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Abstract 
 
Many governments have responded to the ongoing COVID-19 pandemic by imposing social 
policies that restrict interactions outside of the home, resulting in a large fraction of the 
workforce either working from home or not working. However, to maintain essential services, a 
substantial number of workers are not subject to these limitations, and maintain many of their 
pre-intervention interactions. To explore how interactions among such “essential” workers, and 
between essential workers and the rest of the population, impact disease risk and the 
effectiveness of pandemic control, we evaluated several models of essential worker interactions 
within a standard epidemiology framework. The models were designed to correspond to key 
characteristics of, respectively, cashiers, factory employees, and healthcare workers. We find in 
all three models that essential workers are at substantially elevated risk of infection compared to 
the rest of the population, and that increasing the numbers of essential workers necessitates the 
imposition of more stringent interaction controls on the rest of the population in order to manage 
the pandemic. However, different archetypes of essential workers differ in both their individual 
probability of infection and impact on the broader pandemic, highlighting the need to understand 
and target for intervention the specific risks faced by different groups of essential workers. 
 
Introduction 
 
In response to the ongoing COVID-19 pandemic, governments across the world have imposed 
measures to reduce the transmission of the virus. These measures often involve some form of 
“shelter in place” (SIP) in which the majority of the population remains in their homes except for 
essential activities like grocery shopping. The motivation is to either locally eradicate the 
infection, or to reduce its spread enough to decrease peak demand on healthcare and gain time 
to develop testing capacity, therapies and a vaccine. SIP orders have been guided by extensive 
modeling of the COVID-19 pandemic to predict its future and understand its impact on the 
population under various scenarios, including different stringencies of SIP (e.g.,​[1–3]​).  
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By necessity, SIP involves exceptions for “essential workers”, typically including those involved 
in the delivery of health care, the production and distribution of food, emergency services and 
defense, public works and utilities, communications and information technology, and logistics 
and delivery. The fraction of workers designated as essential varies geographically due to 
different regulations and the makeup of the local economy ​[4]​. Within the United States, 
industries designated as essential are estimated to employ approximately 40 percent of the 
workforce ​[4]​. In New York City, essential workers were estimated to comprise a quarter of the 
workforce ​[5]​, or over 1M people, of whom over half are employed in healthcare and 15 percent 
in grocery, convenience and drug stores. Estimates in California are that one in eight ​[6] 
individuals is an essential worker.  
 
Here we extend the widely-employed “SEIR” epidemiological model ​[1–3]​ to evaluate the 
individual infection risk faced by different types of essential workers, and the impact that 
essential workers have on pandemic control.  
 
Modeling Essential Workers 
 
We began by implementing a standard SEIR model to describe the dynamics of COVID-19 in a 
population (Figure 1A). Following recent work ​[1–3]​, we included three types of infected 
individuals, corresponding to those destined to a) show no symptoms, b) to have symptoms but 
not require hospitalization, and c) to require hospitalization. We also included three types of 
hospitalized individuals corresponding to a) those who will recover without critical care, b) those 
who will require critical care but will recover, and c) those who will die after receiving critical 
care. We make the standard modeling assumption that recovered individuals cannot be 
reinfected.  
 
We parameterized the differential equations that describe the rate at which individuals transition 
between model states based on the epidemiological literature for COVID-19 (see Table 1), and 
chose the lockdown date and (​the number of new infections expected to arise from anR0  
infected individual in a fully susceptible population) ​based roughly on New York City data (see 
Modeling Details). Although it was not our goal to model the outbreak in any particular region, 
we verified that the parameters we used match observed pandemic dynamics in three US cities 
(see the computational notebook).  
 
We next created two parallel instances of the base SEIR model, one for essential workers and 
one for everyone else, and connected them via terms that describe the probability that an 
infected individual in one subpopulation infects a susceptible individual in the other (Figure 
1B-D). In what follows we refer to these two subpopulations as essential workers (EWs) and 
non-essential-workers (nEWs), the latter category encompassing all other workers and people 
not in the labor force. The models for EWs and nEWs have identical structure and parameters, 
except for the within and between subpopulation transmission rates. 
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For our analysis, the critical characteristic of EWs that distinguishes them from nEWs is that 
they maintain a substantial fraction of their work-associated interactions after the institution of 
SIP. However, there is great diversity among EWs in their interaction profiles. For example, 
factory, warehouse and agricultural workers retain interactions with the other employees at their 
place of work, but have their interactions with the remainder of the population reduced by SIP. 
Others, such as cashiers, transportation workers, and police have frequent interactions with 
many people who are nEWs. Hospital workers, in turn, interact not only among themselves, but 
also with the people hospitalized with the virus.  
 
We therefore generated three separate EW-containing SEIR models, one for each of these 
archetypal EWs. These models differ in how an individual’s interactions are distributed within 
and between subgroups, in how SIP affects these interactions, and, for healthcare workers, in 
which individuals are the source of new infections.  
 
The three models have two shared parameters: , the fraction of the population that are EWs,f  
and , the remaining proportion of individual to individual disease transmission after s​ocialθ  
distancing (  is no social distancing ​;  is complete isolation for everyone). ​Without EWsθ = 1 θ = 0  
( ), the pandemic is suppressed when  ​(the post-SIP number of new infectionsf = 0 θR0  
expected to arise from an infected individual in a fully susceptible population) is less than one.  
 
Mathematical details and full parameter choices for each model are described in the Modeling 
Details section, and implementation and the results of simulations with these models are 
available in the included computational notebook.  
 
Model 1: ​Public-facing essential workers (Figure 1B) 
 
We began by considering workers such as cashiers and other shopworkers, transportation 
workers and public safety personnel, whose work involves extensive interactions with nEWs. 
The critical feature of our model of such “public-facing” EWs is that only interactions among 
nEWs are reduced by SIP.  
 
Model 2: ​Non public-facing essential workers (Figure 1C) 
 
Unlike public-facing EWs, factory, warehouse, and agricultural workers interact extensively with 
other EWs, but their work does not involve interactions with nEWs. The critical feature of our 
model of such “non-public-facing” EWs is that all interactions except those among EWs are 
reduced by SIP.  
 
Model 3:  ​Healthcare workers​ (Figure 1D)  
 
Healthcare workers are exposed to infected individuals in hospitals and other critical care 
settings. We therefore created a specific “healthcare worker” model with an additional 
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interaction term describing the rate at which individuals hospitalized with COVID infect 
susceptible healthcare workers (see Modeling details). Neither these hospital-specific infections 
nor infections among healthcare workers are affected by SIP, while interactions between 
healthcare workers and nEWs, as well as interactions among nEWs, are.  
 
Results 
 
Essential workers have elevated infection risk 
 
We began by examining the personal infection risk of each class of EW. ​Figure 2 shows the 
cumulative fraction of EWs and nEWs infected as the pandemic progresses for each model, with 

(five percent of the population EWs) and  ​value ​ ​corresponding to partially effective (.05f = 0 θ
), effective ( ) and highly effective ( ) SIP.θ .5R0 = 1 θ .9R0 = 0 θ .5R0 = 0   

 
For all three models, ​EWs have a substantially higher risk of infection than nEWs. The risk is 
greatest for healthcare workers, who, under our model parametrization, are nearly all infected 
quite rapidly, even when the rest of the population is under stringent SIP. But both public-facing 
and non-public-facing EWs have much higher risk than nEWs: non-public-facing EWs are 
susceptible to the wave of infection that sweeps through their workplaces even after SIP, while 
public-facing EWs are exposed to infected people at a much higher rate than those under SIP.  
 
Our model predicts a somewhat higher rate of infection at 100 days than seems plausible, likely 
because we are not taking into account measures taken by EWs, in particular healthcare 
workers, to reduce transmission in their workplaces. 
 
Public-facing essential workers increase infection risk in the remainder of population  
 
Although the individual risk to public-facing EWs is relatively low, they have a substantial impact 
on nEWs. In conditions when SIP would be expected to be effective at controlling the growth of 
the pandemic ( ), having five percent of the population working in public-facing EW jobsθR0 < 1  
leads to nearly doubling the number of nEWs who are infected (Figure 2).  
 
We were initially surprised that the high rate of infection of both non-public-facing and 
healthcare EWs led only to marginal increases in the infection risk for nEWs (Figure 2). 
However, the combination of the model assumptions of a relatively small EW population (five 
percent of the total), that half of EW interactions are with other EWs (see Model Details), and 
SIP suppression of interactions between EWs and the rest of the population means that, even 
when there is rampant infection among EW, there is a low leakage of infections to nEWs. And, 
although some transmission from EWs to nEWs does occur, because of SIP, those infections do 
not take root in the nEW population.  
 
Effects on pandemic control of increasing number of essential workers 
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The differing effects of EWs on disease risk in EWs and nEWs led us to next examine how the 
different types of EW impact the pandemic. Figure 3 shows ​the total fraction of the population 
expected to be infected after one year as a combined function ​of  and  ​for all three EWf θ  
models (Figure 3A), as well as the breakdown for EWs (Figure 3B) and nEWs (Figure 3C).  
 
The red contour line in each panel of Figure 3A represents ,  ​values for which the totalf θ  
fraction of the population infected after one year is equal to the fraction infected for  andf = 0  

. Values below and to the right of this band result in fewer people infected, values aboveθR0 = 1  
and to the left more.  
 
In all models, increasing the number of EWs requires a compensatory increase in the stringency 
of SIP. However, there is considerable difference in the stringency required in each case. An 
approximately two-fold greater decrease in  is required to compensate for an increase in theθR0  
number of public-facing EWs compared to the same increase in the number of non-public-facing 
and healthcare EWs.  
 
Dynamics of infections to, from and within essential worker populations  
 
The differences in infectious interactions within and between subpopulations after SIP results in 
a complex dynamics of the number and source of infections of EW and nEW over the course of 
a year. To investigate their nature, and understand how they manifest in the three different EW 
models, we examined the prevalence of infection in EWs and nEWs at  and .05f = 0 θ .5R0 = 0  
as a function of time (Figure 4A). 
 
Unsurprisingly, after SIP is imposed, the incidence of infections in nEWs begins to decline, while 
the prevalence in EWs continues its previous rise. In all three models, infections in EWs rapidly 
peak, after which EW prevalence tracks with nEW prevalence, albeit at a higher level. There is, 
however, a striking difference between the public-facing EW model and the other two, with both 
a slower decay of incidence, and less of a gap between EWs and nEWs in the public-facing EW 
model. 
 
This difference is more evident when examining the fraction of all infections that are in EWs as a 
function of time (Figure 4B). In the public-facing EW model, there is a rapid rise from the initial 
setting 0.05 to a peak of 0.15, where it levels off. In contrast both the non-public facing and 
healthcare EW models reach a point where roughly half of all infections occur in EWs before 
stabilizing slowly to a value of approximately one third.  
 
The changes in the distribution of infections across the EW and nEW populations over time 
results in complex, shifting patterns of who is infecting who (Figure 4C). In the public-facing EW 
model, there is a rapid shift post-SIP to there being a roughly equal probability that a new nEW 
infection came from either another nEW or an EW - a striking result given that in this scenario 
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only five percent of the population are EWs. In contrast, public-facing EWs are roughly ten times 
more likely to be infected by an nEW than an EW.  
 
The non-public-facing EW model has quite different dynamics. It takes longer for EWs to 
become a significant source of new infections for nEWs, a product of the time it takes for the 
infection to spread extensively within the EW population. In contrast to the public-facing model, 
where EW to nEW and nEW to nEW are effectively tied for the most common type of infection 
transfer, in the non-public-facing model, the two most common infection types are both within 
group terms. The dynamics of the healthcare EW model are largely similar to the 
non-public-facing EW model, except that infections associated with hospital care of infected 
individuals become a major source of infection for healthcare EWs.  
 
Thus it is a fundamental aspect of all three EW models that one important and potentially 
observable feature of the pandemic - who is infecting who - is expected to change over time.  
 
Discussion 
 
It may be intuitively obvious that, when populations are sheltering in place to reduce virus 
transmission, EWs whose jobs require them to maintain interactions with each other and/or the 
public have a higher risk of infection, and, if infected, an increased probability of spreading. Yet 
the precise nature of this effect has received relatively little attention in COVID-19 modeling and 
public planning. Our goal here was to address a critical issue, how variation in the interaction 
profiles of common types of EWs affect their disease risk and efforts to control the pandemic, 
within the context of the epidemiological models that are being widely used to guide policy 
decisions.  
 
We want to emphasize that, while our modeling has led to several general observations about 
the potential interaction of EWs with COVID-19, it was not designed to be used for predicting 
pandemic progress in specific populations with given types and numbers of EWs, different 
starting states and disease parameters, and distinct types and timings of SIP. This would 
require, at a minimum, accurate data on interactions among EWs and between EWs and nEWs 
in the specific context being modeled, incorporation of demographic differences in EW and nEW 
populations, and treatment of the compartmentalization of both populations into specific 
workplaces and households ​[5,7–9]​.  
 
Moreover, the ​R​0​ ​value we used in the model may be more representative of urban areas, 
which, because of population density, public transportation and other factors, tend to have a 
higher rates of contact than do regions with lower population density ​[10]​. Nonetheless, 
empirical data on rates of infection and fatalities in groups of EWs in urban areas hard-hit by 
COVID-19 paint a clear picture of increased individual risk ​[11–14]​, and the models developed 
here suggest that, at a minimum, this is likely to be a pervasive challenge in population centers. 
There is also evidence for elevated EW risk in factories and food-processing facilities in areas 
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with lower population density ​[15]​; however we did not explore how the models behave in such 
conditions.  
 
We also have not fully explored the full range of scenarios that our models could capture. In 
particular, we focused on the impact on and of EWs within the context of SIP orders applied in 
the midst of a rapidly growing local outbreak, as has occurred repeatedly in past few months 
across the planet. EWs may have a very different disease risk and impact on the epidemic when 
SIP is applied before a large number of individuals are infected, or after the outbreak is already 
under control. There is also likely to be a significant effect of the conditions under which EWs 
under consideration live and work (e.g.,​[16]​). Our models, for example, do not take into account 
protective measures taken by EWs, in particular healthcare workers. 
 
What is clear, however, is that the type of essential work in which a person is engaged has a big 
effect on their individual risk of infection. For example, even with limited exposure to the public, 
EWs at high interaction workplaces such as manufacturing and food processing facilities, or with 
high exposure to infected individuals, are at the highest individual risk of infection. But more 
public-facing workers, such as cashiers, even when they have a much lower individual risk, can 
have a much greater impact on the pandemic. 
 
Although the specific observations are tentative in their dependence on the assumptions of our 
models, these results highlight the importance of not treating EWs as an undifferentiated class, 
and establish the extent of EW interaction with nEWs as a critical feature in studying EWs in the 
future and designing strategies to mitigate individual and collective risk arising from their 
essential work.  
 
Our modeling results also emphasize that increasing the number of EWs, as is now being 
considered worldwide ​[17–19]​, will require the remainder of the population to increase the 
stringency of their shelter in place if pandemic suppression is to be maintained. Thus it is 
particularly important that policy decisions regarding how and when to expand the EW pool 
factor in the possible impact of these policies on the willingness and ability of the nEWs to 
increase or even maintain the stringency of SIP.  
 
Finally, while we treat the interaction profiles, and therefore disease transmission probabilities, 
of EWs as static, this is by no means the case. Workplace social distancing policies, design 
changes and the deployment of personal protective equipment in both EWs and nEWs can play 
a significant role in limiting EW exposure to infected individuals, and, if infected, minimizing their 
role in disease transmission. Widespread workplace testing for infections and temporary 
removal of infected individuals from the workplace would also reduce transmission. We hope 
that modeling efforts like ours can help inform the best way to target these interventions.  
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Modeling Details 
 
We were guided by two principles in designing our models for different types of EWs. First, we 
wanted them to capture essential characteristics of archetypes of EWs: cashiers interact 
extensively with the public, factory workers have a large fraction of their interactions in the 
workplace, and healthcare workers are exposed to a unique infection risk from their exposure to 
a high concentration of infected individuals. Second, we wanted the models to be simple 
enough that we could connect the modeling results back to these essential characteristics. 
Hence none of these models should be considered to fully represent a real group of EWs; rather 
they represent distinct essential characteristics that are often found in real groups of EWs. 
 
All models are described in terms of the number of potentially infectious contacts per day, where 
these interactions are apportioned between subpopulations according to , ​which representsβij  
the number of contacts an individual in population ​i ​has with individuals in population ​j​. 
Representing EWs by ​E​ and nEWs by ​N​, the four corresponding param​eters are , , ,βNN βNE   βEN  
and .βEE   
 
We assume that contacts are symmetric, such that with proportion  of EWs and  of NEs:f 1 − f  
 

. β  (1 )β− f NE = f EN  
 
We further assume that ​before SIP​ every individual has a set total number of contacts  such βT  
that: 
 

.β  βNE +  NN =  β β  βEE +  EN =  T   
 
For public-facing EWs, we assumed that before SIP interactions between subpopulations are 
proportional to the susceptible subpopulation’s size such that: 
 

, , , and ββEE = f T 1 )ββEN = ( − f T ββNE = f T 1 )β .βNN = ( − f T  
 
As we are further assuming that public-facing EWs interactions are unaffected by SIP, ​θ​ is 
applied ​only to ,​ such that after SIP the parameters are:βNN  
 

, , , ​and ​ . ββEE = f T 1 )ββEN = ( − f T ββNE = f T (1 )β  βNN = θ − f T     
 
For non-public-facing EWs, prior to the proportional assortment of interactions, we reserve a 
fraction of their interactions to be with other EWs. Thus, we assume that before SIP:ρ  
 

, , , and .ρ f (1 ))β  βEE = ( +  − ρ T 1 )(1 )ββEN = ( − f − ρ T (1 )ββNE = f − ρ T 1 (1 ) )β  βNN = ( − f − ρ T  
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For non-public-facing EWs, we assume that all interactions except the reserved to beβ  ρ T   
among EWs in the workplace are reduced by SIP, and thus post SIP the parameters are: 

, , , ​and ​ .ρ θf (1 ))β  βEE = ( +  − ρ T (1 )(1 )β  βEN = θ − f − ρ T f (1 )β  βNE = θ − ρ T (1 (1 ) )β  βNN = θ − f − ρ T  
 
For the examples presented here, we set to 0.5. Other values are explored in the ρ  
accompanying computational notebook. 
 
The healthcare model builds on the non-public facing model, but in this case all hospitalized 
individuals have an extra interactions with healthcare workers per day. We assume  βHE  βHE

scales with the number of healthcare workers, and parameterize the choice of its value such 
that a healthcare worker is  times more likely to get infected by a nEW than is a nEW (see theκ  
computational notebook for details). In the main text, we set =1.5. Alternative parameterκ  
values and parameterization of are explored in the computational notebook. βHE  
 
The other parameters used in the SEIR model come largely from ​[1,2]​, as detailed in Table 1, 
with further consideration of the dynamics of COVID-19 in New York City before SIP. In 
particular, the observed doubling time of three days in the number of deaths in New York City 
before formal SIP orders ​[20,21]​ is best fit with . We used this value to determine the.2R0 = 3  
value of . We further placed the start of SIP at day 59, such that our model without EWs βT  
predicts approximately the observed number of deaths in New York City on the day formal SIP 
orders were issued. This is relatively late in the pandemic progression, in that a substantial 
fraction of the population was already infected (as seems to have been the case in New York 
City, according to recent serological estimates ​[22,23]​), and accounts for the high prevalences 
in the models. ​Similar qualitative results are seen for earlier SIP dates (see the computational 
notebook). 
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Table 1: Parameter estimates for the model 
 

Parameter Description Literature Estimates Values Used 

t​E 

  

Latency period 4.6 days ​[1,2] 
5 days (1-14) ​[24] 

4.6 days 

t​IA Infectious period (asymptomatic class) 5 days ​[1,2] 
8 days ​[24] 

5 days 

t​IR Time of between infection and recovery (mild 
symptoms) [infectious period for mild cases] 

5 days ​[1,2] 
8 days ​[24] 

Median 2 weeks ​[25] 
1-2 weeks ​[26] 

5 days 

t​IH Time between infection and hospitalization 5 days ​[1,2] 
1 week ​[25] 

5-12 days ​[27]  
7 +/- 4 days ​[28] 

5 days 

t​HR Time in hospital (with no critical care) 8 days ​[1,2] 
11 days ​[24] 

8 days 

Total duration of infectious period through critical care path 
(to recovered or dead) 

21 days ​[1,2] 
3-6 weeks ​[25] 
16-23 days ​[28] 

21 days 

t​HC Time in hospital before critical care 6 days ​[1,2] 6 days 

t​CR Time in critical care before recovery 10 days ​[1,2] 7 days 

t​L Time in critical care before recovery - 3 days 

t​CD Time in critical care before death 10 days ​[1,2] 10 days 

p ​EIA Proportion of infections that are asymptomatic 33% ​[1,2]​ 17.9% ​[29]  
13.5% ​[30]​ 25% ​[31] 

33% 

p ​EIH Proportion of infections requiring hospitalization 4.4% ​[1,2] 4.4% 

p ​EIR Proportion of symptomatic not requiring hospitalization - 62.6% 

p ​IHR Proportion of hospitalizations requiring critical care - 30% 

p ​IHC Proportion of hospitalizations that require critical care 30% ​[1,2] 
26%-32% ​[27] 

30% 

p ​HCR Proportion of recoveries from critical care - 50% 

p ​HCD Proportion of deaths in critical care 50% ​[1,2] 
39% to 72% ​[27] 

50% 
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Figure 1 ​: Diagram of the SEIR model with extensions. ​A)​ An illustration of the basic SEIR 
model used in all scenarios, including additional compartments within the infected (outlined in 
green) and hospitalized (outlined in blue) classes. ‘S’ is susceptible, ‘E’ is exposed, ‘I’ is 
infected, ‘H’ is hospitalized, ‘D’ is dead, and ‘R’ is recovered. Within the infected class, 
individuals can be asymptomatic ‘I​A​’ and destined to recover; symptomatic ‘I​R​’ but destined to 
recover; or symptomatic ‘I​H​’ and destined to be hospitalized. Within the hospital, individuals 
either go to recovery ‘H​R​’ or go to critical care ‘H​c​’. For those in critical care, individuals either die 
‘C​D​’ or go on to the recovered class ‘C​R​’, with an additional time spent in the hospital ‘L’. ​B)​ To 
model the impact of EWs, who make up a proportion ​f​ of the total population, we cloned the 
SEIR model. Here, for visualization, the infectious and hospitalized classes are collapsed into a 
single compartment. The ​β ​terms represent the transmission routes between ​ infectious 
individuals within and between essential ‘E’ and non-essential ‘N’ groups. In the model of 
public-facing EWs, SIP reduces interactions (highlighted in red) only among nEWs. ​C)​ In the 
model of non-public-facing EWs, SIP reduces all interactions (highlighted in red) except for 
those among other EWs. ​D)​ To model the impact of healthcare workers, an additional infectious 
route (​β​H​) is included from within the hospitalized compartments to susceptible individuals in the 
essential group.  
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Figure 2 ​: Cumulative infection rates among EWs and nEWs for different scenarios and values 
of . The dotted and solid lines correspond to EWs and the rest of the population, respectively.θ  
Note that the ordering of the colors is not the same for EWs and nEWs.  is assumed to be 0.05f  
for all models. Alternative values of  yield similar qualitative results, as does an earlierf  
lockdown date relative to the pandemic progression (see the computational notebook). 
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Figure 3 ​: Heatmaps of cumulative infections after a year in the total population (left), in nEWs 
(middle), and in EW (right). The red contour line corresponds to the number of cumulative 
infections within a year assuming no EWs. For equivalent figures with an earlier lockdown date 
see the computational notebook. 
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Figure 4: ​ Time resolved dynamics of infections, for ​f​=0.05 and =0.5. ​A) ​Time-resolvedθR0  
proportion of EWs and nEWs that are infected. Before SIP, the epidemic progression is identical 
in public facing and non-public facing EWs, and in nEWs. However even before SIP, healthcare 
workers bear a proportionally larger burden of the epidemic due to within-hospital infections. 
After SIP, the fraction of nEWs infected begins to decline, but, because EWs cannot social 
distance as effectively as nEWs, the fraction of EWs continues to increase, albeit more slowly. 
B)​ The fraction of infected individuals that are EWs. Prior to SIP, this fraction is ​f​ ​except in the 
healthcare model where EWs have an additional route of infection. After SIP, EWs bear a 
proportionally larger burden of the epidemic and this fraction increases. Under the public-facing 
worker model, ​the rate of contact between EWs and nEWs isn't reduced by SIP, mitigating 
divergence in the rate of infection in the two subpopulations.​ In the non-public facing and 
healthcare worker models, ​SIP largely decouples t​he epidemic ​between EWs and nEW.​ Thus, 
the increased infection rate among EWs does not cause substantially more infections among 
nEWs, resulting in EWs comprising a disproportionately large proportion of the infections (i.e., 

). As the epidemic dies out in both subpopulations, the proportion of EWs among those>> f  
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infected stabilizes on a value that is model and parameter-dependent.  ​C) ​Where new infections 
originate. SIP reorganizes the flow of infections through the populations in a model-dependent 
manner. Before SIP, the most infections spread among nEWs, as they constitute the vast 
majority of the population. After SIP, we would naively expect a reduction in infections stemming 
from interaction terms that are reduced by SIP. Indeed, immediately after SIP, infections 
associated with reduced interaction terms are reduced (e.g. EN in non-public facing and NN in 
all models). However, EWs also bear a disproportionately large burden of infections. Thus after 
a short lag, as infections among EWs increase, so does their contribution to new infections in 
both other EWs and in nEW; in fact EWs often become the predominant spreaders of new 
infections. For equivalent figures with a lockdown earlier in the pandemic progression, see the 
computational notebook. 
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