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The SARS-CoV-2 driven infectious novel coronavirus disease (COVID-19) has been declared a
pandemic by virtue of its brutal impact on the world in terms of loss on human life, health, eco-
nomy, and other crucial resources. With the aim to explore more about its aspects, we adopted
the SEIQRD (Susceptible-Exposed-Infected-Quarantine-Recovered-Death) pandemic spread with
a time delay on the heterogeneous population and geography in this work. Focusing on the spatial
heterogeneity, the entire population of interest in a region is divided into small distinct geograph-
ical sub regions, which interact by means of migration networks across boundaries. Utilizing the
estimations of the time delay differential equations based model, we analyzed the spread dynamics
of disease in a region and its sub regions. The model based numerical outcomes are validated from
real time available data for India. We computed the approximate peak infection in forward time
and relative timespan when disease outspread halts. To further evaluate the influence of the delay
on the long term system dynamics, the sensitivity analysis is performed on time delay. The most
crucial parameter, basic reproduction number R0 and its time-dependent generalization, has been
estimated at both regional and sub regional levels. The impact of the most significant lockdown
measure that has been implemented in India to contain the pandemic spread has been extensively
studied by considering no lockdown scenario. A suggestion based on outcomes, for a bit relaxed
lockdown, followed by an extended period of strict social distancing as one of the most effective
control measures to manage COVID-19 spread is provided for India.

I. INTRODUCTION

The novel coronavirus disease, officially known as 2019-
nCoV, or SARS-CoV-2 (severe acute respiratory syn-
drome coronavirus 2), commonly called COVID-19, has
provided the world with an unparallel challenge. The
first reported case in the COVID-19 outbreak appeared
in the Wuhan city of China in December 2019, and since
then, it has rapidly spread in 210 countries and territor-
ies around the world [1]. As of April 30, 2020, a total
of 3,275,475 confirmed cases of the coronavirus and a
toll of 231,576 deaths has been reported globally [2].
At this moment of time, there is no definite vaccine
or treatment for COVID-19. It has thrown an unpre-
dictable burden on healthcare systems in the majority
of the developed as well as developing countries. With
its breakneck spread all across, World Health Organiza-
tion(WHO) has declared it as a pandemic and to contain
the upsurge by breaking its person to person transmis-
sion chain involving significant human migration, major
steps including partial or complete lockdowns, interna-
tional travel bans, and social distancing has been widely
adopted.

In India, the first case of coronavirus pandemic was
identified on January 30, 2020, originating from China.
Since this appearance, there has been a continuous rise in
the number of infections with the total number of 33,610
cases on April 30, 2020, of which there are 8,373 recover-
ies and 1,075 deaths [3]. As a preventive measure, India
also implemented a strict lockdown along with curfew
in certain states, limiting movement of the entire pop-
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ulation to minimize social contacts. The efficiency of
such measures is geographically sensitive due to different
population densities, social contact networks, and health
care facilities. Though these measures are important for
controlling the virus, they have an extensive burden on
the global economy as well. Quantitative projection of
the effect of these measures in reducing infection is cru-
cial in outlining social and economic policies. Further,
understanding the transmission dynamics of COVID-19
not only provides deep insights into the epidemiological
situation to enhance public-health planning, but such in-
vestigations can also aid in the layout of alternative out-
break control measures.

Knowledge of the early spread dynamics of the in-
fection and figuring out the capability and performance
of applied control measures is critical for assessing the
extensive outspread to occur in new regions. Besides
medical and biological research, understanding the ur-
gency to develop a predictable mathematical model for
the COVID-19 outbreak, few mathematical studies based
on statistical reasoning and simulations have been taken
up in past months [4–6]. Later, accepting the challenges
to explore the efficiency of various control measures since
the outbreak, fewer studies adopted more appropriate dy-
namical equations based on mathematical modeling tech-
niques. Compartment models such as SI, SIR, SEIR
which exhibits the change in the category of population
among the susceptible (S), exposed (E), infected (I) and
recovered (R) classes have been developed and studied
to understand the spread pattern of COVID-19 in many
countries [7–11].

Further, as reported, COVID-19 has a lat-
ent/incubation period (time from exposure to the
development of symptoms), which is estimated to be
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Figure 1: (a) The map of India along with different states (represented by filled dots, numbered from 1 to 32∗). The
solid lines shows the connections of a state with its neighboring states resulting in inter state movements. The states

with more/less than 2000 cases as on April 30, 2020 are shown by red/orange color. COVID-19 free states are
represented by green color.The complete dataset reflecting state wise population distribution is provided in Appendix
(C) in Table II. ∗Note that in the study we have not considered a few Indian states and Union Territories including
Lakshadweep, Dadra and Nagar Haveli, Daman and Diu, Andaman and Nicobar Islands and Puducherry on account
of their comparatively low population density. (b) Within a state, Schematic of SEIQRD Model with time delay.

between 2 and 14 days [12]. This incubation period is
very significant as it allows the health authorities to
introduce more adequate systems for separating people
suspected of carrying the virus, as a way of controlling
and preventing the spread of the pandemic [13]. The
inclusion of the latent period in compartment models
gives rise to COVID-19 time delay models in which the
dynamic behavior of the disease at time t depends on the
state of the system at a time prior to the delay period
[14, 15]. However, these studies assume homogeneity
in a large population and ignore numerical variations
originating from natural births, deaths, and human
migration networks across the regions. To the amount
that population and geographic heterogeneities play
crucial roles in the infection outbreak process, in order
to pick up the vital characteristics of the pandemic, it is
advantageous to include them in the time delay model.

Capturing the critical impact of the delay period of
COVID-19, this study presents a mathematical model
to analyze the spread of the novel coronavirus within a
heterogeneous population and geography. We propose
a more realistic time delay differential equations based
SEIQRD model by incorporating quarantined (Q)- con-
firmed and separated infected population as well as death
due to infection class (D) along with the optimal values
for model parameters, which reasonably fit the actual
infection cases of the pandemic. Spatial and stochastic

parameters like heterogeneous population, natural births,
deaths, and population migration networks within a geo-
graphical state (subpopulation in a country) boundaries
have been considered. Predominantly, in the presented
model, considering the spatial heterogeneity, the entire
population of the broad geographical region of interest
is divided into small sub regions- states, which inter-
act by means of migrations across the state boundar-
ies. Moreover, there are many inevitable questions re-
lated to the spread of the pandemic. How many people
are at risk of infection ? When will be the infection at
its peak and when will it end ? Are the existing control
measures sufficient to control the outbreak ? With the
aim to explore more about the transmission of COVID-
19 dynamics and to predict its potential tendency, the
COVID-19 pandemic is estimated for forward time. The
general points of interest including total infected cases,
infection peak, pandemic ending time are investigated.
The most vital parameter, basic reproduction number
R0 and its time-dependent generalization that decides if
an originating infectious disease can extend in a popu-
lation, has been estimated at both regional and its sub
regional levels. Additionally, the influence of the time
delay on the long term pandemic dynamics has been ex-
plored. Further, we use the model to examine the impact
of the most significant lockdown measure that has been
implemented to contain the pandemic spread.
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II. MATERIAL AND METHOD

A. Generalized SEIQRD model with time delay

To estimate the trajectories of COVID-19 transmis-
sion, in the proposed approach, a vast geographic region
with heterogeneous population distribution (country) is
partitioned into n smaller sub-regions (states). To take
into account the effect of both inter and intrastate infec-
tious population, migration for these states are explicitly
incorporated (Fig. 1(a)), using population migration ad-
jacency matrix λ (with order n×n). The diagonal coeffi-
cients of this matrix represent the migration rate within
a state while for any of its jth row, kth element indic-
ates the migration factor from the jth state to the kth

state. For any two states which share no boundaries mi-
gration rate is 0. Within a given state, the transmission
is handled according to a deterministic compartmental
model dividing the population into six epidemiological
classes S(t), E(t), I(t), Q(t), R(t), D(t) describing at time
t the respective proportion of the susceptible cases, ex-
posed cases (infected but not capable of transmitting in-
fection, in a latent period), infected cases (with the in-
fection spreading capacity and not yet separated from
those who are not infected), quarantined cases (confirmed
and separated infected), recovered cases and deaths ow-
ing to virus cases. Fig. 1(b) shows the movement within
the classes in model with time delay. Since the latent
period (τ) of the COVID-19 is as long as 2 to 14 days
[1], the exposed class (E) originates because of interac-
tions with the amount β within susceptible (S) and in-
fected class (I). Only those members of the exposed class
who survive the latency period move to the infected class
with a rate of σ. The infected population tested positive
for COVID-19 moves to quarantine class (Q) for further
treatment with parameter ε. After a course of quarantine
treatment, either a part of its population is discharged
with the rate δ from the hospital (R) or encounter death
due to underline diseases (D) with an estimate γ. An
appendix (A) provides complete details of our mathem-
atical model characterized by a group of ordinary differ-
ential equations depicting the outbreak at time t. The
primary model parameters, reasonably fitting the actual
infected cases till date, are described in Table I in the
appendix (C).

B. Data Source

The epidemic bulletin from the World Health Organ-
ization provides us with primary data on epidemiological
research. According to the reports by WHO, the incub-
ation period for COVID-19, which is the time between
exposure to the virus (becoming infected) and symptom
onset, is, on average 7 days; however, it can be up to 14
days [1]. The average mortality rate based on historical
data is about 3.4% [2, 11].

To check how optimal is the fitting between the actual

16 March 25 March 6 April 18 April 30 April
0

1

2

3

4
x 10

4

T
o
ta
l
in
fe
c
te
d
c
a
s
e
s
(I
+
Q
) India

Figure 2: (Color Online) Fitting of the actual available
total COVID-19 infected cases (I +Q) shown in pink
colored markers for India from 16 March to 30 April,
2020. Solid blue line represents the fitted curve with
parameters: intrastate population migration factor =

0.34, interstate population migration factor = 0,
β = 3.319, τ = 8.8, µ = 0.0412, δ = 0.22, σ = 1/7,
ε = 0.85, and γ = 0.034. The shaded region is the

bound for the fitted model with respect to τ ∈ [6, 12].

official data for the pandemic spread and the model based
obtained numerical approximations, we use the statist-
ical Kolmogorov-Smirnov (K-S) test [16, 17]. The K-S
goodness-of-fit test is performed on the data to ascertain
whether two data series are from the same continuous dis-
tribution or not. The null hypothesis implies that data
samples are from the same continuous distribution, and
the alternative hypothesis states the opposite. The stat-
istic h is 1 if the test rejects the null hypothesis at the
5% level of significance, and 0 otherwise. For the pro-
posed model with retained parameters, the results indic-
ate (with h = 0) that both the actual and the projected
number of cases are from the same continuous distribu-
tion, as desired, showing optimistic estimations.

III. RESULTS

In this section, we conduct a more detailed model ana-
lysis to depict outspread for the COVID-19 pandemic.
We obtained the numerical solution of the mathemat-
ical model discussed in the appendix (A) based on the
chosen set of parameters for India. Using suitably pre-
ferred parameters, the same detailing can be obtained for
any geographic region. Moving further, we aim at fore-
casting the infection cases along with the basic reproduc-
tion number. Moreover, we use the model to examine the
impact of the most significant lockdown measure that has
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Figure 3: (Color online) Total infected cases (I +Q) with respect to time (in days) in different scenarios (a) strict
lockdown (b) no lockdown (c) relaxed lockdown. In (a) blue line represents real data from 16 March to 30 April,
2020. The parameters are (intrastate population migration factor, interstate population migration factor, β) =
(0.34, 0, 3.319), (0.8, 0.6, 9), (0.34, 0.10, 0.5, 1) in (a-c) with common parameters τ = 8.8, µ = 0.0412, δ = 0.22,
σ = 1/7, ε = 0.85, and γ = 0.034. The shaded region in (a-b) is the bound for the fitted model with respect to

τ ∈ [6, 12]. In (b) the dates 11 March, 7 Sept are for year 2021, 14 Feb for 2022; in (c) 6 Jan belong to year 2021;
while remaining dates are from 2020.
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Figure 4: (Color online) Infectious cases (I) with respect to time (in days) in different cases (a) strict lockdown (b)
no lockdown (c) relaxed lockdown. The parameters are (intrastate population migration factor, interstate

population migration factor, β) = (0.34, 0, 3.319), (0.8, 0.6, 9), (0.34, 0.10, 0.5, 1) in (a-c) with common parameters
τ = 8.8, µ = 0.0412, δ = 0.22, σ = 1/7, ε = 0.85, and γ = 0.034. The shaded region in (a-b) is the bound for the

fitted model with respect to τ ∈ [6, 12]. In (b) the dates 10 Jan, 16 March, 6 Nov belong to year 2021 while
remaining dates are from current year 2020.

been implemented in India to contain the pandemic. It
is significant to mention that, at present, due to lack of
sufficient diagnostic test for COVID-19, the total number
of infected cases (I+Q) in any jth state, can be given by
(I(t)+Q(t))αNj . Here, Nj denotes the population of the
jth state, and α is considered approximately as 0.1 in the
role of the current testing events [18]. Clearly, the total
infected cases in a country with n states can be obtained
by the sum of corresponding data from the states.

At the onset, we used the proposed model to fit
actual available COVID-19 infection cases for India up

to April 30, 2020 (Fig. 2). Notably, since India went
into a strict lockdown that commenced on March 25,
2020, officially published data by Ministry of Health and
Family Welfare (MoHFW), Government of India from
March 16, 2020 to April 30, 2020 are marked in pink
spots and are considered as a direct validation source.
As expected, we can clearly see that the prediction of
the exact number of cases diagnosed in the past time by
the model is in reasonable agreement with the real value.
With an aim to estimate the potential tendency of the
COVID-19 pandemic and to examine the impact of the

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.06.20092858doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20092858


5

lockdown control measure we compared the infection
spread in the cases of current strict lockdown and no
lockdown in place as under:

Nationwide strict Lockdown: With parameters
in hand, we executed the model forward in time to
visualize the progress of the pandemic in the present
situation of strict lockdown. Fig. 3 shows the trajectory
for the total number of infected cases in India (Infectious
+ Quarantined) in the coming months. Fig. 3(a)
displays a five month forecast in the present scenario
of nationwide lockdown as a strategic move to control
the pandemic spread. With strict lockdown measures
currently in place, since all transport services: road,
air, and rail were suspended, we set the interstate
population migration index to null in the population
migration adjacency matrix λ, and the average contacts
between susceptible and infected are considered to be
proximately three. Based on these criteria, our model
featured a single infection peak on June 30, 2020 with
the total number of estimated infected to be around 5.2
million. The outbreak is expected to be nearing its end
by late August, 2020.

No Lockdown: To highlight the effectiveness of
the ongoing national lockdown, in comparison, Fig.
3(b) shows infection forecast if in case lockdown was
not implemented. In this situation, we allowed normal
migration within the states and across the boundaries by
setting non zero estimates for diagonal and off diagonal
entries in the migration adjacency matrix. However,
assuming that some form of control measure would
continue to be in the system to reduce social contact,
we choose average contacts between susceptible and
infected to be approximately nine [18]. As anticipated,
if interventions would not have been there, India might
have experienced 18 times worst the numbers with 40
million infections by mid of October, 2020 with a peak
of approximately 90 million cases around April, 2021.
There still would have been around 5, 00, 000 infectious
cases revealed at the end of August, 2021 as exhibited
by Fig. 4(b).

Proposed Scenario: In the third scenario, Fig.
3(c) panel exhibits a rundown for a proposed protocol
with a bit relaxed lockdown, allowing restricted move-
ments within and across the state boundaries beyond
May 3, 2020. This relaxation assumes gradual freedom
of movement for essential activities only, thereby en-
suring the upliftment of lockdown in stages to save the
economy. Moreover, considering self awareness within
the population, we invoked reduced average contact
parameter β between susceptible and infected to be
approximately one, through social distancing impacts
in this case. This alteration was required as a step to
break or lessen human to human transmission chain of
the virus. As likely, this consideration brings the total
number of infections to comparatively lower values and
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Figure 5: (Color Online) Basic reproduction number
with respect to time in presence of strict lockdown for

intrastate population migration factor = 0.34, interstate
population migration factor = 0, β = 3.319, τ = 8.8,
µ = 0.0412, δ = 0.22, σ = 1/7, ε = 0.85, and γ = 0.034.
The inset figure shows infectious cases as in Fig. 4(a)

with time for same parameters.

slows the spread of the disease to manageable levels.
Moreover, peak infections in the proposed scenario
decrease significantly in comparison to a strict lockdown
situation. This observation clearly highlights the fact
that social distancing is one of several changes that we
have to adapt strictly in the coming weeks. To ensure
the distances are well maintained at work or public
places, more mature ways of monitoring, including
artificial intelligence or machine learning software, can
be used. As depicted in Fig. 3(c), as a suggestion, if
social distancing is enforced broadly and is maintained
in the coming months, the number of new infections
would decrease to a significantly submissive level, and
the outbreak could eventually be controlled.

Additionally, in order to further evaluate the influence
of the delay on the long term disease dynamics, we per-
formed the sensitivity analysis on τ keeping other para-
meters fixed. We plotted the total infected cases and
infectious cases as a function of time for systematically
varied values of τ ∈ [6, 12] shown by shaded regions in
Fig. 2, Fig. 3 and Fig. 4. Apparently, a small change
in delay has no qualitative impact on the nature of the
spread, apart from shifting of the curve, thereby pre-
serving the basic shape of the infection pattern. Shifts
in infection peak with varied τ provide us with a pos-
sible domain window range for estimation of infection
cases owing to regional differences in India on account of
health, education, religion, and per capita income.

In order to capture R0 for heterogeneous population
distribution in India, we computed its value using the
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proposed model by the relation given by Eq.(7) in the
appendix (B). The estimated basic reproduction num-
ber for India in the present scenario of nationwide lock-
down turns out to be 1.18. Based on this value of R0, as
expected, from the transmission dynamics of the infec-
tion in a strick lockdown situation, shown in Fig. 4(a),
the number first increases before tending to zero, thereby
R0 = 1 acts as a clear edge between the disease widely
spreading or dying out. It is worth mentioning here that
in case of a relaxed lockdown with average contact rate
between susceptible and infected as one, R0 turns out
to be 0.8739, which is much desired for outspread levels
to reduce further to a manageable extent. This can be
clearly verified from Fig. 4(c), where the number of infec-
tious decreases monotonically to zero. Additionally, Fig.
5 shows the time-dependent effective basic reproductive

number Reff0 (t) corresponding to the infection traject-
ories in Fig. 4(a). As hoped for, this value is greater
than unity before peak infection and smaller than unity
beyond its peak, serving as a useful estimate of the local
rate of change of infectives at any time. It is noteworthy
to mention here that for any state of India, R0 can be
obtained based on the relation given by Eq.(8) in the
appendix (B).

The model discussed here, could be helpful to health
authorities for depicting the total number of infection
cases along with the peak infection. The estimated fit
values could be made better on a daily base as more data
become available.

IV. DISCUSSION

We have presented a generalized SEIQRD mathem-
atical model with a time delay to analyze the spread
of COVID-19 infection in a population. The proposed
model incorporates spatial and stochastic parameters like
heterogeneous population, natural births, deaths, and
population migration networks within geographical state
boundaries. Based on a detailed analysis of the available
public data, we projected COVID-19 pandemic peaks
and possible ending time and total infected cases in India.
Overall, the current pandemic situation with nationwide
lockdown is expected to end up by August, 2020, which is
a much better scenario than no lockdown in place. Fur-
thermore, we applied our mathematical model to inter-
pret the public data on the total number of infected cases
from March, 16, 2020 onwards in two sub regions of India,
including Maharastra and Uttar Pradesh, as discussed in
the appendix (D). With lockdown in place, the peak in-
fection witnessed a significant fall in comparison to the
situation if there would have been no lockdown indicat-
ing the potential benefit of lockdown in controlling the
outspread. Our model suggests a bit relaxed lockdown,
followed by an extended period of strict social distancing
as one of the most effective control measures to manage
COVID-19 spread in days to come.

Further, capturing the impact of the delay on the pan-

demic transmission, we carried the sensitivity analysis
on time delay by varying its values systematically. No
qualitative changes have been observed in the infection
pattern apart from shifting of the curve resulting in pos-
sible domain range for estimated infection.

Owing to significant spatial variations affecting the ba-
sic reproduction number R0, we included spatial hetero-
geneity by dividing the entire population into smaller
sub regions. Based on the technique, R0 and its time-
dependent generalization has been estimated at both re-
gional and sub regional levels. The approach helped us
to capture sensible COVID-19 infection dynamics over
local and global levels.

The proposed model is an attempt to provide deep
insight to analyze the dynamics of COVID-19, helping
the involved agencies to arrange and manage crucial re-
sources and design its control strategies. Additionally,
the proposed work necessarily made some assumptions
when framing the model. We ignore the impact of in-
fection spread due to exposed class [1]. Moreover, the
work is based on acquired data for a limited duration of
time to fit and estimate the spread of COVID-19. With
the release of more epidemic data for India, owing to the
regional differences on account of health, education, re-
ligion, and per capita income, the key parameters may
undergo momentous changes influencing the spread of
pandemic among the masses.
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VI. APPENDIX

A. Epidemiological Model:

We consider a large geographic region with total pop-
ulation N , partitioned into n states labeled by j =
1, 2, ...n. The population within the jth state is parti-
tioned into susceptibles (Sj), exposures (Ej), infectives
(Ij), quarantines (Qj), recoveries (Rj) and deaths (Dj),
where Nj=Sj+Ej+Ij+Qj+Rj+Dj and N =

∑n
j=1Nj .

The proposed time delay SEIQRD system that captures
population and geographic heterogeneities is given by:

dSj
dt

= −Sj(t)
n∑
k=1

βjλj,k
Nk
Nj

Ik(t) + µ(1− Sj(t)), (1)
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dEj
dt

= Sj(t)
n∑
k=1

βjλj,k
Nk
Nj

Ik(t)

− e−µτSj(t− τ)
n∑
k=1

βjλj,k
Nk
Nj

Ik(t− τ)

− σEj(t)− µEj(t), (2)

dIj
dt

= σEj(t) + e−µτSj(t− τ)
n∑
k=1

βjλj,k
Nk
Nj

Ik(t− τ)

− εIj(t)− µIj(t), (3)

dQj
dt

= εIj(t)− δQj(t)− γQj(t)− µQj(t), (4)

dRj
dt

= δQj(t)− µRj(t), (5)

dDj

dt
= γQj(t). (6)

Here βj > 0 is the average rate of contact between sus-
ceptible and infected (people exposed at each time step
by infected people) in jth state; λj,k ∈ [0, 1] denotes the
population migration factor for the states j and k. The
parameter σ ∈ [0, 1] stands for the portion of exposed
individuals, which become infectious per time step and
ε ∈ [0, 1] is the quarantine rate from the infection per
time step. We call δ ∈ [0, 1] the proportion of quarant-
ined people who are cured per time step and γ ∈ [0, 1] is
the fatality rate due to COVID-19. The parameter τ > 0
is the delay time. Further, without affecting the behavior
and general aspects of infection, it is assumed that the
population in the jth state is born susceptible with the
natural birth rate µ > 0 per one individual per time step
and the total population remains constant since the nat-
ural death rate is considered to be same as the natural
birth rate µ.

The first term on the R.H.S. of Eq.(1) represents the
fragment of the susceptible individual of jth state who
have been exposed to the disease by the infected individu-
als of the same state and by the infected individuals of the
other states, who have moved to the former main state,
taking into account the average contact rate; migration
coefficients for the states; and the relation between the
populations of the states.

Those who were exposed to the infection at time t− τ
and survive the latent period [t − τ, t] with probabil-
ity e−µτ moves to the infected class at time t [19, 20].
Moreover, the proportion removed by disease independ-
ent mortality for each compartment is given by the last
term on R.H.S of each equation. From Eqs.(1) - (6), we
get the normality condition Sj(t)+Ej(t)+Ij(t)+Qj(t)+
Rj(t) +Dj(t) = 1 , for every state j at any time t.

B. Computation of Reproductive number:

Following the approaches similar to those taken in
[13, 21, 22] with respect to system in Eqs.(1) - (6), it
can be verified that the system always has the disease-
free equilibrium P0 = (S0

1 , 0, 0, 0, 0, 0, ..., S
0
n, 0, 0, 0, 0, 0)

where S0
j = 1 is the equilibrium in the jth state in the

absence of infection, that is I1 = I2 = ... = In = 0. Fur-
ther, let R0 = ρ(M0) represents the spectral radius of the
matrix M0 with entries m0(j, k) give by

m0(j, k) =
(βjλj,k

Nk

Nj
)(σ + e−µτµ)

(µ+ σ)(µ+ ε)
, (7)

where 1 ≤ k, j ≤ n, then the parameter R0 is referred
to as the basic reproduction number of the considered
geographic region. This number is intended to be an in-
dicator of the transmissibility of COVID-19, the outbreak
is expected to continue if R0 > 1 and to end if R0 < 1.
Eqs.(7) shows that the basic reproductive number signi-
ficantly depends on the average rate of contact between
susceptible and infected, population migration factor
for the states, state population and time delay. Also,
the time-dependent effective basic reproductive number,

Reff0 (t), is taken to be Reff0 (t) = 1
δt(µ+ε) log

( I(t+δt)
I(t)

)
.

Further, for the jth state, the basic reproduction number
is given by

Rj =
(βjλj,j)(σ + e−µτµ)

(µ+ σ)(µ+ ε)
. (8)

C. Model Parameters:

The first case of the 2019 − 20 coronavirus pandemic
in India was reported on January 30, 2020. We gathered
the dataset for COVID-19 in India from the Ministry of
Health and Family Welfare (MoHFW), Government of
India from March 16, 2020 to April 30, 2020 including
the cumulative number of infected cases, the cumulative
number of people in recovery and the cumulative number
of deaths due to virus [3]. Simultaneously, we collected
the state wise total population data for India (projected
2019) from Unique Identification Authority of India
(UIDAI), Government of India and migration data to
capture the movement of population in different parts of
the country from Ministry of Home Affairs, Government
of India [23, 24]. State wise population for India is
summarized in Table II in order of states as appeared in
the map of India in Fig. 1. Therefore, the preliminary
estimated parameters that reflect the primary situation
of the pandemic in India at the present stage can be
summarized as:
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Figure 6: (Color Online) Panels (a) and (c) show fitting of the actual available total COVID-19 infected cases
(yellow marker) (I +Q) for Maharastra and Uttar Pradesh, respectively from 16 March to 30 April, 2020 by the

proposed model results (blue). Panels (b) and (d) show total infected cases (I +Q) in Maharastra, and Uttar
Pradesh, respectively with respect to time (in days) in case of strict (green) and no lockdown (red). Blue marker

represents the real data. The parameters for (a) and green curve in (b) are: (intrastate population migration factor,
interstate population migration factor, β, τ) = (0.41, 0, 3.4, 7) while in case of no lockdown (red) the chosen values
are (0.8, 0.6, 9, 7). In (c) and green curve in (d) these values are (0.393, 0, 3, 8.2) while in case of no lockdown (red)
the chosen values are (0.8, 0.6, 9, 8.2). µ = 0.0412, δ = 0.22, σ = 1/7, ε = 0.85, and γ = 0.034 are same in (a-d). In

(b) and (d), 29 July, and 5 April belong to 2021, and 2022, respectively.

D. Impact on Indian States:

We apply our pre-described mathematical model to in-
terpret the public data on the total number of infected
cases from March 16, 2020 onwards in sub regions of In-
dia, which are published daily by Ministry of Health and
Family Welfare (MoHFW), Government of India. Our
analysis includes two different regions (states), that is,
Maharastra and Uttar Pradesh. It is significant to men-
tion here that we have chosen Maharashtra since it has
the highest number of infected cases as of April 30, 2020.
Further, to analyze how accurately our model incorpor-
ates population heterogeneity, we have chosen Uttar Pra-
desh since it is the most populated state of India. In Fig.
6(a) and Fig. 6(c), the estimated number of total infec-

ted cases is plotted for both the states by solid lines in
case of nationwide strict lockdown scenario and actual
COVID-19 infection data from March 16, 2020 to April
30, 2020 are marked by circles. Here also the reason-
able agreement is observed between actual and forecas-
ted data. We then run the proposed model for chosen
parameters for the next 24 months and performed de-
tailed analysis on similar lines for nationwide strict lock-
down and no lockdown scenario, as discussed in Section
III in Fig. 6(b) and Fig. 6(d). From the numerically
obtained outcomes in forward time, with the implement-
ation of lockdown, the peak infection witnessed a signi-
ficant fall in comparison to the situation if there would
have been no lockdown indicating the potential benefit
of lockdown in controlling the outspread. Further, as
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Table I: Quantification of parameters value used in the
proposed model.

Parameter Value Source
(Ref.)

σ 1/7 [1, 2]

δ 0.22 [18]

γ 0.034 [1, 2]

τ 3-14 [1, 2]

β 1-13 [18]

Entries of λ 0.1 − 0.8 [24]

suggested, the situation improves much better if social
distancing is enforced strictly along with relaxed lock-
down. Using suitably selected parameters, the pandemic
transmission patterns can be obtained for any other state
of India on similar lines.
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Table II: State wise population for India (projected
2019) from Unique Identification Authority of India

(UIDAI), Government of India [23], in order of states as
appeared in map of India in Fig. 1.

Sr. No. State Population

1 Jammu and Kashmir 13468313

2 Ladakh 279924

3 Punjab 29875481

4 Haryana 27793351

5 Uttarakhand 11140566

6 Delhi 18498192

7 Rajasthan 79584255

8 Uttar Pradesh 233378519

9 Himachal Pradesh 7384022

10 Chandigarh 1142479

11 Madhya Pradesh 83849671

12 Bihar 122256981

13 Maharashtra 121924973

14 Karnataka 66834193

15 Telangana 38919054

16 Andhra Pradesh 53390841

17 Goa 1564349

18 Tamil Nadu 77177540

19 Kerala 35461849

20 Chattisgarh 28989789

21 Odisha 45861035

22 West Bengal 98662146

23 Gujrat 64801901

24 Assam 35080827

25 Meghalaya 3320226

26 Jharkhand 37933898

27 Sikkim 680721

28 Arunachal Pradesh 1548776

29 Nagaland 2218634

30 Manipur 3048861

31 Mizoram 1222134

32 Tripura 4112223

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.06.20092858doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20092858

	Spatial Network based model forecasting transmission and control of COVID-19
	Abstract
	Introduction
	Material and Method
	Generalized SEIQRD model with time delay
	Data Source

	Results
	Discussion
	Acknowledgment
	Appendix
	Epidemiological Model:
	Computation of Reproductive number:
	Model Parameters:
	Impact on Indian States:

	References


