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Abstract

Background. Current management efforts of COVID-19 include: early diagnosis, use of antivi-
rals and immune modulation. After the initial viral phase of the illness, identification of the patients
developing cytokine storm syndrome is critical. Treatment of this hyper-inflammation in these patients
using existing, approved therapies with proven safety profiles could address the immediate need to
reduce the rising mortality.

Methods. Using data from an A549 cell line, primary human bronchial epithelial (NBHE), as well
as from COVID-19-infected lung, we compare the changes in the gene expression, pathways and
mechanisms between SARS-CoV2, influenza A, and respiratory syncytial virus.

Results. We identified FDA-approved drugs that could be repurposed to help COVID-19 patients
with severe symptoms related to hyper-inflammation. An important finding is that drugs in the same
class will not achieve similar effects. For instance methylprednisolone and prednisolone were pre-
dicted to be effective in reverting many of the changes triggered by COVID-19, while other closely
related steroids, such as prednisone or dexamethasone, were not. An independent clinical study
evaluated 213 subjects, 81 (38%) and 132 (62%) in pre-and post-methylprednisolone groups, respec-
tively. The composite end point was composed of escalation to intensive care units, need for me-
chanical ventilation, and death. The composite endpoint occurred at a significantly lower rate in post-
methylprednisolone group compared to pre-methylprednisolone group (34.9% vs. 54.3%, p=0.005).

Conclusion. Clinical results confirmed the efficacy of the in silico prediction that indicated methyl-
prednisolone could improve outcomes in severe COVID-19. These findings are important for any
future pandemic regardless of the virus.

1 Introduction

Most current efforts related to COVID-19 span a number of areas as follows: i) antivirals, ii) vaccine de-
velopment, iii) diagnostic tests, iv) patient-supporting interventions. Without reducing the significance
and impact of any of the areas above, there is an important aspect that has not been elucidated: the
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identification and treatment of patients developing critical conditions and risk of mortality. Mehta et al.
state in a very recent Lancet paper [12]: “Accumulating evidence suggests that a subgroup of patients
with severe COVID-19 might have a cytokine storm syndrome.” This cytokine syndrome correlates with
high mortality. We propose that identification and appropriate management of the patients developing
cytokine storm syndrome is critical for successful outcomes. Treatment of hyper-inflammation in these
patients using existing, approved therapies with proven safety profiles could address the immediate
need to reduce the rising mortality.

Unlike other efforts related to COVID-19, the work presented here focuses on: i) understanding
immunological response by lung epithelial cells to COVID-19 infection and ii) identifying drugs
that would mitigate or alleviate some of the devastating over-reactions of the host’s immune
system (e.g. cytokine storm) that lead to poor outcomes, including death.

A SARS-CoV2-specific vaccine or a SARS-CoV2-specific antiviral will reduce the impact of this
particular virus in future seasons. However, better understanding the acute reaction of the immune
systems and having more tools to mitigate and/or avoid a cytokine storm will be important for any
future pandemic regardless of the virus.

2 Results

We used available transcriptomic data to compare A549 lung cell line infected with SARS-CoV-2 vs.
mock infection (henceforth A549CoV2vsMock), A549 infected with seasonal influenza A virus vs mock
infection (A549IAVvsMock), and A549 infected with human respiratory syncytial virus vs mock in-
fection (A549RSVvsMock). We also compared the transcriptional response in both primary human
bronchial epithelial (NHBE) cells between cells infected with SARS-CoV2 and mock infection (NHBE-
CoV2vsMock). Finally, we compared the transcriptional response in COVID-19 lung tissues vs. healthy
lung tissue (COVID19vsHealthy). These data were collected at Mount Sinai and are available in GEO
as the GSE147507 data set [4].

Disrupted genes and biological processes. Fig. S1 shows a comparison of the affected bi-
ological processes in COVID19vsHealthy, NHBECoV2vsMock, A549CoV2vsMock, A549IAVvsMock,
and A549RSVvsMock. The biological processes (BPs) are shown ordered by their significance in the
COVID19vsHealthy. In spite of the larger number of DEGs in the COVID-19-infected lung (815), there
are only 7 significant biological processes involved, which may indicate a more coordinated, systemic
response. In contrast, the changes in the NHBE cells are characterized by fewer DEGs (only 223)
but span more uncoordinated biological processes. This is illustrated in Fig. S2 which shows the BPs
ordered in the order of significance in the NHBECoV2vsMock. Fig. S3 shows the Venn diagram rep-
resenting the differentially expressed genes (DEGs) in the two contrasts. A comparison of the genes
DE in the five contrasts is shown in Fig. S4.

Putative mechanisms of disease. We performed an analysis aiming to identify putative mecha-
nisms of disease. As part of this analysis we identified four genes that were predicted to be activated
upstream regulators based on the observed changes in their downstream genes. These were IRF9,
STAT2, IFNG and IFNB1. These suggest two different potential mechanisms. The first appears to be
triggered by STAT2 and IRF9, which have 16 common target genes that are also all significantly up-
regulated (IFI6, IFIT1, IFIT2, IFIT3, IFITM1, IFITM3, OAS1, OAS3, OAS2, MX1, MX2, RSAD2, OASL,
XAF1, IRF2, IRF7). This mechanism is also known to be involved in the response to influenza A (see
influenza A pathway in Fig. S5).

The second putative mechanism involves the interferon beta and gamma, which are targeting 5
common downstream genes: CXCL10, IDO1, DOX58, STAT1, which are up-regulated, and HMOX2
which is down-regulated. Interferon regulatory factors (IRFs) are subdivided into the interferonic IRFs
(IRF2-3-7 and 9), the stress responsive IRFs (IRF1 and 5), the hematopoietic IRFs (IRF4 and 8) and
morphogenic IRF-6. IRF9 is a regulator of type I IFN signaling and is known to interact with STAT2 [9]
and STAT1 to form the heterotrimeric transcription factor complex (ISGF3) that binds to interferon-
stimulated response elements (ISREs) to induce the expression of Interferon stimulated genes (ISG).
During viral infections, ISGs perform two key functions: 1) directly limit viral replication by shutting
down protein synthesis and triggering apoptosis; 2) ISGs activate key components of the innate and
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Figure 1: The top three drugs proposed for repurposing. The table shows both p-values corrected with Bonferroni, as well as the number of DE
genes that would be reverted by each drug. Prednisolone and methylprednisolone are steroids currently used to modulate the immune response
in rheumatoid arthritis. The column for A549IAVvsMock is empty because there are no DE genes targeted by these drugs in this contrast.

adaptive immune system, including antigen presentation and production of cytokines. The genes
triggered by the STAT2 and IRF9 pathway include genes responsible for limiting viral replication (IFI6,
IFIT1, IFIT2, IFIT3, IFITM1, IFITM3, OAS1, OAS3, OAS2, MX1, MX2, RSAD2, OASL) and inducers of
apoptosis (XAF1, IRF2, IRF7). CXCL10, IDO1, DOX58, and STAT1 are genes associated with immune
recruitment and immune regulation

Interestingly, STAT2 and IRF9 together are also identified as activated upstream regulators due to
15 downstream targets even in the NHBECoV2vsMock (see Fig. S6). However, in the NHBE cells,
the interferon activators were replaced by an interleukin-based mechanism centered around IL1B, IL6,
IL17A, adiponectin (ADIPOQ) and tumor necrosis factor (TNF).

We also looked at genes that are known to modulate or inhibit the inflammatory response such as
IL1RN IL10, and IL13. In the COVID19vsHealthy, IL1RN was up 6.2 fold (FDR-corrected p = 10−6),
IL10 was up 1.5 fold (FDR-corrected p = 0.55), while the measurement for IL13 was not available. In
the NHBECoV2vsMock, IL1RN was up only 0.331 fold (FRD-corrected p = 0.035), while measurements
for IL10 an IL13 were not available. However, in this contrast, 14 out 15 DE genes immediately
downstream of IL10 were up-regulated which strongly supports the hypothesis that IL10 is inhibited
(FDR-corrected p = 5.17−9).

Impacted pathways. The significantly impacted pathways are shown in Fig. S7 ordered by their
significance in COVID19vsHealthy. The p-values represent a combination of enrichment and pertur-
bation p-values (see [8] for details) corrected with FDR. Fig. S8 shows the signaling pathways in all 5
experiments, ordered by their significance in NHBECoV2vsMock.

Fig. S9 shows the most impacted pathway, the Cytokine-cytokine interactions. Fig. S10 shows the
Chemokine signaling pathway. On this pathway, the impact is due both to the large number of DE
genes (26 out of 130), as well as to the clear signal propagation from the chemokines outside the cell
(11 chemokines up-regulated), through the chemokine receptor and via the JAK and STAT mechanism.
Fig. S12 shows another view of the mechanism involving the genes on this pathway and all their known
interactions.

Proposed drugs. Once we identified the main regulatory pathways potentially associated with
hyper-inflammation we evaluated in silico FDA-approved drugs that could show activity on multiple
components of inflammation and consequently could be used for the management of severe COVID-
19 cases. We considered the number of DE genes that would be reverted by each drug, as well
as calculated a Bonferroni-corrected p-value indicating the suitability of each drug for repurposing in
COVID-19 based on two different approaches (see methods). We looked for drugs that have both
small p-values as well as revert a larger number of DE genes. The top three drugs drug identified
by our analysis are shown in Fig. 1. Methylprednisolone is the drug that was identified as the most
likely to work. This drug targets 27 genes that are found to be DE in COVID19vsHealthy. Out of
these 27 genes, the drug would revert the changes in 25 of them. The drug also had an extremely
significant p-value (p = 5.72−10) even after a Bonferroni correction which is the most stringent correction
available. Methylprednisolone also reverted 22 out of 22 genes found to be DE in NHBECoV2vsMock,
and 25 out of 26 genes found to be DE in A549CoV2vsMock. Fig. 2 shows the mechanism through
methylprednisolone acts on the DE genes in COVID19vsHealthy, and how these genes influence the
BPs found to be significantly impacted.

Clinical validation. An independent pre-treatment, post-treatment experiment was performed in a
multi-center health center in Michigan between 12–27 March, 2020 in hospitalized patients with mod-
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Figure 2: The mechanism through which methylprednisolone act on the genes measured to be DE and how these genes influence the biological
processes found to be significantly impacted in the COVID19vsHealthy. Note how most of these genes are implicated in one or more of the
dys-regulated biological processes.
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Figure 3: Survival curves comparing the evolution of patients treated with the standard of care (pre-protocol) and with methylprednisolone.

erate to severe COVID-19. The protocol included an early, short-course of methylprednisolone: .5 to 1
mg/kg/day divided in 2 intravenous doses for 3 days. The study used a quasi-experimental design with
213 eligible subjects, 81 (38%) and 132 (62%) in pre-and post-corticosteroid groups, respectively. The
primary end point was composed of escalation to ICU, need for mechanical ventilation, and death. The
composite endpoint occurred at a significantly lower rate in post-methylprednisolone group compared
to pre-methylprednisolone group (34.9% vs. 54.3%, p=0.005). The treatment effect was observed for
each individual component of the composite endpoint. Significant reduction in median hospital length
of stay was observed in the post-methylprednisolone group (8 vs. 5 days, p < 0.001). There was also
an independent reduction in the composite endpoint at 14-days controlling for other factors (OR=0.45:
95% CI [0.25-0.81]). The survival curves of the pre-protocol and methylprednisolone groups are shown
in Fig. 3. The clinical characteristics of the patients are shown in Table S2.

3 Discussion

Two recent papers stress the importance of a clinical phenotyping that would distinguish the phase
where the viral pathogenicity is dominant versus when the host inflammatory response overtakes the
pathology [3,14]. A strong argument in favor of also targeting the host response is offered by the data
on influenza. Even though influenza patients receive optimal anti-viral therapy, approximately 25% of
the critically ill influenza patients still die [3,11]. This suggests that anti-virals alone will not be sufficient
for COVID-19 either, and the host response to the virus still needs to be taken into consideration.

However, approaches aiming at modulating the immune response face some concerns. In partic-
ular, it may seem counter-intuitive to try to diminish the immune response in a patient whose immune
system is fighting against a virus. Modulating the immune system is likely unnecessary and counter-
productive for patients whose immune system is doing a good job at resolving the infection, while it
could potentially be life-saving for those whose inflammatory response has become dysregulated. If
a patient has developed severe respiratory symptoms and is hypoxic, the host response that lead to
ARDS, sepsis, and organ failure has already been initiated [12]. At this point, the focus should shift to
supporting the patient’s systems and preventing collapse triggered by hyper-inflammation [3].

An important finding is that drugs in the same class will not have similar effects. For instance,
methylprednisolone and prednisolone were predicted to be effective in reverting many of the changes
triggered by COVID-19, while other closely-related steroids such as prednisone or dexamethasone
were not. Methylprednisolone and prednisolone are steroids currently used to modulate the immune
response in rheumatoid arthritis. The mechanisms through which these drugs would revert the genes
dysregulated in COVID-19 are shown in 4. We also looked at other steroids such as prednisone,
dexamethasone, and hydrocortisone. However, prednisone was found to target only 3 genes that

5

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.06.20076687doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20076687


Figure 4: The putative mechanisms through which Methylprednisolone (left panel) and Prednisolone (right panel) would revert the changes
triggered by COVID-19 in the lung tissue.

are DE in the COVID19vsHealthy and only 2 of the genes that are DE in the NHBECoV2vsMock. From
those, prednisone would revert only 1 of the 3 DE genes in the COVID19vsHealthy and 0 out of the
2 in the NHBECoV2vsMock. Both yielded insignificant p-values (p = 1 after Bonferroni) suggesting
that prednisone is not expected to be an effective treatment. Prednisolone, dexamethasone, and hy-
drocortisone belong to the same family of corticosteroidal anti-inflammatory agents and there is also
a structural similarity between them (see Fig. S14). In spite of this structural similarity, hydrocortisone
would only revert 8 out of 10 genes found to be DE in the COVID19vsHealthy (p = 0.57 after FDR)
and 5 out of 8 genes found to be DE in the NHBECoV2vsMock (p = 0.038 after FDR, p = 1 after
Bonferroni). Dexamethasone was found to revert 33 out of 69 of the genes found to be DE in the
COVID19vsHealthy (p = 1 after FDR correction) and 27 out of 45 genes in the NHBECoV2vsMock
(p = 0.002 after FDR correction, p = 0.066 after Bonferroni correction). In short, neither dexametha-
sone nor hydrocortisone appears to be effective in the COVID-19 lung tissue, although hydrocortisone
appears to be marginally effective in the NHBE.

The host inflammatory response in the lungs may lead to acute lung injury and acute respiratory
distress syndrome (ARDS). This constitutes the main rationale for potentially using corticosteroids.
However, corticosteroids may have adverse effects, an increased risk of secondary infection and de-
layed viral clearance. A recent article in Lancet reports that clinical evidence does not support cor-
ticosteroid treatment for COVID-19 [13]. However, this report looks at steroids as an entire class of
drugs. A recent retrospective study of 201 patients with COVID-19 in China found that treatment with
methylprednisolone for those who developed ARDS was associated effective in decreasing the risk
of death. Among patients with ARDS, treatment with methylprednisolone decreased the risk of death
(HR, 0.38; 95% CI, 0.20-0.72). (23/50 [46%] with methylprednisolone vs 21/34 [17]. Both reports are
entirely consistent with our findings: corticosteroids in general are NOT expected to help as a class of
drugs. However, methylprednisolone and prednisolone are targeting a large number of the genes
affected by COVID-19 and are expected to work significantly better than other corticosteroids.

We also looked at other drugs that have already been proposed as repurposing candidates for
COVID-19 including: chloroquine, hydroxychloroquine, erythromycin, prednisone, dexametha-
sone, ibuprofen, ritonavir, aspirin, and clopidogrel. None of these was predicted to be effective
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(see Supplementary Materials).

4 Methods

The primary endpoint included: i) escalation to ICU, ii) progression to respiratory failure requiring
mechanical ventilation, or iii) in-hospital all-cause mortality. Patients admitted directly in ICU were
monitored for ii and iii above. Patients requiring mechanical ventilation upon admission were evaluated
for mortality only.

The methylprednisolone protocol. Moderate COVID-19 was treated with hydroxychloroquine 400
mg twice daily for 2 doses on day 1, followed by 200 mg twice daily on days 2-5. Patients with moderate
COVID-19 who required 4 liters or more of oxygen per minute on admission, or who had escalating
oxygen requirements from baseline, were recommended to receive IV methylprednisolone 0.5 to 1
mg/kg/day in 2 divided doses for 3 days. Patients who required ICU admission were recommended
to receive the above regimen of hydroxychloroquine and IV methylprednisolone 0.5 to 1 mg/kg/day
in 2 divided doses for 3 to 7 days. ICU patients were also evaluated for tocilizumab on a case-by-
case basis. Oral switch was performed to prednisone at a ratio of 1 to 1 when determined clinically
appropriate by the primary medical team.

Statistical Analysis of clinical data. Continuous variables were reported as median and in-
terquartile range (IQR) and compared using the Mann-Whitney test or t-test, as appropriate. Cate-
gorical data was reported as number and percentage (no., %) and compared using the chi-squared
test or Fisher‘s exact test, as appropriate. No imputation was made for missing data points. The sam-
ple included all eligible consecutive hospitalized patients during the study period. More details about
the statistical analysis and characteristics of the patient population are included in the Supplementary
Materials.

Pathway analysis method. iPathwayGuide (www.advaitabio.com) assesses pathways using the
Impact Analysis method [8, 10, 15]. The impact analysis uses two types of evidence: i) the over-
representation of differentially expressed (DE) genes in a given pathway and ii) the perturbation of that
pathway computed by propagating the measured expression changes across the pathway topology.
These aspects are captured by two independent probability values, pORA and pAcc, that are then com-
bined in a unique pathway-specific p-value. More details are provided in the Supplementary Materials
and elsewhere [8,16].

Gene Ontology (GO) analysis method. For each GO term [2, 5], the number of DE genes an-
notated to the term is compared to the number of DE genes expected just by chance. The p-value
is computed using the hypergeometric distribution [6, 7] and corrected with FDR and Bonferroni. We
also used in intelligent prunning approach inspired by the elim and weight pruning methods [1]. The
algorithm constructs a custom cut through the GO hierarchy by starting with the most specific nodes
and calculating their p-value with all genes assigned directly to each such node. If a node is signifi-
cant, it is reported as such. If the node is not significant, the genes associated to the given node are
propagated to its direct ancestors and a p-value is calculated for each of those. See Supplementary
Materials for full details.

The prediction of upstream Chemicals, Drugs, Toxicants (CDTs) is based on two types of
information: i) the enrichment of DE genes from the experiment and ii) a network of interactions from
the Advaita Knowledge Base (AKB v1910, www.advaitabio.com). The network is a directed graph in
which the source node represents either a chemical substance or compound, a drug, or a toxicant
(CDT). We focused our work on FDA-approved drugs that could be repurposed. The edges represent
known increase or decrease expression effects that these CDTs have on various genes. The analysis
considers the hypothesis that a drug would revert the measured gene expression changes . Full details
are included in Supplementary Materials.
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5 Conclusions

Clinical results confirmed the efficacy of the in silico prediction that indicated methylprednisolone could
improve outcomes in severe COVID-19. These findings are important for any future pandemic regard-
less of the virus.
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