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Highlights  

• As the Covid-19 pandemic soars around the world, there is urgent need to forecast the 

number of cases worldwide at its peak, the length of the pandemic before receding and 

implement public health interventions to significantly stop the spread of Covid-19. 

• Develop artificial intelligence (AI) and causal inference inspired methods for real-time 

forecasting and evaluation of interventions on the worldwide trajectory of the spread of 

Covid-19. 

• We estimated the maximum number of cumulative cases under immediate additional 

intervention to be 2,271,648; under later additional intervention the number increased to 

3,864,872 and the case ending time would be May 25, 2020.  

• Without additional intervention, the spread of COVID-19 would be stopped on July 6, 2020.   

 

ABSTRACT 

Objective: Develop the AI and casual inference- inspired methods for forecasting and evaluating 

the effects of public health interventions on curbing the spread of Covid-19. 

Methods: We developed recurrent neural network (RNN) for modeling the transmission 

dynamics of the epidemics and Counterfactual-RNN (CRNN) for evaluating and exploring 

public health intervention strategies to slow down the spread of Covid-19 worldwide. We applied 

the developed methods to real-time forecasting the confirmed cases of Covid-19 across the 

world. The data were collected from January 22 to April 18, 2020 by John Hopkins Coronavirus 

Resource Center (https://coronavirus.jhu.edu/MAP.HTML).  
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Results: The average errors of 1-step to 10-step forecasting were 2.9%. In the absence of a 

COVID-19 vaccine, we evaluated the potential effects of a number of public health measures. 

We found that the estimated peak number of new cases and cumulative cases, and the maximum 

number of cumulative cases worldwide with one week later additional intervention were reduced 

to 103,872, 2,104,800, and 2,271,648, respectively. The estimated total peak number of new 

cases and cumulative cases would be the same as the above and the maximum number of 

cumulative cases would be 3,864,872 in the world with 3 week later additional intervention. 

Duration time of the Covid-19 spread would be increased from 91 days to 123 days. Our 

estimation results showed that we were in the eve of stopping the spread of COVID-19 

worldwide. However, we observed that transmission would quickly rebound if interventions 

were relaxed.  

Conclusions: The accuracy of the AI-based methods for forecasting the trajectory of Covid-19 

was high. The AI and causal inference- inspired methods are a powerful tool for helping public 

health planning and policymaking. We concluded that the spread of COVID-19 would be 

stopped very soon.  

Keywords: Cov-19, artificial intelligence, recurrent neural networks, causal inference, 

forecasting, time series.  
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Introduction 

As of April 28, 2020, global confirmed cases of Covid-19 passed 3,116,398 and has spread to  

210 countries, causing fear globally (Anastassopoulou et al. 2020). The serious public health 

threat of Covid-19 has never been seen for more than one century. The government officers and 

people around the world are desperately trying to slow the spread of Covid-19 (Irfan, 2020). We 

must change our policies to deal with increased mobility of citizens and immediately implement 

the public health interventions to stop the spread of Covid-19 across the world. How computer 

modeling of Covid-19’s transmission dynamics could help governments to quickly and strongly 

move slow down the spread of Covid-19?  

     Widely used statistical and computer methods for modeling of Covid-19 simulate the 

transmission dynamics of epidemics to understand their underlying mechanisms, forecast the 

trajectory of epidemics, and assess the potential impact of a number of public health measures on 

curbing the spread speed of Covid-19 (Li et al., 2020, Wu et al., 2020, Zhao et al., 2020, 

Kucharski et al., 2020, Tuite et al., 2020, Hellewell et al., 2020, Li et al. 2020). Although these 

epidemiological models are useful for estimating the dynamics of transmission, and evaluating 

the impact of intervention strategies, they have some serious limitations (Funk et al., 2018, 

Johansson et al., 2019). First, the epidemiological models consist of ordinary differential 

equations that have many unknown parameters, and depend on many assumptions. It is difficult 

to translate public interventions to these parameters. Most analyses used hypothesized 

parameters, which often lead to fitting data very poor. Health officers desperately want to track 
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the trajectory of epidemics and accurately estimate the peak time and umber of cases, duration, 

and ending time and number of cases of Covid-19 for their health policy plan. However, the 

forecasting results of using the classical epidemiological models such as Susceptible-Exposed-

Infectious-Removed (SEIR) models are highly unreliable. Second, the successful application of 

public health intervention planning highly depends on the model parameter identifiability. 

However, overall, the parameters in the complex compartmental dynamic models are 

unidentifiable (Roosa and Chowell, 2019, Roda et al., 2020). The values of parameters cannot be 

uniquely determined from the real data (Gábor et al., 2017). The variances of the estimators of 

these parameters are very high.  

     To overcome limitations of the epidemiological model approach, and assist public health 

planning and policy making, we formulated the real-time forecasting and evaluating multiple 

public health intervention problem into forecasting treatment response problem. We viewed the 

interventions as treatments where multiple interventions were administered at different time 

points. The number of new cases were taken as treatment responses. The ability to accurately 

estimate effects of public health interventions over time would allow health officers to determine 

what intervention strategies should be used and the optimal time at which to implement them 

(Lim et al., 2018). Recurrent Intervention Network (RIN) (Lim et al., 2018) where a recurrent 

neural network architecture for forecasting a nation’s response (number of new cases) to a series 

of planned interventions were used to forecast and evaluate multiple public health interventions 

for Covid-19 worldwide. Potential outcomes of RIN were trajectory of the spread of Covid-19. 

Public health interventions including locking down residential buildings and compounds, strict 

self-quarantine for families, door-to-door inspection for suspected cases, matining social 

distancing, stopping mass gatherings, closure of schools and universities, vacating hotels and 
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university dormitories. To quantify comprehensive intervention strategies, an intervention 

variable was used as an input variable for each block of RIN. We cluster all the countries in the 

world into several groups. For each group, a value (weight) was assigned to each group such that 

the average prediction error of CRN was minimum. The RIN is taken as a general framework for 

investigating how Covid-19 evolves under different intervention plans, how individual nation 

responds to intervention over time, but also which are optimal timings for assigning 

interventions. Therefore, this approach will provide new tools to improve public health planning 

and policy making. 

The RIN was applied to the surveillance data of confirmed and new Covid-19 cases in the world 

up to April 7, 2020. Data on the number of confirmed, new and death cases of Covid-19 from 

January 22, 2020 to April 7, 2020 were obtained from John Hopkins Coronavirus Resource 

Center (https://coronavirus.jhu.edu/MAP.HTML).  

Methods 

RIN as a Framework for modeling and forecasting the spread of Covid-19 over time with 

multiple interventions 

The RIN uses sequence-to-sequence multi- input/output recurrent neural network (RNN) 

architectures to model health intervention plan and make multi-step prediction of the response 

trajectory of Covid-19 over time with multiple interventions (Lim et al., 2018). The RNN can 

learn the complex dynamics within the temporal ordering of input time series of Covid-19 and 

use an internal memory to remember. The health intervention plan has multiple intervention 

regimens. As shown in Figure 1, the RIN determines the intervention response (similar to 

counterfactual outputs) for a given set of planned interventions and evaluates the impact of 
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different intervention strategies and their implementation times on the curbing the spread of 

Covid-19 and provides timely selection of optimal sequence of intervention strategies.  

The RIN is a RNN autoencoder. It consists of two RNNs: the encoder RNN (standard RNN or 

long short-term memory (LSTM) is used as encoder) and the decoder RNN (standard RNN or 

LSTM is used as the decoder). The RNN encoder models input time series (past history of the 

number of cases of Covid-19 over time) and predicts future response time series (number of 

cases of Covid-19 in the future with a planned sequence of interventions) (Srivastava et al., 

2015). The latent state of the RNN encoder after reading in the entire input time series (past 

trajectory of Covid-19), is the representation (compressed latent features of the entire input time 

series) of the input trajectory of Covid-19. Unlike the standard decoder where the decoder 

reconstructs back the input time series from the latent representation, the RNN decoder uses the 

learned features of the dynamics of Covid-19 in the RNN encoder to forecast the potential 

response time series, given a sequence of planned public health interventions as an input to the 

RNN decoder. The feature vector learned in the RNN encoder is then provided as an input to the 

RNN decoder which initiate prediction of the future dynamics of Covid-19 under the future 

interventions (Figure 2). 

Training the RIN 

RIN training consisted of RNN encoder training and RNN decoder training. We first introduced 

RNN encoder training procedures. The basic RNN unit in the RIN consisted of input layer, 

hidden layer and output layer. The input variables in the RNN encoder included covariates 𝑋𝑡 

such as density of population, traffic flow, health facility resources, GDP, and social-economic 

status, intervention variable 𝐴𝑡 and the numbers of cases (potential outcomes) 𝑌𝑡 at the time 𝑡. 

The state in the hidden layer at the time 𝑡 was denoted by ℎ𝑡. The output layer had the output 
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variable 𝑌𝑡+1 . A nonlinear activation function was exponential linear unit (ELU) (Clevert et al., 

2015) which was defined as  

 𝑓(𝑥) = {
𝑥 𝑥 > 0

𝛼(𝑒𝑥 − 1) 𝑥 ≤ 0 , 

where 𝛼 > 0.  

   The input data were divided into several batches with length of 7 days. Each batch was used to 

train the RNN encoder which forecasted standard one-step-ahead intervention response �̂�𝑡+1 as 

close to the observed intervention response 𝑌𝑡+1  as possible via the nonlinear mapping 

(Supplementary A) 

�̂�𝑡+1 = 𝑓(𝑋𝑡 ,𝐴𝑡 , 𝑌𝑡 , ℎ𝑡−1 ).         (1) 

The mean-squared error was used as loss function for training the RNN encoder. The training 

was performed via the standard propagation algorithms (Supplementary A). After training was 

completed, the RNN encoder extracted the hidden state ℎ𝑡that captured the internal features of 

the transmission dynamics of Covid-19 via performing a feed-forward pass over the training data 

on the RNN encoder (Supplementary A). 

     After the RNN encoder training was completed, we began to train the RNA decoder. A RNN 

unit in the RNN decoder consisted of input layer with intervention variable 𝐴𝑡+𝜏 , (𝜏 = 1,2, … ), 

hidden layer with hidden state 𝑍𝑡+𝜏−1 and output 𝑌𝑡+𝜏+1. For a given country, observations 

(intervention 𝐴𝑡 and the number of cases 𝑌𝑡 were randomly divided into short batches of up to 𝜏𝑏  

time steps. Each batch of short sequence starting at time 𝑡 and ending at time 𝑡 + 𝜏𝑏 − 1 

consisted of {ℎ𝑡 , (𝐴𝑡+1, 𝑌𝑡+2 , … , 𝐴𝑡+𝜏𝑏−1 , 𝑌𝑡+𝜏𝑏
)}. The mean square errors were still used as the 
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RNN decoder loss function. The goal of RNN decoder training is to make its training loss 

function smallest (Supplementary A). 

Forecasting Procedures 

The trained RIN was used to forecast the future number of cumulative cases of Covid-19 for 

each country. The recursive multiple-step forecasting involved using a one-step model multiple 

times where the prediction for the preceding time step and intervention strategy were used as an 

input for making a prediction on the following time step. For example, for forecasting the 

number of new confirmed cases for the one more next day, the predicted number of new cases in 

one-step forecasting would be used as an observational input in order to predict day 2. Repeat the 

above process to obtain the two-step forecasting. The summation of the final forecasted number 

of new confirmed cases for each country was taken as the prediction of the total number of new 

confirmed cases of Covid-19 worldwide.  

Data Collection 

The analysis is based on surveillance data of confirmed cumulative and new COVID-19 cases 

worldwide as of April 7, 2020. Data on the number of cumulative and new cases and COVID-19-

attributed deaths across 184 countries from January 22, 2020 to April 7 were obtained from John 

Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/MAP.HTML).  

Data Pre-processing 

log2 was used to transform the original data: �̃� = log2(𝑋 + 1). A value of 1 was assigned to the 

intervention variable for China. A value of zero was assigned to the intervention variable if the 

country did not implement intervention. Evenly spaced numbers over the interval [0, 1] were 

assigned to the intervention variable for other countries. The values of intervention variable were 
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determined such that they minimized the prediction error via training process. The data were 

divided into batches. To train the RIN, the countries and starting day in each selected country 

were randomly selected. The length of each batch was 7. The values of each time series in the 

batch were divided by their mean values to normalize the data. 

Results 

Prediction accuracy of dynamics of Covid-19 using RIN 

Accurate prediction of the spread of Covid-19 is important for health intervention plan for the 

future. To demonstrate that the RIN is an accurate forecasting method, the RIN was applied to 

confirmed accumulated cases of COVID-19 across 184 countries. Figure 3 plotted reported and 

one-step ahead predicted time-case curves of Covid-19 where blue dotted curve was the number 

of reported cumulative cases after the analysis completion. To further reliably evaluate the 

forecasting accuracy, we reported 10-step ahead forecasted numbers of cumulative cases and 

errors of Covid-19 of 8 countries in Table S1 starting with April 8, 2020. The forecasting errors 

were quite mall.  

 Inputting a sequence of hypothesized public health intervention strategies, the outputs of the 

RIN decoder were counterfactual numbers of cases of Covid-19 to respond to the intervention 

strategies. Interventions were measured by number in the interval [0, 1], where 1 indicated the 

strictest comprehensive public health intervention, 0 indicated no intervention and the values 

between 0 and 1 indicated the various less strict interventions. To intuitively illustrate the impact 

of the measure of intervention on the spread of Covid-19, we presented Figure S1. Figure S1 

plotted counterfactual numbers of cases of Covid-19 over time worldwide to respond the 

interventions with values 0.3, 0.5, 0.7 and 1. We observed that if the measure of intervention was 
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1, the number of cases was dramatically deceased to zero. However, when the measure of 

intervention was 0.3, the number of cases exponentially increased. The measure of intervention 

had big effect on the spread of Covid-19. 

 The number of cases of Coid-19 was a function of the past history and the measure of 

intervention. Forecasting also depended on the measure of intervention. In Table S1, we also 

listed the measures of the interventions which provided information on the degrees of current 

interventions in the country. The measure of interventions in the most countries was 0.75. 

However, the current measure of interventions in UK was 0.5, the smallest in 8 countries. These 

results showed that the RIN for forecasting the trajectory of Covid-19 was accurate and reliable. 

Similar to causal inference, the RIN can be used to evaluate the impact of a sequence of multiple 

intervention strategies on the curbing the spread of Covid-19 if the interventions were viewed as 

treatments. 

The number of cases of Covid-19 grows exponentially without additional intensive 

interventions 

To investigate how Covid-19 pandemic surges around the world, we presented Figure 4 that 

showed the forecasted number of cumulative cases of Covid-19 worldwide over time, assuming 

that the current intention remains unchanged. We observed that the number of cumulative cases 

of Covid-19 exponentially grown and would reach extremely high number 199,554,596 on July 

6, 2020 if none of additional comprehensive public health intervention was implemented. 

Similarly, Figure 5 and Figure S2 plotted time-case curves of Covid-19 of eight countries: Italy, 

Spain, Iran, Germany, USA, France, Belgium and UK, and worldwide with unchanged 

intervention strategies in the future, respectively. We also observed exponentially growth of the 

numbers of cases of Coid-19 for every country without additional intervention.  
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We are in the eve to successfully curb the spread of Covid-19 

As Covid-19 Accelerates and exponentially grows, how to slow down the spread of Covid-19 is 

an urgent task for every country around world. To demonstrate that when the additional 

intervention was implemented, the number of new cases of Covid-19 would decrease, we 

presented Figures 6 and Figure 7. Figures 6 and 7 plotted the number of cumulative case and new 

case curves of Covid-19 over time for 12 countries: US, Italy, Spain, Germany, France, Iran, UK, 

Switzerland, Belgium, South Korea, Japan and Singapore under three invention scenarios, 

respectively. Scenario 1 started with the current interventions for one week, then transitioned to 

the intervention with a measure of 0.95 in two weeks. The scenario 2 started with the current 

intervention for the first week, and then transitioned to the intervention with a measure of 0.95 in 

three weeks. The scenario 3 started with the current intervention for one week, changed to 0.85 

in three weeks and finally transitioned to the intervention with a measure of 0.95 in three weeks. 

Figures 6 and 7 showed that when the countries moved to intervention with measure of 0.95, the 

spread of Covid-19 in all 12 countries was curbed. Now the measures of interventions in the 

most of 12 countries were closer to 0.75 (Table S1). These countries were closing to stopping the 

spread of Covid-19 if additional interventions such as wearing face masks were implemented.  

 Next we investigated how various intervention strategies reduced the peak time and cumulative 

case numbers, and the final total number of cases. Table S2 showed the forecasted results of 

COVID-19 in 12 countries under three sequences of interventions (Scenarios 1-3). We can see 

that under all three scenarios, the peak times were before April 15, 2020 and the spread of 

COVID-19 would be sopped before the end of May, 2020.  

Conclusion/Discussion 
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As an alternative to the epidemiologic transmission models, we formulated the real-time 

forecasting and evaluating multiple public health intervention problem into a novel causal 

inference problem. We viewed the interventions as treatments where multiple interventions were 

administered at different time points. The number of new cases were taken as treatment 

responses.   The RIN uses sequence-to-sequence multi-input/output recurrent neural network as a 

tool for modeling the real-time trajectory of the transmission dynamics of Covid-19, health 

intervention planning and making multi-step prediction of the response trajectory of Covid-19 

over time with multiple interventions. The RNN can learn the complex dynamics within the 

temporal ordering of input time series of Covid-19  and  use an internal memory to remember the 

hidden features. 

     This AI and causal inference- inspired approach allows us to address three important 

questions. The first question is the prediction accuracy.  Unlike other dynamic systems where the 

parameters in the systems and control variables are, in general,  independent, the epidemic 

systems  have intervention and system dependent parameters. We designed the intervention 

variable that quantified comprehensive intervention strategies and had close relationships with 

the parameters in the epidemic systems. Therefore, the RINs could take the parameters in the 

epidemic dynamic systems as input control variables that can be estimated in the RIN training. 

The RIN models were closer to real epidemic dynamic systems than the epidemiological models. 

Therefore, our results showed that the RIN substantially improved the accuracies of prediction 

and subsequently multiple-step forecasting.  

     The second question is how important is the intervention time. Since interventions are 

complicated and are difficult to quantify, we designed four intervention scenarios to represent the 

degrees  and delays of interventions. Since the proposed methods combine the real data and  
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models, they allowed us to evaluate the consequences of  multiple intervention strategies, while 

maintaining  the analysis as close to the real data as possible. The RIN investigated the impact of 

multiple public intervention plans and intervention measures on the size, duration and time of the 

virus outbreak and recommended  the appropriate intervention times.  

     We estimated the duration, peak time and ending time, peak number of new cases and 

cumulative cases , and maximum number of cumulative cases of COVID-19 under four 

intervention scenarios for 184 countries in the world. We observed that the number of 

cumulative cases of Covid-19 would exponentially grow and reach extremely high number 

199,554,596 on July 6, 2020 if none of additional comprehensive public health intervention was 

implemented.  However, we also found that top 12 countries with the largest number of the lab 

confirmed cumulative cases of COVID-19 were closing to stopping the spread of Covid-19 if 

additional interventions such as wearing face masks were implemented. We can see that under 

all three scenarios, the peak times were before April 15, 2020 and the spread of COVID-19 

would be sopped before the end of May, 2020.   
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Figure Legend 

Figure 1. Forecasting intervention response to curbing the spread of Covid-19 under a sequence 

of interventions.  

Figure 2. Architecture of recurrent intervention network. 

Figure 3. Reported and predicted time-case curves of Covid-19 worldwide where blue dotted 

curve was the number of reported cumulative cases after the analysis completion.  

Figure 4. The numbers of cumulative and new cases of Covid-19 worldwide over time, 

assuming the current intention remains unchanged. The curves in blue color and red color 

represented the number of cumulative cases and the number of new cases, respectively. 

Figure 5. Forecasted number of cumulative cases of Covid-19 of eight countries Italy (A), Spain 

(B), Iran (C), Germany (D), USA (E), France (F), UK (G) and Belgium (H) over time without 

additional interventions. 

Figure 6. Number of cumulative case curves of Covid-19 over time for 12 countries under three 

invention scenarios. (A) Time-case plot for US, (B) Time-case plot for Italy, (C) Time-case plot 
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for Spain, (D) Time-case plot for Germany, (E) Time-case plot for France, (F) Time-case plot for 

Iran, (G) Time-case plot for UK, (H) Time-case plot for Switzerland, (I) Time-case plot for 

Belgium, (J) Time-case plot for South Korea, (K) Time-case plot for Japan, and (L) Time-case 

plot for Singapore.  

Figure 7. Number of new case curves of Covid-19 over time for 12 countries under three 

invention scenarios. (A) Time-new case plot for US, (B) Time-new case plot for Italy, (C) Time-

new case plot for Spain, (D) Time-new case plot for Germany, (E) Time-new case plot for 

France, (F) Time-new case plot for Iran, (G) Time-new case plot for UK, (H) Time-new case 

plot for Switzerland, (I) Time-new case plot for Belgium, (J) Time-new case plot for South 

Korea, (K) Time-new case plot for Japan, and (L) Time-new case plot for Singapore.  
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Figure 1. Forecasting intervention response to curbing the spread of Covid-19 under a sequence 

of interventions.  
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Figure 2. Architecture of recurrent intervention network. 
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Figure 3. Reported and predicted time-case curves of Covid-19 worldwide where blue dotted 

curve was the number of reported cumulative cases after the analysis completion.   
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Figure 4. The numbers of cumulative and new cases of Covid-19 worldwide over time, 

assuming the current intention remains unchanged. The curves in blue color and red color 

represented the number of cumulative cases and the number of new cases, respectively. 
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Figure 5. Forecasted number of cumulative cases of Covid-19 of eight countries Italy (A), Spain 

(B), Iran (C), Germany (D), USA (E), France (F), UK (G) and Belgium (H) over time without 

additional interventions. 
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Figure 6. Number of cumulative case curves of Covid-19 over time for 12 countries under three 

invention scenarios. (A) Time-case plot for US, (B) Time-case plot for Italy, (C) Time-case plot 

for Spain, (D) Time-case plot for Germany, (E) Time-case plot for France, (F) Time-case plot for 

Iran, (G) Time-case plot for UK, (H) Time-case plot for Switzerland, (I) Time-case plot for 

Belgium, (J) Time-case plot for South Korea, (K) Time-case plot for Japan, and (L) Time-case 

plot for Singapore.  
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Figure 7. Number of new case curves of Covid-19 over time for 12 countries under three 

invention scenarios. (A) Time-new case plot for US, (B) Time-new case plot for Italy, (C) Time-

new case plot for Spain, (D) Time-new case plot for Germany, (E) Time-new case plot for 

France, (F) Time-new case plot for Iran, (G) Time-new case plot for UK, (H) Time-new case 

plot for Switzerland, (I) Time-new case plot for Belgium, (J) Time-new case plot for South 

Korea, (K) Time-new case plot for Japan, and (L) Time-new case plot for Singapore.  
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Supplementary Note A 

Recurrent Intervention Network (RIN) 

Simple RNN Unit 

RIN consisted of an encoder RNN and a decoder RNN. Basic unit of RNN in both encoder and 

decoder had three layers: input, recurrent hidden and output layers. The input layer consisted of 

three types of variables: covariates 𝑋𝑡 = [𝑋𝑡
1,… , 𝑋𝑡

𝑘]𝑇, a scaler intervention variable 𝐴𝑡 and the 

numbers of cases (potential outcomes) 𝑌𝑡 at the time 𝑡.  Define the input vector 𝑉𝑡  as 

𝑉𝑡 = [

𝑋𝑡

𝐴𝑡

𝑌𝑡

] . 

Let  ℎ𝑡 = [ℎ𝑡
1, … , ℎ𝑡

𝑚 ]𝑇 be a 𝑚  dimensional hidden state vector. The data 𝑉𝑡  is inputted into the 

input layer. The linear transformation 𝑊𝑣ℎ 𝑉𝑡 of the data 𝑉𝑡  is then sent to the hidden layer, where  

𝑊𝑣ℎ is a 𝑚 × (𝑘 + 2) dimensional matrix. The hidden layer receives information from the input 

layer and hidden layer at the previous time point.     The state is determined by the following 

nonlinear transformation of its  received information: 

ℎ𝑡 = 𝑓ℎ(𝑊ℎℎℎ𝑡−1 + 𝑊𝑣ℎ 𝑋𝑡 + 𝑏ℎ) ,    
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where  𝑊ℎℎ  is a 𝑚 × 𝑚 dimensional weight matrix that connect the previous state to the current 

state, and 𝑏ℎ = [𝑏ℎ
1, … , 𝑏ℎ

𝑚]𝑇 is a 𝑚 dimensional bias vector that corrects the bias, and 𝑓ℎ is a 

element-wise nonlinear activation  function and is often defined as the following “tanh” function: 

tanh(𝑥) =
𝑒𝑥 −𝑒−𝑥

𝑒𝑥 +𝑒−𝑥  . 

The neurons in hidden layer are connected to the output layer via a 𝑚 dimensional weight vector 

𝑊ℎ𝑦.  The output �̂�𝑡+1  is determined by 

�̂�𝑡+1 = 𝑓𝑜(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑜) ,           

where  𝑓𝑜 is an activation function and 𝑏𝑜  is the bias vector of the output neurons. 

Long Short Term Memory Network Unit 

Long Short Term Memory network (LSTM) is a special kind of RNN, capable of learning long-

term dependencies (Hochreiter  and Schmidhuber, 1997; Srivastava et al. 2015). Each LSTM 

unit has a cell that is a memory unit. The key to LSTMs is the cell state. The cell state is 

determined by four gates: forget gate, input gate, input modulation, and output gate. At each time 

step, the unit receives input from two external sources: the current input variables 𝑉𝑡  and the 

previous hidden states ℎ𝑡−1.  The total input activates the gates through sigmoid function and  the 

tanh nonlinear function. The forget gate layer decides what information we’re going to throw 

away from the cell state: 

𝑓𝑡 = 𝜎(𝑊𝑣𝑓𝑉𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 ) + 𝑏𝑓  . 

The next step, the input gate layer decides which values we’ll update: 

 𝑖𝑡 = 𝜎(𝑊𝑣𝑖𝑉𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖), 
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Next, input modulation gate creates a vector of new candidate values, 𝑔𝑡, that could be added to 

the state: 

𝑔𝑡 = tanh(𝑊𝑣𝑐𝑉𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) . 

The old cell state is updated by  

𝐶𝑡 = 𝑓𝑡 °𝐶𝑡−1 + 𝑖𝑡°𝑔𝑡 , 

where °  denotes element-wise multiplication. 

Output gate decides what parts of the cell state we’re going to output: 

𝑂𝑡 = 𝜎(𝑊𝑣𝑜𝑉𝑡 + 𝑊ℎ𝑜 ℎ𝑡−1 + 𝑏𝑜 ) ,  

ℎ𝑡 = 𝑜𝑡°tanh (𝐶𝑡) , 

𝑌𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 . 

Loss function 

Since the output is continuous, the mean square errors are used as the loss function for the 

encoder: 

𝐿 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = ∑ ∑ ||𝑌𝑡+1
𝑖 − �̂�𝑡+1

𝑖 ||2𝑇𝑖
𝑡=1

𝑛
𝑖=1  .      (A1) 

For the decoder, we assumed that observations were batched into shorter sequences of up to 𝜏𝑏 . 

The loss function for the decoder is defined as 

𝐿 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = ∑ ∑ ∑ ||𝑌𝑡+𝜏
𝑖min {𝑇𝑖 −𝑡,𝜏𝑏}

𝜏=2 − �̂�𝑡+𝜏
𝑖 ||2𝑇𝑖

𝑡=1
𝑛
𝑖=1  .    (A2) 

Algorithm for RIN training is summarized as follows (Lim et al., 2018). 

Algorithm  
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Input: training and validation data {𝑌1, … , 𝑌𝑇 ,𝑋1, … , 𝑋𝑇 , 𝐴1,… , 𝐴𝑇} . 

Output: Weights in the RNN encoder and RNN decoder. 

Step 1 : Estimate parameters 𝜃𝐸  in encoder . 

Fit the encoder and estimate 𝜃𝐸  by optimizing 𝐿 𝑒𝑛𝑐𝑜𝑑𝑒𝑟  in equation (A1): 

𝜃𝐸 ← min
𝜃𝐸

𝐿 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝜃𝐸 ) .  

Step 2: Estimate encoder states for initialization of decoder) 

For 𝑛 = 1 to 𝑁 do 

   for 𝑡 = 1 to 𝑇  

     ℎ𝑡(𝑖) = 𝑅𝑁𝑁(ℎ𝑡−1(𝑖), (𝑖),𝐴𝑡 (𝑖),𝑌𝑡(𝑖); 𝜃𝐸) 

   end for 

end for 

Step 3:  Estimate parameters in RNN decoder 

Fit the decoder and estimate 𝜃𝐷 by optimizing 𝐿 𝑑𝑒𝑐𝑜𝑑𝑒𝑟  in equation (A2): 

𝜃𝐷 ← min
𝜃𝐷

𝐿 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝜃𝐷) ..  

Potential outcome framework for evaluation of public health interventions  

Potential outcome framework is our basic model to evaluate the impact of the public health 

interventions on the spread of Covid-19. The potential outcome framework is often referred to 

the Neyman-Rubin  model (Rubin 1974). Potential outcomes consist of actual (or observed) and 
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counterfactual (hypothesized) outcomes.  We are interested in number of  cases of Covid-19 

under some specific intervention.  We observed the number of cases of Covid-19  (actual 

observation) without intervention. However, we want to know  what number of cases of Covid-

19 (counterfactual, unobserved) would be if an intervention was implemented.  To evaluate the 

effect of intervention, we should compare the difference between the observed actual number of 

cases of Covid-19 and the counterfactual number of cases of Covid-19. Our aim is to learn the 

counterfactual  outcomes  of Coid-19 under a sequence of public health intervention options and 

evaluate the impact of the intervention strategies on the spread of Covid-19. 

   Let 𝑋𝑡 be a set of covariates and  𝐴𝑡 be an intervention at time 𝑡. 𝐴𝑡 can be a binary variable.  

𝐴𝑡 = 1 (𝐴𝑡 = 0) indicates that intervention is (not) implemented.  𝐴𝑡 can also be continuous 

variable taking values in the interval [0, 1]. If 𝐴𝑡 is a continuous variable, the value of  𝐴𝑡 

represents the intensity of intervention. 𝐴𝑡 = 1 indicates that the intervention is the most strict 

and comprehensive public health intervention. Let 𝑌𝑡+1 = 𝑌(𝑎𝑡) be   the potential outcome under 

intervention 𝑎𝑡 and be observed  only when 𝐴𝑡 = 𝑎𝑡.  The potential outcome framework assumes 

the existence of the hypothetical outcome with some interventions which is not observed in the 

data. The hypothetical outcome under hypothetical intervention is called counterfactual outcome. 

The set {𝑋𝑡 , 𝐴𝑡 , 𝑌𝑡+1} forms a potential framework for causal inference. 

Assumptions 

We introduce assumptions in the Neyman-Rubin  model (Bica et al., 2020).  

Assumption 1. (Consistency). If a nation receives an intervention 𝐴𝑡 = 𝑎𝑡, then the potential 

outcome for the intervention 𝑎𝑡 is equal to the observed (factual) outcome 𝑌𝑡=1 (𝑎𝑡) = 𝑌𝑡+1 . 

Assumption 2. (Overlap). For all (𝑎1, 𝑥1,… , 𝑎𝑡−1, 𝑥𝑡−1), we have 
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0 < 𝑃(𝐴𝑡 = 𝑎𝑡|𝐴1 = 𝑎1, 𝑋1 = 𝑥1, … , 𝐴𝑡−1 = 𝑎𝑡−1 , 𝑋𝑡−1 = 𝑥𝑡−1) < 1 . 

Assumption 3. Sequential strong ignorability. Conditional on 𝐴1 = 𝑎1,𝑋1 = 𝑥1,… , 𝐴𝑡−1 =

𝑎𝑡−1 , 𝑋𝑡−1 = 𝑥𝑡−1, the potential outcomes 𝑌𝑡+1  are independent of  𝐴𝑡, 

𝑌𝑡+1(𝑎𝑡) ⫫ 𝐴𝑡 | 𝐴1 = 𝑎1, 𝑋1 = 𝑥1,… , 𝐴𝑡−1 = 𝑎𝑡−1, 𝑋𝑡−1 = 𝑥𝑡−1   .  

Assumption 3 implies that there is no confounders which affect both outcomes and interventions.   
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Figures S1. Counterfactual numbers of cases of Covid-19 over time worldwide to respond the 

interventions with values 0.3, 0.5, 0.7 and 1. 
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Figure S2. Time-case plot of Covid-19 worldwide under four invention scenarios 
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Table S1.  Forecasting errors of  worldwide 

and eight countries. . 

Country Estimated  Reported Error 

Italy 0.75     

4/8/2020 138341 139422 -0.0078 

4/9/2020 142657 143626 -0.0067 

4/10/2020 147052 147577 -0.0036 

4/11/2020 151508 152271 -0.005 

4/12/2020 155822 156363 -0.0035 

4/13/2020 160129 159516 0.00384 

4/14/2020 164545 162488 0.01266 

4/15/2020 169203 165155 0.02451 

4/16/2020 174193 168941 0.03109 

4/17/2020 179283 172434 0.03972 

Spain 0.75     

4/8/2020 141942 148220 -0.0424 

4/9/2020 145247 153222 -0.052 

4/10/2020 150194 158273 -0.051 

4/11/2020 155344 163027 -0.0471 

4/12/2020 160104 166831 -0.0403 

4/13/2020 164682 170099 -0.0318 

4/14/2020 169139 172541 -0.0197 

4/15/2020 173455 177644 -0.0236 

4/16/2020 178560 184948 -0.0345 

4/17/2020 183943 190839 -0.0361 

Iran 0.75   

4/8/2020 62589 64586 -0.0309 

4/9/2020 63903 66220 -0.035 

4/10/2020 65892 68192 -0.0337 

4/11/2020 67985 70029 -0.0292 

4/12/2020 69973 71686 -0.0239 

4/13/2020 71849 73303 -0.0198 

4/14/2020 73643 74877 -0.0165 

4/15/2020 75383 76389 -0.0132 
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4/16/2020 77438 77995 -0.0071 

4/17/2020 79609 79494 0.00144 

Germany 0.75     

4/8/2020 107663 113296 -0.0497 

4/9/2020 110094 118181 -0.0684 

4/10/2020 113823 122171 -0.0683 

4/11/2020 117559 124908 -0.0588 

4/12/2020 121054 127854 -0.0532 

4/13/2020 124405 130072 -0.0436 

4/14/2020 127755 131359 -0.0274 

4/15/2020 130932 134753 -0.0284 

4/16/2020 134696 137698 -0.0218 

4/17/2020 138658 141397 -0.0194 

US 0.60 ->0.65   

4/8/2020 397505 429052 -0.0735 

4/9/2020 418314 462780 -0.0961 

4/10/2020 446258 496535 -0.1013 

4/11/2020 478409 526396 -0.0912 

4/12/2020 509746 555313 -0.0821 

4/13/2020 541540 580619 -0.0673 

4/14/2020 572983 607670 -0.0571 

4/15/2020 604249 636350 -0.0504 

4/16/2020 642404 667801 -0.038 

4/17/2020 683412 699706 -0.0233 

France 0.6     

4/8/2020 86839 83057 0.04554 

4/9/2020 92414 87366 0.05778 

4/10/2020 99041 91738 0.0796 

4/11/2020 105138 94863 0.10831 

4/12/2020 111820 121712 -0.0813 

4/13/2020 119355 125394 -0.0482 

4/14/2020 127629 131361 -0.0284 

4/15/2020 136860 134582 0.01693 

4/16/2020 146225 147091 -0.0059 

4/17/2020 156437 149130 0.04899 

Belgium 0.6     

4/8/2020 22786 23403 -0.0264 

4/9/2020 24285 24983 -0.0279 

4/10/2020 25772 26667 -0.0335 

4/11/2020 27465 28018 -0.0197 

4/12/2020 29092 29647 -0.0187 
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4/13/2020 30819 30589 0.00751 

4/14/2020 32630 31119 0.04856 

4/15/2020 34521 33573 0.02825 

4/16/2020 36689 34809 0.05401 

4/17/2020 38952 36138 0.07786 

UK 0.5     

4/8/2020 55949 61474 -0.0537 

4/9/2020 59873 65872 -0.0478 

4/10/2020 63963 74605 -0.0971 

4/11/2020 68874 79874 -0.0875 

4/12/2020 73829 85206 -0.0767 

4/13/2020 78544 89570 -0.0564 

4/14/2020 83393 94845 -0.0429 

4/15/2020 88391 99483 -0.0202 

4/16/2020 94533 104145 0.00944 

4/17/2020 100968 109769 0.03214 

Worldwide 0.7     

4/8/2020 1412237 1480202 -0.016 

4/9/2020 1490688 1565278 -0.048 

4/10/2020 1569708 1657526 -0.053 

4/11/2020 1655960 1735650 -0.046 

4/12/2020 1739545 1834721 -0.052 

4/13/2020 1825078 1904838 -0.04 

4/14/2020 1912021 1976191 -0.032 

4/15/2020 2000928 2056054 -0.027 

4/16/2020 2104800 2152646 -0.022 

4/17/2020 2212119 2240190 -0.013 
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 Table S2. COVID-19 dynamics in 12 countries and worldwide  for three scenarios. 
   

Scenario Country US Italy Spain Germany France Iran 

  Peak Time 4/15/2020 3/20/2020 3/24/2020 3/26/2020 4/15/2020 3/29/2020 

  Peak Number (New) 57039 6557 9630 6933 9365 3186 

Scenario 1 Peak Number (Cumulative) 755875 53578 49515 50871 146225 41495 

  End Time 4/23/2020 4/23/2020 4/23/2020 4/23/2020 4/23/2020 4/23/2020 

  End Cases 854416 182006 186792 140749 162640 80762 

  Duration 91 84 83 88 91 65 

  Peak Time 4/15/2020 3/20/2020 3/24/2020 3/26/2020 4/15/2020 3/29/2020 

  Peak Number (New) 57039 6557 9630 6933 9365 3186 

Scenario 2 Peak Number (Cumulative) 755875 53578 49515 50871 146225 41495 

  End Time 5/5/2020 5/2/2020 5/2/2020 5/2/2020 5/5/2020 5/2/2020 

  End Cases 1076779 197400 202656 152411 199269 87131 

  Duration 103 93 92 97 103 74 

  Peak Time 4/15/2020 3/20/2020 3/24/2020 3/26/2020 4/15/2020 3/29/2020 

  Peak Number (New) 57039 6557 9630 6933 9365 3186 

Scenario 3 Peak Number (Cumulative) 755875 53578 49515 50871 146225 41495 

  End Time 5/25/2020 5/25/2020 5/25/2020 5/25/2020 5/25/2020 5/25/2020 

  End Cases 1601040 267917 275228 205519 282349 115857 

  Duration 123 116 115 120 123 97 

Scenario Country Switzerland Belgium Korea South Japan Singapore Worldwide 

  Peak Time 3/22/2020 4/15/2020 4/7/2020 4/3/2020 4/4/2020 4/15/2020 

  Peak Number (New) 1321 2168 1005 522 120 103872 

Scenario 1 Peak Number (Cumulative) 8795 36689 11336 3139 1309 2104800 

  End Time 4/23/2020 4/23/2020 4/22/2020 4/22/2020 4/23/2020 4/23/2020 

  End Cases 32137 40346 15125 4954 1833 2271648 

  Duration 59 80 90 88 91 91 
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  Peak Time 3/22/2020 4/15/2020 4/7/2020 4/3/2020 4/4/2020 4/15/2020 

  Peak Number (New) 1321 2168 1005 522 120 103872 

Scenario 2 Peak Number (Cumulative) 8795 36689 11336 3139 1309 2104800 

  End Time 5/4/2020 5/5/2020 5/4/2020 5/4/2020 5/3/2020 5/4/2020 

  End Cases 35563 48283 16612 5388 1973 2620765 

  Duration 70 92 102 100 101 102 

  Peak Time 3/22/2020 4/15/2020 4/7/2020 4/3/2020 4/4/2020 4/15/2020 

  Peak Number (New) 1321 2168 1005 522 120 103872 

Scenario 3 Peak Number ( Cumulative) 8795 36689 11336 3139 1309 2104800 

  End Time 5/25/2020 5/25/2020 5/25/2020 5/25/2020 5/24/2020 5/25/2020 

  End Cases 46840 65700 21446 6753 2409 3864872 

  Duration 91 112 123 121 122 123 
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