel dataset in the United States. Transmission rates are              

taken from Systrom and Vladeck, 2020, and mobility is measured either by Google workplace              

mobility, or Apple driving mobility indicators. All regressions include state-level fixed effects and             

either date fixed effects or state-level time trends. As can be seen, similar to the global analysis,                 

the results in the United States indicate a positive relation between transmission rates and              

mobility levels. Focusing on Column 1, which is most similar to our benchmark global model               

(i.e., with country and date fixed effects), the estimates suggest that a 10 percentage point               

reduction in mobility levels is associated with a 0.04 decrease in the value of ​R​. The size of the                   

effect is rather similar to that in the benchmark global estimate (0.06) despite the fact that the                 

estimates of ​R​(​t​) used in the two regressions are derived by independent methods and              

researchers. 

 

Table 4 repeats the global estimation model separately in five different geographical regions             

using Google mobility data. As can be seen, the positive relation between transmission rates              15

and mobility levels is concentrated in the regions of “Europe” and “Asia and Pacific”. We find a                 

positive, but weaker and marginally insignificant (p=0.11) relation in South America. No            

statistically significant relation between transmission rates and lagged mobility is observed in            

15 We classify countries  into six geographical regions: Africa,  Asia and Pacific, Europe, Middle East, 
North America and South/Latin America. As there are only two countries in North America, we do not run 
the regression separately for that region.  
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the Middle East or Africa, perhaps owing to the relatively small number of observations within               

these regions.   16

 

We next conduct an exploratory analysis of how infection rates relate to the various mobility               

measures provided by Google and Apple. Results should be interpreted with caution given the              

high levels of temporal correlation between the various location-based Google mobility           

measures (workplace, residential, parks, retail and recreation, transit, grocery and pharmacy) as            

well as the high correlation between the search-type Apple mobility measures (driving, transit,             

walking). Table 5 reports estimates of regression (1) and (2), respectively, that include as              

independent variables all six location-based measures of Google mobility (with date and            

date-by-region fixed effects, respectively). Columns 3 and 4 report the analogous specifications            

that simultaneously include all three search-type Apple measures. 

 

Focusing on the first column of the table, the results provide suggestive evidence that increased               

mobility in “work places”, “retail and recreation”, “transit stations”, and “residential areas” are             

positively associated with transmission rates. Coefficients on the Google location-based          

measure should be interpreted in relation to an omitted location category defined as the              

complement to the union of the six locations defined by Google. Similarly, the results in Column                

1 indicate a negative relation between increased population mobility in “parks” as well as in               

“grocery and pharmacy”. Adding regional date fixed effects does not change the sign of the               

coefficient but reduces statistical precision, leaving only the coefficients on “Retail and            

Recreation”, “Transit Stations”, and “Residential Areas” as significant. The positive coefficient on            

“Residential Areas” is somewhat counterintuitive. One potential explanation might stem from           

increased prevalence of infection between members of the same household (see, e.g., Bi et al.,               

2020). 

 

Column 3 provides a parallel analysis to that reported in Column 2, but uses the daily-level                

panel dataset of U.S. states described above. Estimates of infection reproduction numbers are             

taken from Systrom and Vladeck (2020), while state-level mobility indicator levels are provided             

by Google. Similar to Column 2, results indicate that workplace mobility in the United States is                

16 To estimate ​R ​, Kučinskas (2020) requires that the number of reported Covid-19 cases exceed 100, 
implying that countries where infection rates climbed in later time periods are underrepresented in the 
sample.    
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positively related to transmission rates in a statistically significant manner. Further, we find a              

statistically significant, negative, but small coefficient on the parks mobility measure. All other             

mobility measures in Column 3 are non-significant. 

 

Columns 4 and 5 of Table 5 use Apple search-type mobility data. Focusing on Column 4, when                 

all three mobility measures are included in the regression, the coefficient on transit related              

searches is the only measure which is statistically significant, while the other mobility measures              

based on driving and walking ​—​activities involving less social interactions​—​are not related to ​R             

in a statistically significant manner. However, once regional fixed effects are added, none of the               

coefficients associated with the three Apple mobility measures are statistically significant,           

potentially due to their high levels of correlation. As additional data becomes available, we will               

continue to update these estimates with the hope that increased sample size may allow for               

greater precision.  

 

We conclude by analyzing evidence for a structural break in the relation between transmission              

rates and mobility levels during our sample period. This analysis is motivated by the patterns               

visible in Figure 5, which show that on average, countries in Europe and the Asia and Pacific                 

region exhibit an initial large decline in both Google workplace mobility levels and ​R up to                

mid-March, followed by a relative stabilization in workplace mobility but a continued decline in              

estimated reproduction numbers. 

 

Table 6 repeats the baseline analysis reported in Table 1, but separately conducted over the               

time period up to, and following, the week of March 25th. Results in the table provide suggestive                 

evidence for a weakening in the relation between transmission rates and mobility, with larger              

point estimates and higher significance levels in the three specifications estimated over the             

former part of the sample period as compared to those in the latter part of the sample period.                  

We note that mobility levels in a number of countries have begun rising in the latter part of the                   

sample period, as can be seen in the Apple mobility indicators. As transmission rate indicators               

arrive with a lag, additional data arriving in the upcoming weeks will be of particular interest in                 

tracking the evolution of mobility levels and Covid-19 transmission rates. 
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Discussion 
 

Given the estimates in Table 1, a 10 percentage point decline in the Google workplace mobility                

measure is associated with a 0.06 ​– ​0.09 unit decline in the estimated reproduction number ​R​.              

Based on these estimates, it is instructive to analyze the share of the overall decline in                

transmission rates that can be explained by mobility reductions.  

 

Overall, Google mobility rates in Europe declined by approximately 50 percentage points by the              

beginning of April, which our estimates imply is associated with a reduction in ​R of 0.3 ​– ​0.45                

units. The fraction of the overall decline in ​R that is explained by this mobility reduction depends                 

on the time window chosen for the calculation. By April 11th, the mean value of ​R across the                  

European countries in our sample had declined to 1.1. Taking the starting date for the               17

calculation as February 21st, when ​R = 3.4, implies an overall decline in ​R of 2.3 units, meaning                  

that mobility reductions explain about 13%-20% of this decline. However, data from February is              

still very sparse, and derived from only a few countries. If we more conservatively choose the                

starting time of the calculation to be a month later, on March 11th, when ​R = 2.3—at this point                   

data is available from more than 20 countries, and most of the European mobility reduction has                

yet to take place—the overall reduction in ​R is reduced to 1.2 units, so that mobility reductions                 

explain approximately 25%​– ​37% of the decline in ​R​.  

 

Analogously, in countries within the “Asia and Pacific” region the decline in average Google              

mobility measures—approximately 40 percentage points to date—imply a reduction of          

0.24 ​– ​0.36 units in ​R​. Again, the fraction of the overall decline in ​R explained by mobility                

depends on the time frame chosen. Taking the starting date of the calculation to be March 11                 

(average ​R = 2.06), and given the April 11th average value of ​R of approximately 1.27, we                 

obtain that mobility reductions in Asia explain approximately 30%-45% of the reduction in ​R​.  

 

Our estimates, to a large extent, are estimated during a period when both mobility levels and                

transmission rates decline. Assuming that the association between mobility and ​R is similar             

when the two variables rise, the same coefficients, interpreted at face value, also imply that in                

Europe, returning from current levels of mobility to pre-pandemic baseline levels—approximately           

17 Given the assumption of a seven-day lag between actual and observed R in the international data, the 
values corresponding to a given date refer to the R estimated seven days afterwards.  
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a 50 percentage point increase—would entail an increase of between 0.3 (S.E. 0.07) to 0.45               

(S.E. 0.10) points in ​R​. Under this scenario, in order to avoid levels of ​R​(​t​) from systematically                 

climbing above the critical value of ​R = 1, easing of mobility restriction may have to coincide with                  

other ​non-mobility ​measures which reduce ​R​ to a level of 0.55 ​– ​0.7. 

 

Similarly, the coefficients imply that in Asia, returning to baseline levels of            

mobility—approximately a 40 percentage point increase—would entail an increase of between           

0.24 (S.E. 0.05) to 0.36 (S.E. 0.08) points in ​R​. To avoid levels of ​R​(​t​) from systematically                 

climbing above ​R = 1, easing of mobility restriction in Asia may have to coincide with other                 

non-mobility measures which reduce ​R​ to a level of 0.64 ​– ​0.76. 

 

We emphasize again that to the extent that coefficients in Table 1 are overestimates​—​due, for               

example, to unobserved confounders not absorbed by our flexible time trends that reduce             

transmission rates simultaneously with mobility declines​—​the share of the decline in ​R that is              

explained by the decline in mobility would be reduced still further. 

 

Turning to the United States, the estimates based on the state-level analysis imply that a 10                

percentage point decline in the Google workplace mobility measure is associated with a             

reduction of 0.04 units (S.E. 0.01) in the value of ​R​. As during the sample period average                 

reproduction numbers in the United States fell by approximately 0.5 units, this estimate             

suggests that the decline in mobility in the United States can explain approximately 40% of the                

overall decline in ​R​. This estimate, obtained using within country variation and a different source               

and methodology for estimating ​R​, is rather similar to that obtained in Europe and Asia.  

 
Understanding the determinants of Covid-19 transmission rates is one of the most pressing             

policy questions facing society. This paper provides an empirical analysis of this question,             

utilizing comprehensive data at global scale to analyze the association between mobility levels             

and transmission rates. As such, it provides an important complement to detailed            

epidemiological modelling of the spread of Covid-19. It will be valuable to revisit the estimates               

provided in this paper as mobility levels and Covid-19 transmission rates continue to vary in the                

coming months and as additional data become available. 
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Figure 1: Plots of estimated effective reproduction numbers ​R​(​t​), Google workplace mobility and             
Apple driving mobility indicators for Spain and South Korea. ​R​(​t​) is plotted against the left axis.                
Mobility changes from baseline (in percentage points, see data section) are plotted against the              
right axis.  
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Figure 2 ​: Average measure of Google workplace mobility over time, by region.  
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Figure 3 ​: Average measures in Europe in Europe of Google mobility data, by mobility indicator 
type, by mobility indicator type, over time. 
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Figure 4: Country plots of ​R​(​t​), Google (visit to workplaces) and Apple (driving searches)              
mobility indicators over time. Only countries for which there are at least 30 days of both mobility                 
and ​R​(​t​) data are included. ​R​(​t​) is plotted against the left axis. Mobility changes from baseline                
(in percentage points, see data section) are plotted against the right axis.  
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Figure 4 (cont.) (cont.): Country plots of ​R​(​t​), Google (visit to workplaces) and Apple (driving               
searches) mobility indicators over time. Only countries for which there are at least 30 days of                
both mobility and ​R​(​t​) data are included. ​R​(​t​) is plotted against the left axis. Mobility changes                
from baseline (in percentage points, see data section) are plotted against the right axis.  
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Figure 4 (cont.): Country plots of R(t), Google (visit to workplaces) and Apple (driving              
searches) mobility indicators over time. Only countries for which there are at least 30 days of                
both mobility and R(t) data are included. R(t) is plotted against the left axis. Mobility changes                
from baseline (in percentage points, see data section) are plotted against the right axis. 
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Figure 5: Plots of ​R​(​t​), Google (visit to workplaces) and Apple (driving searches) mobility              
indicators over time, averaged for Europe and Asia. ​R​(​t​) is plotted against the left axis. Mobility                
changes from baseline (in percentage points, see data section) are plotted against the right              
axis. 
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Figure 6 ​: Scatter plots of estimated R values vs. Google workplace mobility for countries              
(top panel) and U.S. states (bottom panel) on March 13th (red) and April 20th (blue).   
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Figure 7a: ​ Top: Estimated country fixed effects from regression (1), sorted from smallest to 
largest by country. Bottom: region fixed effects from a version of regression (1) which replaces 
country fixed effects with region fixed effects.  
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Figure 7b: ​ Estimated date fixed effects from regression (1), sorted chronologically.  
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 (1) (2) (3) (4) 

 R R R R 

     

Google Workplace Mobility 
(Seven-day Lagged) 

0.93*** 0.59*** 0.82*** 0.60*** 

 (0.19) (0.21) (0.17) (0.13) 

     

Observations 2858 2674 2857 2858 

Adjusted R-squared 0.683 0.719 0.687 0.823 

     

Date F.E. Global Regional Global N 

Country Specific  Time Trends N N N Y 

Days Since 100th Case F.E. N N Y N 

 
 
 
Table 1 ​: Baseline results relating ​R to seven-day lagged Google workplace mobility. Each             
column reports results from a separate regression. All regressions include country fixed effects.             
Standard errors, clustered by country, are reported in parentheses. Stars indicate statistical            
significance  (* p<0.1,** p<0.05,*** p<0.01). 
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 (1) (2) (3) (4) 

 R R R R 

     

Apple Driving Mobility 
(Seven-day Lagged) 

0.90*** 0.81*** 0.80*** 0.82*** 

 (0.20) (0.29) (0.19) (0.14) 

     

Observations 2378 2189 2377 2379 

Adjusted R-squared 0.740 0.756 0.750 0.842 

     

Date F.E. Global Regional Global N 

Country Specific Time Trends N N N Y 

Days Since 100th Case F.E. N N Y N 

 
 
 
Table 2 ​: Results relating ​R to seven-day lagged Apple driving mobility. Each column reports              
results from a separate regression. All regressions include country fixed effects. Standard            
errors, clustered by country, are reported in parentheses. Stars indicate statistical significance            
(* p<0.1,** p<0.05,*** p<0.01). 
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 (1) (2) (3) (4) 

 Google Workplace Apple Driving 

     

Mobility  0.43*** 0.26*** 0.13* 0.19*** 

 (0.14) (0.03) (0.07) (0.02) 

     

Observations 2295 2295 2400 2400 

Adjusted R-squared 0.868 0.940 0.865 0.924 

     

Date F.E. Y. N Y N 

StateState Specific  
Time Trends 

N Y N Y 

 
Table 3 ​: Results relating ​R (obtained from rt.live) to Google workplace mobility (Columns 1-2)              
and Apple driving mobility (Columns 3-4) measures in the U.S. panel. Each column reports              
results from a separate regression. All regressions include state fixed effects. Standard errors,             
clustered by country, are reported in parentheses. Stars indicate statistical significance 
(* p<0.1,** p<0.05,*** p<0.01). 
 
 
  

31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.06.20093039doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20093039
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 (1) (2) (3) (4) (5) 

 R R R R R 

 Africa Asia &  
Pacific 

Europe Middle 
East 

South/ 
Latin  

America 

Google Workplace Mobility  
(Seven-day Lagged) 

-0.59 0.75* 0.87** 0.05 0.38 

 (0.50) (0.38) (0.36) (0.32) (0.23) 

      

Observations 157 575 1181 292 393 

Adjusted R-squared 0.527 0.522 0.791 0.456 0.726 

Date Fixed Effects Regional Regional Regional Regional Regional 

 
 
Table 4 ​: Regional Estimates. Dependent variable: estimates of ​R ​from Kučinskas (2020) in             
Columns 1-5. Each column report results from a separate regression. All regressions include             
country fixed effects. Standard errors, clustered by country, are reported in parentheses. Stars             
indicate statistical significance  (* p<0.1,** p<0.05,*** p<0.01).  
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 (1) (2) (3)  (4) (5) 

 R R R  R R 

Google Mobility   Apple Mobility  

Grocery and 
Pharmacy 

-0.43** -0.18 -0.01    

 (0.17) (0.19) (0.10)    

       

Parks -0.18* -0.04 0.03*    

 (0.10) (0.09) (0.02)    

       

Workplace 0.47** 0.27 0.44** Walking -0.33 -0.40 

 (0.23) (0.27) (0.19)  (0.42) (0.47) 

       

Retail and Recreation 0.94*** 0.71** 0.03 Driving 0.03 0.22 

 (0.33) (0.35) (0.14)  (0.33) (0.38) 

       

Transit Stations 0.96** 0.80* 0.01 Transit 1.63*** 0.84 

 (0.46) (0.47) (0.14)  (0.46) (0.67) 

       

Residential 1.81* 1.96* 0.30    

 (0.99) (1.09) (0.39)    

       

Observations 2856 2672 2294 Observations 1170 1071 

Adjusted R-squared 0.700 0.727 0.869 Adjusted R-squared 0.780 0.782 

Date Fixed Effects Global Regional U.S. Date Fixed Effects Global Regional 

 
 
Table 5 ​: Joint estimation of all mobility indicators. Dependent variable: estimates of ​R ​from              
Kučinskas (2020) in Columns 1,2,4,5 and from rt.live in Column 3. Each column reports results               
from a separate regression. Columns 1,2,3: Google mobility indicators. Column 4,5: Apple            
mobility indicators, with all mobility indicators lagged seven days (other than in Column 3). All               
regressions include country fixed effects (column 3 includes state fixed effects). Standard errors,             
clustered by country (or state), are reported in parentheses. Stars indicate statistical            
significance  (* p<0.1,** p<0.05,*** p<0.01). 
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 (1) (2) (3) 

 R R R 

 Up to Week of March 25th 

Google Workplace Mobility 
(Seven-day Lagged) 

0.96*** 0.55* 0.33* 

 (0.24) (0.23) (0.14) 

    

Observations 1290 1196 1292 

Adjusted R-squared 0.689 0.694 0.821 

  

 After Week of March 25th  

Google Workplace Mobility 
(Seven-day Lagged) 

0.17 0.26 0.12* 

 (0.19) (0.23) (0.05) 

    

Observations 2112 1987 2112 

Adjusted R-squared 0.728 0.743 0.869 

Date Fixed Effects Global Regional N 

Country Specific Time Trends N N Linear 

 
 
 

Table 6 ​: Separated estimates for periods before and after the week of Match 25th.              
Dependent variable: ​R​. Each Column report results from a separate regression. All            
regressions include country fixed effects. Standard errors, clustered by country, are           
reported in parentheses. Stars indicate statistical significance (* p<0.1,** p<0.05,***          
p<0.01). 
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