
1 
 

A Novel Intervention Recurrent autoencoder for real time forecasting and non-

pharmaceutical intervention selection to curb the spread of Covid-19 in the world 

 

Qiyang Ge1, Zixin Hu2,3, Shudi Li4, Wei Lin1, Li Jin2,3 and Momiao Xiong4,* 

1 School of Mathematical Sciences, SCMS, and SCAM, Fudan University, Shanghai 200433, 

China. 

2 State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and 

Development, School of Life Sciences, Fudan University, Shanghai, China. 

2 Human Phenome Institute, Fudan University, Shanghai, China. 

4 Department of Biostatistics and Data Science, School of Public Health, The University of Texas 

Health Science Center at Houston, Houston, TX 77030, USA. 

 

Running Title: Forecasting and interventions of Covid-19 in the world 

Key Words: Covid-19; recurrent neural networks, artificial intelligence; time series; causal 

inference; forecasting 

 

*Address for correspondence and reprints: Dr. Momiao Xiong, Department of Biostatistics and 

Data Science, School of Public Health, The University of Texas Health Science Center at Houston, 

P.O. Box 20186, Houston, Texas 77225, (Phone): 713-500-9894, (Fax): 713-500-0900, E-mail: 

Momiao.Xiong@uth.tmc.edu. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2020. ; https://doi.org/10.1101/2020.05.05.20091827doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:Momiao.Xiong@uth.tmc.edu
https://doi.org/10.1101/2020.05.05.20091827
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

 

 

ABSTRACT 

As the Covid-19 pandemic soars around the world, there is urgent need to forecast the 

number of cases worldwide at its peak, the length of the pandemic before receding and 

implement public health interventions to significantly stop the spread of Covid-19. Widely 

used statistical and computer methods for modeling and forecasting  the trajectory of  Covid-

19 are epidemiological models. Although these epidemiological models are useful for 

estimating the dynamics of transmission od epidemics, their prediction accuracies are quite 

low. To overcome this limitation, we formulated the real-time forecasting and evaluating 

multiple public health intervention problem into forecasting treatment response problem and  

developed recurrent neural network (RNN) for modeling the transmission dynamics of the 

epidemics and Counterfactual-RNN (CRNN) for evaluating and exploring public health 

intervention strategies to slow down the spread of Covid-19 worldwide. We applied the 

developed methods to the real data collected from January 22, 2020  to May 8, 2020 for real-

time forecasting the confirmed cases of Covid-19 across the world.  
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Introduction 

As of May 11, 2020, global confirmed cases of Covid-19 passed 4,152,670 and has spread to  

212 countries, causing fear globally (Anastassopoulou et al. 2020). The serious public health 

threat of Covid-19 has never been seen for more than one century. The government officers and 

people around the world are desperately trying to slow the spread of Covid-19 (Irfan  2020). We 

must change our policies to deal with increased mobility of citizens and immediately implement 

the public health interventions and expanding the virus testing to stop the spread of Covid-19 

across the world. How computer modeling of Covid-19’s transmission dynamics could help 

governments to quickly and strongly move to slow down the spread of Covid-19?  

     Widely used statistical and computer methods for modeling of Covid-19 simulate the 

transmission dynamics of epidemics to understand their underlying mechanisms, forecast the 

trajectory of epidemics, and assess the potential impact of a number of public health measures on 

curbing the spread speed of Covid-19 (Li et al. 2020, Wu et al. 2020, Zhao et al. 2020, Kucharski 

et al. 2020, Tuite et al. 2020, Hellewell et al. 2020, Li et al. 2020). Although these 

epidemiological models are useful for estimating the dynamics of transmission, and evaluating 

the impact of intervention strategies, they have some serious limitations (Funk et al. 2018, 

Johansson et al. 2019). First, the epidemiological models consist of ordinary differential 

equations that have many unknown parameters, and depend on many assumptions. It is difficult 

to translate public interventions to these parameters. Most analyses used hypothesized 

parameters, which often lead to fitting data very poor. Health officers desperately want to track 

the trajectory of epidemics and accurately estimate the peak time and number of cases, duration, 

and ending time and number of cases of Covid-19 for their health policy plan. However, the 
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forecasting results of using the classical epidemiological models such as Susceptible-Exposed-

Infectious-Removed (SEIR) models are highly unreliable. Second, the successful application of 

public health intervention planning highly depends on the model parameter identifiability. 

However, overall, the parameters in the complex compartmental dynamic models are 

unidentifiable (Roosa and Chowell 2019, Roda et al. 2020). The values of parameters cannot be 

uniquely determined from the real data (Gábor et al.  2017). The variances of the estimators of 

these parameters are very high.  

     To overcome limitations of the epidemiological model approach, and assist public health 

planning and policy making, we formulated the real-time forecasting and evaluating multiple 

public health intervention problem into off-policy evaluation (OPE)  and forecasting treatment 

response problem where the aim is to estimate the response  of a new public health intervention 

policy, given historical data that may have been generated by a different public health 

intervention policies (Bibaut et al. 2019). We viewed the interventions as treatments where 

multiple interventions were administered at different time points. The number of new cases were 

taken as treatment responses. The ability to accurately estimate effects of public health 

interventions over time would allow health officers to determine what intervention strategies 

should be used and the optimal time at which to implement them (Lim et al. 2018). Recurrent 

Intervention Network (RIN) (Lim et al. 2018) where a recurrent neural network architecture for 

forecasting a nation’s response (number of new cases) to a sequence of planned interventions 

were used to forecast and evaluate multiple public health interventions for Covid-19 worldwide. 

Potential outcomes of RIN were trajectory of the spread of Covid-19. Public health interventions 

including locking down residential buildings and compounds, strict self-quarantine for families, 

door-to-door inspection for suspected cases, maintaining social distancing, stopping mass 
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gatherings, closure of schools and universities, vacating hotels and university dormitories. To 

quantify comprehensive intervention strategies, an intervention variable that comprehensively 

and abstractly measures mobility activities and social distancing was used as an input variable 

for each block of RIN (detailed description of the intervention measure was summarized in 

Training Procedures and Loss function Section in the Supplementary Note A) . We cluster all the 

countries in the world into several groups. For each group, a value (weight) was assigned to each 

group such that the average prediction error of counterfactual recurrent network (CRN) was 

small. The RIN is taken as a general framework for investigating how Covid-19 evolves under 

different intervention plans, how individual nation responds to intervention over time, but also 

which are optimal timings for assigning interventions. Therefore, this approach will provide new 

tools to improve public health planning and policy making. 

   The RIN was applied to the surveillance data of lab confirmed Covid-19 cases in the world up 

to May 8, 2020. Data on the number of confirmed, new and death cases of Covid-19 from 

January 22, 2020 to May 8, 2020 were obtained from John Hopkins Coronavirus Resource 

Center (https://coronavirus.jhu.edu/MAP.HTML).  

Methods 

RIN as a Framework for modeling and forecasting the spread of Covid-19 over time with 

multiple interventions 

The RIN uses sequence-to-sequence multi-input/output recurrent neural network (RNN) 

architectures to model health intervention plan and make multi-step prediction of the response 

trajectory of Covid-19 over time with multiple interventions (Lim et al., 2018). The RNN can 

learn the complex dynamics within the temporal ordering of input time series of Covid-19 and 
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use an internal memory to remember. The health intervention plan has multiple intervention 

regimens. As shown in Figure 1, the RIN determines the intervention response (similar to 

counterfactual outputs) for a given set of planned interventions and evaluates the impact of 

different intervention strategies and their implementation times on the curbing the spread of 

Covid-19 and provides timely selection of optimal sequence of intervention strategies.  

     The RIN is a RNN autoencoder. It consists of two RNNs: the encoder RNN (vanilla RNN 

(Figure S1) or long short-term memory (LSTM) (Figure S2) is used as encoder) and the decoder 

RNN (vanilla RNN or LSTM is used as the decoder). The RNN encoder models input time series 

(past history of the number of cases of Covid-19 over time) and predicts future response time 

series (number of cases of Covid-19 in the future with a planned sequence of interventions) 

(Srivastava et al., 2015). The latent state of the RNN encoder after reading in the entire input 

time series (past trajectory of Covid-19), is the representation (compressed latent features of the 

entire input time series) of the input trajectory of Covid-19. Unlike the standard decoder where 

the decoder reconstructs back the input time series from the latent representation, the RNN 

decoder uses the learned features of the dynamics of Covid-19 in the RNN encoder to forecast 

the potential response time series, given a sequence of planned public health interventions as an 

input to the RNN decoder. The feature vector learned in the RNN encoder is then provided as an 

input to the RNN decoder which initiate prediction of the future dynamics of Covid-19 under the 

future interventions (Figure 2). Detailed description of the RIN was listed in Supplementary Note 

A.  

Training the RIN 

RIN training consisted of RNN encoder training and RNN decoder training (Supplementary Note 

A). We first fitted a model of the system’s dynamics of Covid-19 to the data from past 
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experimental interventions to learn representations of the states of the dynamics of Covid-19 

(encoder training), and then used the learned fit  to extrapolate and forecast the response to the 

alternative  interventions (decoder training). 

    The RNN encoder training procedures were briefly introduced here. For details, please see the 

Supplementary Note A. The basic RNN unit in the RIN consisted of input layer, hidden layer and 

output layer (Figure S1). The input variables in the RNN encoder can include covariates 𝑋𝑡 such 

as density of population, traffic flow, health facility resources, GDP, and social-economic status 

although this study did not include these quantities, intervention variable 𝐴𝑡 and the numbers of 

cases (potential outcomes) 𝑌𝑡 at the time 𝑡. The state in the hidden layer at the time 𝑡 was 

denoted by ℎ𝑡. The output layer had the output variable 𝑌𝑡+1. A nonlinear activation function was 

exponential linear unit (ELU) (Clevert et al., 2015) which was defined as  

 𝑓(𝑥) = {
𝑥 𝑥 > 0

𝛼(𝑒𝑥 − 1) 𝑥 ≤ 0
 , 

where 𝛼 > 0.  

     ELU is similar to ReLU when 𝑥 > 0. ELUs diminish the vanishing gradient effect as ReLUs.   

The vanishing gradient problem is alleviated because the positive part of these functions is the 

identity, therefore their derivative is one and not contractive. However, tanh and sigmoid 

activation functions are contractive almost everywhere.   

     In contrast to ReLUs, ELUs have negative values (ReLU does not have), which pushes the 

mean of the activations closer to zero. Mean activations that are closer to zero enable faster 

learning as they bring the gradient closer to the natural gradient. 
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   The input data were divided into several batches with length of 7 days. Each batch was used to 

train the RNN encoder which forecasted standard one-step-ahead intervention response �̂�𝑡+1 as 

close to the observed intervention response 𝑌𝑡+1 as possible via the nonlinear mapping 

(Supplementary note A) 

�̂�𝑡+1 = 𝑓(𝑋𝑡, 𝐴𝑡, 𝑌𝑡, ℎ𝑡−1).         (1) 

The mean-squared error was used as loss function for training the RNN encoder. The training 

was performed via the standard propagation algorithms (Supplementary A). After training was 

completed, the RNN encoder extracted the hidden state ℎ𝑡that captured the internal features of 

the transmission dynamics of Covid-19 via performing a feed-forward pass over the training data 

on the RNN encoder (Supplementary A). 

     After the RNN encoder training was completed, we began to train the RNN decoder. An RNN 

unit in the RNN decoder consisted of input layer with intervention variable 𝐴𝑡+𝜏 , (𝜏 = 1,2, … ), 

hidden layer with hidden state 𝑍𝑡+𝜏−1 and output 𝑌𝑡+𝜏+1. For a given country, observations, 

intervention 𝐴𝑡 and the number of cases 𝑌𝑡 were randomly divided into short batches of up to 𝜏𝑏 

time steps. Each batch of short sequence starting at time 𝑡 and ending at time 𝑡 + 𝜏𝑏 − 1 

consisted of {ℎ𝑡 , (𝐴𝑡+1, 𝑌𝑡+2, … , 𝐴𝑡+𝜏𝑏−1, 𝑌𝑡+𝜏𝑏
)}. The mean square errors were still used as the 

RNN decoder loss function. The goal of RNN decoder training is to make its training loss 

function smallest (Supplementary A). 

Forecasting Procedures 

After completion of the training, the trained RIN was used to forecast the future number of 

cumulative cases of Covid-19 under some planned interventions for each country. During 

evaluation,  we do not have access to ground-truth outcomes. Therefore, we used the trained 
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decoder to make one step ahead forecasting. The outcomes forecasted by the decoder 

(�̂�𝑡+1, … , �̂�𝑡+𝜏−1) were recursively used as inputs. The recursive multiple-step forecasting 

involved using a one-step model multiple times where the prediction for the preceding time step 

and intervention strategy were used as an input for making a prediction on the following time 

step. For example, for forecasting the number of new confirmed cases for the one more next day, 

the predicted number of new cases in one-step forecasting would be used as an observational 

input in order to predict day 2. Repeat the above process to obtain the two-step forecasting. The 

summation of the final forecasted number of new confirmed cases for each country was taken as 

the prediction of the total number of new confirmed cases of Covid-19 worldwide under the 

intended intervention. By running the decoder, we can select starting and ending time of  

different interventions and the optimal or appropriate interventions  to give over time to obtain 

the best  outcomes of controlling the spread of Covid-19 for each country. 

Data Collection 

The analysis is based on surveillance data of confirmed cumulative and new COVID-19 cases 

worldwide as of May 8, 2020. Data on the number of cumulative and new cases and COVID-19-

attributed deaths across 186 countries from January 22, 2020 to May 8, 2020 were obtained from 

John Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/MAP.HTML).  

Data Pre-processing 

log2 was used to transform the original data: �̃� = log2(𝑋 + 1). The intervention measure was 

calculated as follows. Set the intervention measure at the final time 𝐴𝑡𝑓 = 1 for China,  𝐴𝑡𝑓 =

0.3  for Korea South, Switzerland, United Kingdom, Spain, US, Italy, Germany, Iran, and 

France, and  𝐴𝑡𝑓 = 0 for all other countries. Assume that the intervention measure curve is an 
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exponential function starting at 0 and ends at  𝐴𝑡𝑓 . The intervention measure 𝐴𝑡 is given by 

𝐴𝑡 =
𝑝𝑡−1

𝑝−1
∗ (𝐴𝑡𝑓 − 𝐴0) + 𝐴0, where 𝑝 > 0, 𝑝 ≠ 1 is the curve shape factor and 𝑡 takes values in 

evenly sliced numbers of interval [0, 1], 𝐴0  is the intervention measure at the initial time 𝑡0 .    

When 𝑝 = 1, 𝐴𝑡 is a linear function 𝐴𝑡 = 𝑡 ∗ (𝐴𝑡𝑓 − 𝐴0) + 𝐴0. In this study, we set 𝑝 = 0.01. 

     We randomly picked   𝑘 = 64 countries with 𝑙 = 7 length of Covid-19 time series (the 

number of new cases over time) data staring from the same day to generate 𝑘 time series with 𝑙 

length for a minibatch  to be used for backpropagation training through time. Calculate the mean 

value of each time series in the batch.  The values of each time series were divided by their mean 

values to normalize the data.   

Results 

Prediction accuracy of dynamics of Covid-19 using RIN 

Accurate prediction of the spread of Covid-19 is important for health intervention plan for the 

future. To demonstrate that the RIN is an accurate forecasting method, the RIN was applied to 

confirmed accumulated cases of COVID-19 across 186 countries. Figure 3 plotted reported and 

one-step ahead predicted time-case curves of Covid-19 where blue dotted curve was the number 

of estimated cumulative cases after the analysis completion. To further reliably evaluate the 

forecasting accuracy, we reported 10-step ahead forecasted numbers of cumulative cases and 

errors of Covid-19 of 8 countries in Table 1 starting with April 29, 2020. The forecasting errors 

were quite small.  

     Inputting a sequence of hypothesized public health intervention strategies, the outputs of the 

RIN decoder were counterfactual numbers of cases of Covid-19 to respond to the intervention 
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strategies. Interventions were measured by number in the interval [0, 1], where 1 indicated the 

strictest comprehensive public health intervention, 0 indicated no intervention and the values 

between 0 and 1 indicated the various less strict interventions. To intuitively illustrate the impact 

of the measure of intervention on the spread of Covid-19, we presented Figure S3. Figure S3 

plotted counterfactual numbers of new cases of Covid-19 over time worldwide to respond the 

interventions with values 0, 0.3, 0.5, 0.7 and 1. We observed that if the measure of intervention 

was 1, the number of new cases was dramatically deceased to zero. However, when the measure 

of intervention was 0.3, the number of new cases exponentially increased. The measure of 

intervention had big effect on the spread of Covid-19. 

   The number of cases of Coid-19 was a function of the past history and the measure of 

intervention. Forecasting also depended on the measure of intervention. In Table 1, we also listed 

the measures of the interventions which provided information on the degrees of current 

interventions in the country. The measure of interventions in the most countries was 0.6. 

However, the current measure of interventions in UK was 0.5, the smallest in 8 countries. These 

results showed that the RIN for forecasting the trajectory of Covid-19 was accurate and reliable. 

Similar to causal inference, the RIN can be used to evaluate the impact of a sequence of multiple 

intervention strategies on the curbing the spread of Covid-19 if the interventions were viewed as 

treatments. 

The number of cases of Covid-19 grows exponentially without additional intensive 

interventions 

To investigate how Covid-19 pandemic surges around the world, we presented Figure 4 that 

showed the forecasted number of cumulative cases of Covid-19 worldwide over time, assuming 

that the current intervention measure remains. We observed that the number of cumulative cases 
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of Covid-19 exponentially grown and would reach extremely high number 8,491,301 on July 1, 

2020 if none of additional comprehensive public health intervention was implemented. Similarly, 

Figure 5 and Figure S3 plotted time-case curves of Covid-19 of eight countries: Italy, Spain, 

Iran, Germany, USA, France, Belgium and UK, and worldwide with unchanged intervention 

strategies in the future, respectively. We also observed exponentially growth of the numbers of 

cases of Coid-19 for many countries without additional intervention.  

We are in the eve to successfully curb the spread of Covid-19 

As Covid-19 Accelerates and exponentially grows, how to slow down the spread of Covid-19 is 

an urgent task for every country around world. To demonstrate that when the additional 

intervention was implemented, the number of new cases of Covid-19 would decrease, we 

presented Figures 6 and 7. Figures 6 and 7 plotted the number of cumulative case and new case 

curves of Covid-19 over time for 12 countries: US, Italy, Spain, Germany, France, Iran, UK, 

Switzerland, Belgium, South Korea, Japan and Singapore under three invention scenarios, 

respectively. Scenario 1 started with the intervention measure of 0.50 for one week, then 

transitioned to the intervention with a measure of 0.70 in two weeks. The scenario 2 started with 

the intervention measure of 0.5 for the first week, and then transitioned to the intervention with a 

measure of 0.70 in three weeks. The scenario 3 started with the intervention measure for one 

week, changed to 0.60 in three weeks and finally transitioned to the intervention with a measure 

of 0.70 in three weeks. Figures 6 and 7 showed that when the countries moved to intervention 

with measure of 0.70, the spread of Covid-19 in all 12 countries was curbed. Now the measures 

of interventions in the most of 12 countries were closer to 0.60 (Table 1). These countries were 

closing to stopping the spread of Covid-19 if additional interventions such as wearing face masks 

were implemented.  
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     Next we investigated how various intervention strategies reduced the peak time and 

cumulative case numbers, and the final total number of cases. Table 2 showed the forecasted 

results of COVID-19 worldwide and in 11 countries under three sequences of interventions 

(Scenarios 1-3). Figure S4 plotted the time-case curves of Covid-19 worldwide under three 

invention scenarios.  We can see that under all three scenarios, the peak times worldwide and in 

all 11 countries were May 18, 2020 and April 24 or before April 24, 2020, respectively;  and the 

spread of COVID-19 worldwide and in all 11 countries would be stopped by the end of June, 

2020.  

Conclusion/Discussion 

As an alternative to the epidemiologic transmission models, we formulated the real-time 

forecasting and evaluating multiple public health intervention problem into a novel causal 

inference problem. We viewed the interventions as treatments where multiple interventions were 

administered at different time points. The number of new cases were taken as treatment 

responses.   The RIN uses sequence-to-sequence multi-input/output recurrent neural network as a 

tool for modeling the real-time trajectory of the transmission dynamics of Covid-19, health 

intervention planning and making multi-step prediction of the response trajectory of Covid-19 

over time with multiple interventions. The RNN can learn the complex dynamics within the 

temporal ordering of input time series of Covid-19 and use an internal memory to remember the 

hidden features. 

     This AI and causal inference-inspired approach allows us to address three important 

questions. The first question is the prediction accuracy.  Unlike other dynamic systems where the 

parameters in the systems and control variables are, in general,  independent, the epidemic 

systems  have intervention and system dependent parameters. We designed the intervention 
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variable that quantified comprehensive intervention strategies and had close relationships with 

the parameters in the epidemic systems. Therefore, the RINs could take the parameters in the 

epidemic dynamic systems as input control variables that can be estimated in the RIN training. 

The RIN models were closer to real epidemic dynamic systems than the epidemiological models. 

Therefore, our results showed that the RIN substantially improved the accuracies of prediction 

and subsequently multiple-step forecasting.  

     The second question is how important is the intervention time. Since interventions are 

complicated and are difficult to quantify, we designed three intervention scenarios to represent 

the degrees and delays of interventions. Since the proposed methods combine the real data and 

models, they allowed us to evaluate the consequences of multiple intervention strategies, while 

maintaining  the analysis as close to the real data as possible. The RIN investigated the impact of 

multiple public intervention plans and intervention measures on the size, duration and time of the 

virus outbreak and recommended the appropriate intervention times.  

     We estimated the duration, peak time and ending time, peak number of new cases and 

cumulative cases, and maximum number of cumulative cases of COVID-19 under three 

intervention scenarios for 184 countries in the world. We observed that the number of 

cumulative cases of Covid-19 would exponentially grow and reach extremely high number 

199,554,596 on July 6, 2020 if none of additional comprehensive public health intervention was 

implemented.  However, we also found that top 12 countries with the largest number of the lab 

confirmed cumulative cases of COVID-19 were closing to stopping the spread of Covid-19 if 

additional interventions such as wearing face masks were implemented. We can see that under 

all three scenarios, the peak times were before April 15, 2020 and the spread of COVID-19 

would be sopped before the end of May, 2020.   
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Figure Legend 

Figure 1. Forecasting intervention response to curbing the spread of Covid-19 under a sequence 

of interventions.  

Figure 2. Architecture of recurrent intervention network. 

Figure 3. Reported and predicted time-case curves of Covid-19 worldwide where blue dotted 

curve was the number of reported cumulative cases after the analysis completion.  

Figure 4. The numbers of cumulative and new cases of Covid-19 worldwide over time, 

assuming the current intention remains unchanged. The curves in blue color and red color 

represented the number of cumulative cases and the number of new cases, respectively. 

Figure 5. Forecasted number of cumulative cases of Covid-19 of eight countries Italy (A), Spain 

(B), Iran (C), Germany (D), USA (E), France (F), UK (G) and Belgium (H) over time without 

additional interventions. 

Figure 6. Number of cumulative case curves of Covid-19 over time for 12 countries under three 

invention scenarios. (A) Time-case plot for US, (B) Time-case plot for Italy, (C) Time-case plot 
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for Spain, (D) Time-case plot for Germany, (E) Time-case plot for France, (F) Time-case plot for 

Iran, (G) Time-case plot for UK, (H) Time-case plot for Switzerland, (I) Time-case plot for 

Belgium, (J) Time-case plot for South Korea, (K) Time-case plot for Japan, and (L) Time-case 

plot for Singapore.  

Figure 7. Number of new case curves of Covid-19 over time for 12 countries under three 

invention scenarios. (A) Time-new case plot for US, (B) Time-new case plot for Italy, (C) Time-

new case plot for Spain, (D) Time-new case plot for Germany, (E) Time-new case plot for 

France, (F) Time-new case plot for Iran, (G) Time-new case plot for UK, (H) Time-new case 

plot for Switzerland, (I) Time-new case plot for Belgium, (J) Time-new case plot for South 

Korea, (K) Time-new case plot for Japan, and (L) Time-new case plot for Singapore.  
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Table 1.  Forecasting errors of  worldwide and eight countries, where  0.5, 

0.55 and 0.6 were intervention measures.  

    

Country Estimated  Reported Error Country Estimated  Reported Error 

Italy 0.6       France 0.6       

4/29/2020 200371 
 

203591 -0.01582 4/29/2020 166637 
 

166543 0.00056516 

4/30/2020 202076 
 

205463 -0.01648 4/30/2020 167816 
 

167299 0.00309033 

5/1/2020 203975 
 

207428 -0.01665 5/1/2020 169226 
 

167305 0.01148247 

5/2/2020 205955 
 

209328 -0.01611 5/2/2020 170726 
 

168518 0.01310009 

5/3/2020 207917 
 

210717 -0.01329 5/3/2020 172280 
 

168925 0.01985897 

5/4/2020 209841 
 

211938 -0.00990 5/4/2020 173863 
 

169583 0.02523569 

5/5/2020 211721 
 

213013 -0.00606 5/5/2020 175500 
 

170687 0.02819915 

5/6/2020 213596 
 

214457 -0.00401 5/6/2020 177049 
 

174224 0.01621236 

5/7/2020 215524 
 

215858 -0.00155 5/7/2020 178610 
 

174918 0.02110937 

5/8/2020 217493 
 

217185 0.00142 5/8/2020 180199 
 

176202 0.02268661 

Spain 0.6       Belgium 0.55       

4/29/2020 213067 
 

212917 0.00071 4/29/2020 47136.9 
 

47859 -0.0150872 

4/30/2020 215472 
 

213435 0.00954 4/30/2020 47794.3 
 

48519 -0.0149367 

5/1/2020 217291 
 

213435 0.01807 5/1/2020 48549.2 
 

49032 -0.0098473 

5/2/2020 218700 
 

216582 0.00978 5/2/2020 49362.1 
 

49517 -0.003128 

5/3/2020 220547 
 

217466 0.01417 5/3/2020 50169.3 
 

49906 0.00527571 

5/4/2020 222539 
 

218011 0.02077 5/4/2020 50958.3 
 

50267 0.01375355 

5/5/2020 224646 
 

219329 0.02424 5/5/2020 51734.3 
 

50509 0.0242584 

5/6/2020 226819 
 

220325 0.02947 5/6/2020 52516.2 
 

50781 0.03417009 

5/7/2020 228936 
 

221447 0.03382 5/7/2020 53321.6 
 

51420 0.03698091 

5/8/2020 231015 
 

222857 0.03660 5/8/2020 54150.2 
 

52011 0.04113046 

Iran 0.55       UK 0.5       
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4/29/2020 93417 
 

93657 -0.00256 4/29/2020 162053 
 

166441 -0.0263607 

4/30/2020 95078 
 

94640 0.00463 4/30/2020 166327 
 

172481 -0.0356794 

5/1/2020 96678 
 

95646 0.01079 5/1/2020 170934 
 

178685 -0.0433754  

5/2/2020 98248 
 

96448 0.01867 5/2/2020 175820 
 

183500 -0.0418504  

5/3/2020 99819 
 

97424 0.02458 5/3/2020 180870 
 

187842 -0.0371151  

5/4/2020 101419 
 

98647 0.02810 5/4/2020 186026 
 

191832 -0.0302652  

5/5/2020 103069 
 

99970 0.03100 5/5/2020 191279 
 

196243 -0.0252962 

5/6/2020 104786 
 

101650 0.03085 5/6/2020 196645 
 

202359 -0.028237 

5/7/2020 106532 
 

103135 0.03293 5/7/2020 202182 
 

207977 -0.0278621 

5/8/2020 108301 
 

104691 0.03448 5/8/2020 207908 
 

212629 -0.0222053 

Germany 0.6       Worldwide 0.5 0.55     

4/29/2020 160038 
 

161539 -0.00929 4/29/2020 3150803 
 

3172287 -0.00677 

4/30/2020 161523 
 

163009 -0.00912 4/30/2020 3269231 
 

3256910 0.00378 

5/1/2020 163061 
 

164077 -0.00619 5/1/2020 3389076 
 

3343777 0.0135 

5/2/2020 164574 
 

164967 -0.00238 5/2/2020 3509517 
 

3427584 0.0239 

5/3/2020 166052 
 

165664 0.00234 5/3/2020 3631288 
 

3506729 0.0355 

5/4/2020 167511 
 

166152 0.00818 5/4/2020 3756103 
 

3583055 0.0483 

5/5/2020 168975 
 

167007 0.01179 5/5/2020 
 

3574344 3662691 -0.024 

5/6/2020 170473 
 

168162 0.01374 5/6/2020 
 

3650562 3755341 -0.028 

5/7/2020 172001 
 

169430 0.01517 5/7/2020 
 

3728999 3845718 -0.030 

5/8/2020 173548   170588 0.01735 5/8/2020   3809694 3938064 -0.033 

 

US 0.5                 

4/29/2020 1020646 
 

1039909 -0.01852 
     

4/30/2020 1053796 
 

1069424 -0.01461 
     

5/1/2020 1088714 
 

1103461 -0.01336 
     

5/2/2020 1124973 
 

1132539 -0.00668 
     

5/3/2020 1161939 
 

1158040 0.00337 
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5/4/2020 1199549 
 

1180375 0.01624 
     

5/5/2020 1238166 
 

1204351 0.02808 
     

5/6/2020 1278410 
 

1228603 0.04054 
     

5/7/2020 1320212 
 

1257023 0.05027 
     

5/8/2020 1363606   1283929 0.06206           
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 Table 2. Covid-19 dynamics in 11 countries and worldwide for three scenarios. 
   

Scenario Country US Italy Spain Germany France Iran 

Scenario 1 Peak Time 4/24/2020 3/21/2020 3/25/2020 3/27/2020 4/12/2020 3/30/2020 

  Peak Number (New) 36188 6557 9630 6933 26849 3186 

  Peak Number ( Cumulative) 905358 53578 49515 50871 121712 41495 

  End Time 5/27/2020 5/26/2020 5/26/202 5/26/202 5/26/202 5/26/202 

  End Cases 1633438 243198 249919 190450 196231 114863 

  Duration 124 116 115 120 123 97 

Scenario 2 Peak Time 4/24/2020 3/21/2020 3/25/2020 3/27/2020 4/12/2020 3/30/2020 

  Peak Number (New) 36188 6557 9630 6933 26849 3186 

  Peak Number ( Cumulative) 905358 53578 49515 50871 121712 41495 

  End Time 6/6/2020 6/3/2020 6/3/2020 6/3/2020 6/3/2020 6/3/2020 

  End Cases 1738794 249776 256694 195499 201447 117782 

  Duration 134 124 123 128 131 105 

Scenario 3 Peak Time 4/24/2020 3/21/2020 3/25/2020 3/27/2020 4/12/2020 3/30/2020 

  Peak Number (New) 36188 6557 9630 6933 26849 3186 

  Peak Number ( Cumulative) 905358 53578 49515 50871 121712 41495 

  End Time 7/1/2020 7/1/2020 7/1/2020 7/1/2020 7/1/2020 7/1/2020 

  End Cases 2402819 323821 332980 252159 259993 150317 

  Duration 159 152 151 156 159 133 

  Country UK Belgium Korea South Japan Singapore Worldwide 

Scenario 1 Peak Time 4/10/2020 4/15/2020 3/3/2020 4/17/2020 4/20/2020 5/18/2020 

  Peak Number (New) 8733 2454 851 1161 1426 200938 

  Peak Number ( Cumulative) 74605 33573 5186 9787 8014 5685045 

  End Time 7/1/2020 7/1/2020 7/1/2020 7/1/2020 7/1/2020 5/28/2020 

  End Cases 300936 57109 11875 16927 23228 6116772 

  Duration 118 112 123 121 123 125 

Scenario 2 Peak Time 4/10/2020 4/15/2020 3/3/2020 4/17/2020 4/20/2020 5/18/2020 

  Peak Number (New) 8733 2454 851 1161 1426 203456 
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  Peak Number ( Cumulative) 74605 33573 5186 9787 8014 5687563 

  End Time 6/7/2020 6/3/2020 6/3/2020 6/3/2020 6/3/2020 6/7/2020 

  End Cases 329467 58472 12117 17285 23737 6843077 

  Duration 128 120 131 129 131 135 

Scenario 3 Peak Time 4/10/2020 4/15/2020 3/3/2020 4/17/2020 4/20/2020 5/18/2020 

  Peak Number (New) 8733 2454 851 1161 1426 202443 

  Peak Number ( Cumulative) 74605 33573 5186 9787 8014 5686550 

  End Time 7/1/2020 7/1/2020 7/1/2020 7/1/2020 7/1/2020 7/1/2020 

  End Cases 447797 73541 14747 21194 29297 10007832 

  Duration 152 148 159 157 159 159 
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Figure 1. Forecasting intervention response to curbing the spread of Covid-19 under a sequence 

of interventions. 
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Figure 2. Architecture of recurrent intervention network. 
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Figure 3. Reported and predicted time-case curves of Covid-19 worldwide where blue dotted 

curve was the number of reported cumulative cases after the analysis completion.  
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Figure 4. The numbers of cumulative and new cases of Covid-19 worldwide over time, 

assuming the current intention remains unchanged. The curves in blue color and red color 

represented the number of cumulative cases and the number of new cases, respectively. 
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Figure 5. Forecasted number of cumulative cases of Covid-19 of eight countries Italy (A), Spain 

(B), Iran (C), Germany (D), USA (E), France (F), UK (G) and Belgium (H) over time without 

additional interventions. 
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Figure 6. Number of cumulative case curves of Covid-19 over time for 12 countries under three 

invention scenarios. (A) Time-case plot for US, (B) Time-case plot for Italy, (C) Time-case plot 

for Spain, (D) Time-case plot for Germany, (E) Time-case plot for France, (F) Time-case plot for 

Iran, (G) Time-case plot for UK, (H) Time-case plot for Switzerland, (I) Time-case plot for 

Belgium, (J) Time-case plot for South Korea, (K) Time-case plot for Japan, and (L) Time-case 

plot for Singapore.  

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2020. ; https://doi.org/10.1101/2020.05.05.20091827doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20091827
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

 

Figure 7. Number of new case curves of Covid-19 over time for 12 countries under three 

invention scenarios. (A) Time-new case plot for US, (B) Time-new case plot for Italy, (C) Time-

new case plot for Spain, (D) Time-new case plot for Germany, (E) Time-new case plot for 

France, (F) Time-new case plot for Iran, (G) Time-new case plot for UK, (H) Time-new case 

plot for Switzerland, (I) Time-new case plot for Belgium, (J) Time-new case plot for South 

Korea, (K) Time-new case plot for Japan, and (L) Time-new case plot for Singapore.  
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Supplementary Materials 

Supplementary Note A 

Supplementary Figure Legend 

Figure S1. Architecture of vanilla RNN. 

Figure S2. Architecture of LSTM. 

Figures S3. Counterfactual numbers of cases of Covid-19 over time worldwide to respond the 

interventions with values 0.3, 0.5, 0.7 and 1. 

Figure S4. Time-case plot of Covid-19 worldwide under three invention scenarios 
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Supplementary Note A 

Recurrent Intervention Network (RIN) 

Simple RNN Unit 

RIN consisted of an encoder RNN and a decoder RNN.  The RNN is a mapping from a sequence 

space (or time series) to another sequence space (or time series space) and the current output 

depends on both current input and the whole observation history (whole time series). The RNN   

extracts short-term local dependency patterns among variables and to discover long-term patterns 

for time series trends (Lai et al. 2017). However, the traditional autoregressive methods do not 

distinguish the two types  of patterns and capture  their interactions explicitly and dynamically.    

Basic unit of RNN in both encoder and decoder had three layers: input, recurrent hidden and 

output layers (Figure S1). The input layer consisted of three types of variables: covariates 𝑋𝑡 =

[𝑋𝑡
1, … , 𝑋𝑡

𝑘]𝑇, a scaler intervention variable 𝐴𝑡 and the numbers of cases (potential outcomes) 𝑌𝑡 

at the time 𝑡.  The covariates can include the rate of virus test, Google mobility indexes.  Define 

the input vector 𝑉𝑡 as 

𝑉𝑡 =

[
 
 
 
 

𝑋𝑡

𝐴𝑡

𝑌𝑡

⋮
𝑌𝑡−𝑙+1]

 
 
 
 

 . 

Let  ℎ𝑡 = [ℎ𝑡
1, … , ℎ𝑡

𝑚]𝑇 be a 𝑚  dimensional hidden state vector where 𝑚 is set to be 100 in this 

study.  The data 𝑉𝑡 is inputted into the input layer. The linear transformation 𝑊𝑣ℎ𝑉𝑡 of the data 𝑉𝑡 

is then sent to the hidden layer, where  𝑊𝑣ℎ is a 𝑚 × (𝑘 + 𝑙 + 1) dimensional matrix. The hidden 
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layer receives information from the input layer and hidden layer at the previous time point.     

The state is determined by the following nonlinear transformation of its received information: 

ℎ𝑡 = 𝑓ℎ(𝑊ℎℎℎ𝑡−1 + 𝑊𝑣ℎ𝑉𝑡 + 𝑏ℎ) ,    

where  𝑊ℎℎ  is a 𝑚 × 𝑚 dimensional weight matrix that connect the previous state to the current 

state, and 𝑏ℎ = [𝑏ℎ
1, … , 𝑏ℎ

𝑚]𝑇 is a 𝑚 dimensional bias vector that corrects the bias, and 𝑓ℎ is a 

element-wise nonlinear activation  function and is often defined as the following “tanh” function: 

tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 . 

The neurons in hidden layer are connected to the output layer via a 𝑚 dimensional weight vector 

𝑊ℎ𝑦.  The output �̂�𝑡+1  is determined by 

�̂�𝑡+1 = 𝑓𝑜(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑜) ,           

where  𝑓𝑜 is an activation function and 𝑏𝑜 is the bias vector of the output neurons.    

Long Short Term Memory Network Unit 

Long Short Term Memory network (LSTM) is a special kind of RNN, capable of learning long-

term dependencies (Hochreiter  and Schmidhuber, 1997; Srivastava et al. 2015). The LSTM 

attempts to preserve long term useful information and skip short-term irrelevant information.  

Each LSTM unit has a cell that is a memory unit (Figure S2). The key to LSTMs is the cell state. 

The cell state is determined by four gates: forget gate, input gate, input modulation, and output 

gate. At each time step, the unit receives input from two external sources: the current input 

variables  𝑉𝑡 = [𝑋𝑡
𝑇 , 𝐴𝑡 , 𝑌𝑡 …𝑌𝑡−𝑙+1]

𝑇  and the previous hidden states ℎ𝑡−1.  The total input 

activates the gates through sigmoid function and  the tanh nonlinear function. The forget gate 

layer decides what information we’re going to throw away from the cell state: 
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𝑓𝑡 = 𝜎(𝑊𝑣𝑓𝑉𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) . 

The next step, the input gate layer decides which values we’ll update: 

 𝑖𝑡 = 𝜎(𝑊𝑣𝑖𝑉𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖), 

Next, input modulation gate creates a vector of new candidate values, 𝑔𝑡, that could be added to 

the state: 

𝑔𝑡 = tanh(𝑊𝑣𝑔𝑉𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔) . 

The old cell state is updated by  

𝐶𝑡 = 𝑓𝑡°𝐶𝑡−1 + 𝑖𝑡°𝑔𝑡 , 

where °  denotes element-wise multiplication. 

Output gate decides what parts of the cell state we’re going to output: 

𝑂𝑡 = 𝜎(𝑊𝑣𝑜𝑉𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) ,  

ℎ𝑡 = 𝑜𝑡°tanh (𝐶𝑡) , 

𝑌𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 . 

We update the hidden state ℎ𝑡 by tanh transformation of cell state, multiplied by the output of the 

sigmoid output gate. When the output gate is 1, we pass all memory information in the cell state 

through to the predictor. In contrast, when the output is 0, we keep all the information only 

within the cell. 

Potential Outcome Framework for Evaluation of Public Health Interventions 
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Learning intervention policies is an extremely challenge problem. We employ the 

Counterfactually-Guided Policy Evaluation (CF-GPS)  principle to evaluate the effect of public 

health interventions on controlling the spread of Covid-19 (Buesing et al. 2018).  We view the 

public health intervention as treatment and the number of cases as the outcome. Counterfactual 

treatment outcome estimation is essentially a causal problem. Most   methods for causal 

inference are designed for the statistic setting and cannot be applied to evaluating the effects of 

the sequence of public health interventions  on (e.g. sequential application of intervention A 

followed by intervention B) the transmission dynamics of Covid-19 over time.  The models that 

can deal with varying-length transmission dynamic histories of Covid-19  are needed for 

estimating intervention effects over time.  

    Potential outcome framework is our basic model to evaluate the impact of the public health 

interventions on the spread of Covid-19. The potential outcome framework is often referred to 

the Neyman-Rubin  model (Rubin 1974). Potential outcomes consist of actual (or observed) and 

counterfactual (hypothesized) outcomes.  We are interested in number of  cases of Covid-19 

under some specific intervention.  We observed the number of cases of Covid-19  (actual 

observation) without intervention or known intervention. However, we want to know  what 

number of cases of Covid-19 (counterfactual, unobserved) would be if an alternative intervention 

was implemented.  To evaluate the effect of intervention, we should compare the difference 

between the observed actual number of cases of Covid-19 and the counterfactual number of 

cases of Covid-19. Our aim is to learn the counterfactual  outcomes  of Coid-19 under a sequence 

of public health intervention options and evaluate the impact of the intervention strategies on the 

spread of Covid-19. 
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   The  Recurrent Intervention Network (RIN), a novel sequence-to-sequence recurrent neural 

network  is an architecture for estimating the effects of intervention on the spread of Covid-19 

over time. A basic block of the RIN is the RNN. The RNN avoids the need for specifying any 

explicit model, using the networks to learn the relationships among variables  directly from the 

data. The RIN consists of an encoder and a decoder. Both of the encoder and decoder use the 

RNN as their basic architectures (Bica et al. 2020).  

    The encoder  network uses vanilla  RNN, or LSTM  to model the history of the covariates, 

interventions and outcomes (number of cases),  learn the causal structure from the retrospective 

data and  predict one-step-ahead outcomes, given observations of covariates and actual 

interventions.  

    The decoder network uses the hidden state computed by the encoder to initialize 

the state of an RNN in the decoder which predicts the counterfactual outcomes for a sequence of 

hypothesized future interventions (Bica et al. 2020). The decoder attempts to propagate the 

encoder representation forwards in time,  using only the planned interventions and avoiding the 

covariates. 

Problem Mathematical Formulation 

   Consider 𝑁 countries in the world. Each country is viewed as a sample. For the 𝑖𝑡ℎ country and 

time point 𝑡,  let 𝑥𝑡
𝑖 be a set of covariates and  𝐴𝑡

𝑖  be an intervention. The intervention variable 𝐴𝑡
𝑖  

can be a binary variable: 𝐴𝑡
𝑖 = 1 (𝐴𝑡

𝑖 = 0) indicates that intervention is (not) implemented. The 

intervention variable  𝐴𝑡
𝑖  can also be continuous variable taking values in the interval [0, 1]. If 𝐴𝑡

𝑖  

is a continuous variable, the value of  𝐴𝑡
𝑖  represents the intensity of intervention. 𝐴𝑡

𝑖 = 1 indicates 

that the intervention is the most strict and comprehensive public health intervention. 𝐴𝑡
𝑖 = 0 
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indicates that no intervention is taken. Let 𝑌𝑡
𝑖 be the outcome (number of cases) of the 𝑖𝑡ℎ 

country at the time point 𝑡.  The observed dataset is denoted by 𝐷 = {𝑥𝑡
𝑖 , 𝑎𝑡

𝑖 , 𝑦𝑡
𝑖, 𝑡 = 1,… , 𝑇, 𝑖 =

1, … , 𝑁} where  𝑎𝑡
𝑖    is prespecified.     

    The potential outcome framework for treatment effect estimation which accounts for  the time 

varying treatments (Bica et al. 2020) is extended to evaluation of the effects of the interventions 

on the spread of Covid-19. Let �̃�𝑡 = (�̃�𝑡, �̃�𝑡, �̃�𝑡)  be the history of the outcomes (number of 

cases) �̃�𝑡 = (�̅�𝑙, … , �̅�𝑡), �̅�𝑡 = (𝑌𝑡, … , 𝑌𝑡−𝑙+1) , the covariates �̃�𝑡 = (𝑋1, … , 𝑋𝑡)  and interventions 

�̃�𝑡 = (𝐴1, … , 𝐴𝑡) . Let 𝑌[�̃�] be   the potential outcomes that can be either observed or 

counterfactual, under each possible sequence of intervention �̃� . The potential outcome 

framework assumes the existence of the hypothetical outcome with some interventions which is 

not observed in the data. The hypothetical outcome under hypothetical intervention is called 

counterfactual outcome. Given the history �̃�𝑡  and a sequence of planned interventions 

�̃�(𝑡, 𝑡 + 𝜏 − 1) = (𝐴,… , 𝐴𝑡+𝜏−1),   the counterfactual  outcome  𝑌𝑡+𝜏[�̃�(𝑡, 𝑡 + 𝜏 − 1)] can be 

predicted by 

𝐸(𝑌𝑡+𝜏[�̃�(𝑡, 𝑡 + 𝜏 − 1)]|�̃�𝑡) , 

which define the future dynamic trajectory of the Covid-19  under the planned sequence of 

interventions, given the previous history of Covid-19  and its environments. To make the 

prediction of the dynamic trajectory of the Covid-19 under the potential outcome framework to 

be identifiable, we need to make the following assumptions (Bica et al. 2020).  

Assumptions 

We introduce assumptions in the Neyman-Rubin  model (Bica et al., 2020).  
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Assumption 1. (Consistency). If a nation receives an intervention 𝐴𝑡 = 𝑎𝑡, then the potential 

outcome for the intervention 𝑎𝑡 which can be counterfactual is equal to the observed (factual) 

outcome 𝑌𝑡+1(𝑎𝑡) = 𝑌𝑡+1. 

Assumption 2. (Overlap). For all (𝑎1, 𝑥1, … , 𝑎𝑡−1, 𝑥𝑡−1), we have 

0 < 𝑃(𝐴𝑡 = 𝑎𝑡|𝐴1 = 𝑎1, 𝑋1 = 𝑥1, … , 𝐴𝑡−1 = 𝑎𝑡−1, 𝑋𝑡−1 = 𝑥𝑡−1) < 1 . In other words, at each 

time step,  each intervention has non-zero probability of being implemented. 

Assumption 3. Sequential strong ignorability. Conditional on 𝐴1 = 𝑎1, 𝑋1 = 𝑥1, … , 𝐴𝑡−1 =

𝑎𝑡−1, 𝑋𝑡−1 = 𝑥𝑡−1, the potential outcomes 𝑌𝑡+1 are independent of  𝐴𝑡, 

𝑌𝑡+1(𝑎𝑡) ⫫ 𝐴𝑡| 𝐴1 = 𝑎1, 𝑋1 = 𝑥1, … , 𝐴𝑡−1 = 𝑎𝑡−1, 𝑋𝑡−1 = 𝑥𝑡−1  .  

Assumption 3 implies that there is no confounders which affect both outcomes and interventions.   

Training Procedures and  Loss function 

  As we discussed in the previous section,  the counterfactual policy evaluation (CPE) was a 

powerful tool to address the pressing issue of evaluating the performance of public health 

interventions. The CPE problem was formulated  as a potential outcome or  counterfactual 

estimation problem (Bibaut et al. 2019). The RIN training consisted of the encoder training and 

decoder training. We first fitted a model of the system’s dynamics  of Covid-19 to the data from 

past experimental interventions to learn representations of the states of the dynamics of Covid-19 

(encoder training), and then used the learned fit  to extrapolate and forecast the response to the 

alternative  interventions (decoder training). 

Since the output is continuous, the mean square errors are used as the loss function for the 

encoder: 
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𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = ∑ ∑ ||𝑌𝑡+1
𝑖 − �̂�𝑡+1

𝑖 ||2
𝑇𝑖
𝑡=1

𝑛
𝑖=1  ,      (A1) 

where 𝑛 is the number of countries with outbreak of Covid-19 and 𝑇𝑖 is the length of the observed  

country’s trajectory of Covid-19. 

For the decoder, we assumed that observations were batched into shorter sequences of up to 𝜏𝑏, a  

prediction horizon. The loss function for the decoder is defined as 

𝐿𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = ∑ ∑ ∑ ||𝑌𝑡+𝜏
𝑖min {𝑇𝑖−𝑡,𝜏𝑏}

𝜏=2 − �̂�𝑡+𝜏
𝑖 ||2

𝑇𝑖
𝑡=1

𝑛
𝑖=1  .    (A2) 

The major  steps for encoder and decoder training were given below. 

Step 1: Data pre-processing  Data were split into training dataset (01/22-04/27, 2020) and 

validation dataset (04/28-05/08/2020).  All the input number of lab-confirmed cumulative cases 

𝑌𝑡 was pre-processed by the following transformation: �̃�𝑡 = log2(𝑌𝑡 + 1).   The number of new 

cases was calculated as 𝑌𝑡
𝑛𝑒𝑤 = 𝑌𝑡+1 − 𝑌𝑡 .  

Step 2: Generate the intervention measure curve  The intervention measure was calculated as 

follows. Set the intervention measure at the final time 𝐴𝑡𝑓 = 1 for China,  𝐴𝑡𝑓 = 0.3  for Korea 

South, Switzerland, United Kingdom, Spain, US, Italy, Germany, Iran, and France, and  𝐴𝑡𝑓 = 0 

for all other countries. Assume that The intervention measure curve is an exponential function 

starting at 0 and ends at  𝐴𝑡𝑓 . The intervention measure 𝐴𝑡 is given by 

𝐴𝑡 =
𝑝𝑡−1

𝑝−1
∗ (𝐴𝑡𝑓 − 𝐴0) + 𝐴0, where 𝑝 > 0, 𝑝 ≠ 1 is the curve shape factor and 𝑡 takes values in 

evenly sliced numbers of interval [0, 1], 𝐴0  is the intervention measure at the initial time 𝑡0 .    

When 𝑝 = 1, 𝐴𝑡 is a linear function 𝐴𝑡 = 𝑡 ∗ (𝐴𝑡𝑓 − 𝐴0) + 𝐴0. In this study, we set 𝑝 = 0.01. 
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Step 3: minibatches and normalization Randomly picked   𝑘 = 64 countries with 𝑙 = 7 length 

of Covid-19 time series data staring from the same day to generate 𝑘 time series with 𝑙 length  

for a minibatch  to be used for backpropagation training through time. Calculate the mean value 

of each time series in the batch.  The values of each time series were divided by their mean 

values.  

Step 4: Encoder Training  The randomly grouped  minibatch data with 𝑘 = 64 countries and 

𝑙 = 7 length of the number of lab confirmed new cases of Covid-19 and sequence of 

interventions were used as input to train the encoder. The standard back-propagation method  

and  the Adam Optimizer   were used to minimize the loss function of each batch, defined in 

equation (A1). Upon completion, the encoder was used to perform a feed-forward pass over the 

training data for extraction of  the internal states ℎ𝑡 that were used to train the decoder and for 

prediction of  one-step-ahead outcomes 𝑌𝑡+1.  

Step 5: Decoder Training  During decoder training, the decoder uses as input the extracted 

internal states ℎ𝑡 computed by the encoder,  the outcomes (𝑌𝑡+2, … , 𝑌𝑡+𝜏)  from the observational 

data that were batched into a shorter sequences of up to 𝜏 steps, and the planned sequence of 

interventions (𝐴𝑡+1, … , 𝐴𝑡+𝜏−1) . Similar to encoder training, the standard back-propagation 

method  and  the Adam Optimizer   were used to minimize the loss function of each batch, 

defined in equation (A2). The initial learning rate in the updating parameters in both encoder and 

decoder training was 0.02 and learning rate decay was 0.0001.   

Step 6: Evaluation of the Intervention Strategies and Forecasting  After completion of the 

training, the decoder can be used to evaluation of interventions. During evaluation,   we do not 

have access to ground-truth outcomes. Therefore, we used the decoder to make one step ahead 
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forecasting. The outcomes forecasted  by the decoder (�̂�𝑡+1, … , �̂�𝑡+𝜏−1) were recursively used as 

inputs. For each country, by running the decoder that was trained in step 5, with a sequence of 

planned interventions and recursively forecasted outcomes, we forecasted the response 

dynamics, i.e., the number of new cases of Covid-19 of the country over time under a sequence 

of interventions and evaluate the effects of  various intervention strategies on controlling the 

spread of Covid-19. By running the decoder, we can select  starting  and ending time of  different 

interventions and the optimal or appropriate interventions  to give over time to obtain the best  

outcomes of controlling the spread of Covid-19 for each country.  
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Figure S1. Architecture of vanilla RNN. 

 

 

Figure S2. Architecture of LSTM. 
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Figures S3. Counterfactual numbers of cases of Covid-19 over time worldwide to respond the 

interventions with values 0, 0.3, 0.5, 0.7 and 1.   
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Figure S4. Time-case plot of Covid-19 worldwide under three invention scenarios 
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