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ABSTRACT 

The aim of this study was to develop a realistic network model to predict the relationship 

between lockdown duration and coverage in controlling the progression of the incidence curve 

of an epidemic with the characteristics of COVID-19 in  two scenarios (1) a closed and non-

immune population, and (2) a real scenario from State of Rio de Janeiro at May 6th 2020. 

Effects of lockdown time and rate on the progression of an epidemic incidence curve in a 

virtual population of 10 thousand subjects. Predictor variables were reproductive values 

established in the most recent literature (R0 =2.7 and 5.7, and Re = 1.44 for RJ), without 

lockdown and with coverages of 25%, 50%, and 90% for 21, 35, 70, and 140 days in 13 

different scenarios for each R0/Re, where individuals remained infected and transmitters for 

14 days. We estimated model validity  in theoretical and real scenarios by applying an 

exponential model on the incidence curve with no lockdown with growth rate coefficient 

observed in realistic scenarios) and fitting real data serie upon simulated data, respectively.   

For R0=5.7, the flattening of the curve occurs only with long lockdown periods (70 and 140 

days) with a 90% coverage. For R0=2.7, coverages of 25 and 50% also result in curve flattening 

and reduction of total cases, provided they occur for a long period (70 days or more). Short 

and soft lockdowns had no relevant effect on incidence or casuistry. For realistic scenario, 

lockdowns during 140 days show expressive flattening and number of COVID cases two to five 

times lower. 

These data corroborate the importance of lockdown duration regardless of virus transmission 

and sometimes of intensity of coverage. 
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INTRODUCTION 

SARS-CoV2 epidemic has had a significant impact on global public healthcare, due to its high 

transmissibility and to the significant mortality of COVID-19 (Rothan and Byrareddy, 2020). The 

pandemic was declared on March 2020 by the WHO (Cucinotta and Vanelli, 2020), mobilizing 

all nations to take lockdown measures, since there is still no effective treatment for this 

pandemic.  

Economic and social costs of this lockdown must be considered in the projection of which type 

of lockdown must be adopted. Observing the progression of the pandemic in its epicenter, in 

March, Shen & Bar-Yam, from the New England Complex Systems Institute (2020), estimated 

that an extreme lockdown of 5 weeks was sufficient to contain the COVID-19 epidemic in 

China, warning that a soft lockdown would be ineffective. The ideal lockdown coverage curbs 

new infections while it buys time for the virus to die out in individuals who are already 

infected, (1) significantly reducing the infected population, and (2) producing immunity 

barriers, thus interrupting infection spread (Kissler et al, 2020).  These predictions have been 

based on mathematical modeling using epidemic characteristics, such as initial reproductive 

number (R0) and effective reproductive number (Re) (Kissler et al., 2020; Zhao and Chen), or 

epidemic growth rate (Wibens et al, 2020). 

As opposed to models based on linear equations, Network Models are adequate for realistic 

simulations of complex systems with dynamic behavior patterns, where the individual states of 

its units and the connections among them are intrinsically non-linear, and emulated by 

pseudo-random series (Haykin, 1994; Britton, 2020). 

Even though it is nearly impossible to determine objectively the ideal, or even realistic, 

parameters for a model (regarding R0 and quantification of effective lockdown coverage), we 

might still estimate the relationship between lockdown time and coverage in truthful 

scenarios. Moreover, these predictions would be important at least as motivation for the 

planning of public lockdown policies. Coverage is an objectifiable measure in terms of 

proportions (in %) for comparisons between scenarios with shared parameters, which has 

qualitative value. In the present evaluation, the most important parameter in this simulation is 

virus reproduction rate in a non-immune population (R0). R0 for COVID-19 had been estimated 

as 2.7 (Wu et al, 2020). However, new estimates on pandemic progression have obtained a R0 

of 5.7 and a growth rate of 0.21-0.3/day (Sanche et al, 2020). Other recent sources have 

indicated reproductive numbers of this magnitude (Bulut and Kato, 2020; Zhao and Chen, 

2020). In Rio de Janeiro, the current effective reproductive number is estimated about 1.44 

(Melan et al., 2020). 

Therefore, we developed a network model to estimate the effect of lockdown coverage 

intensity and coverage time on incidence curves of COVID-19 epidemic in a closed population 

(with no significant exchange of individuals from/to other populations). Our intention is to 

check how these two dimensions might comparatively affect amplitude and latency of peak 

incidence, as well as total number of cases.  

We performed a realistic simulation for the State of Rio de Janeiro in this virtual population to 

predict the effects of different lockdown coverages and time periods. To do this, we use the 

most current data on the number of infected, killed and recovered people estimated on May 

12, 2020, and the effective reproductive number estimated on May 8 as R0. 
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In this assay, we adopted a small population of 10 thousand non-immune individuals in the 

simulations, observing incidence progression over 1000 days, considering the conservative and 

pessimistic R0 estimates of 2.7 and 5.7 transmissions, respectively, per infected individual, on 

average, as central parameters.  

 

METHODOLOGY 

We conducted a theoretical study on the progression of the incidence curve comparing 

possible lockdown coverage and time scenarios, concerning peak amplitude, peak latency, and 

total number of cases. Considering the two R0 values estimated in literature for COVID-19 

(Sanche et al, 2020), the study scenarios are as follows: no lockdown (natural progression of 

the epidemic); and lockdowns with proportional coverages of 25, 50, and 90% in periods of 21, 

35, 70, and 140 days, with a total of 13 scenarios for each R0 value.  

Our period of analysis was arbitrarily defined as 1000 days, with temporal accuracy of 1 day. 

We applied lockdown scenarios starting from the first day of simulation, with the specified 

coverages and periods. 

We used a Network model to simulate the dynamics (progression) of changes in the state 

(non-immune, infected, and immune/deceased) of the units (population subjects) through 

their mutual connections, by which the infection spreads. 

The universe of this model is a virtual, random-sized population with 10 thousand subjects 

socially interconnected.  We interpreted these connections as the likelihood of each subject 

infecting each one of their peers. The number of infected subjects per each subject might vary 

from 0 to infinite. These connections are stochastically based. Thus, due to the non-linear 

nature of the network model, we used a sample with thirty simulations of each of the 26 

scenarios studied, starting from different "patients zero". As criterion for patient-zero 

eligibility, we adopted patients who had a likelihood of transmitting the disease different from 

zero.  

The script developed in Octave/MatLab language is found as supplementary information for 

free use, in the repository: https://data.mendeley.com/datasets  

 

Model structure: 

We adopted a vector u with 10 thousand values (N = 10000), representing a population with 

10 thousand subjects i who were non-immune (u(i) = 0), many of whom shall be infected 

(u(i)=1), progressing to the outcome (u(i) = NaN, not-a-number), once they become immune or 

die. Epidemic progression is determined by the total amount of individuals i who are infected 

and progress to the outcome in each time unit t (in hypothetical days), with t = 1,...,1000. 

The N individuals i established connections Cij with individuals j in a non-bidirectional manner 

(Cij ≠ Cji and Cii = NaN). Connection matrix C determines the likelihood of a subject i infecting 

other subjects j (j = 1,..., N-1), according to a probability density function (pdf) T with N-2 

degrees of freedom (figure 1). The number of subjects j who might be infected by the 

individual i is determined by a pseudo-random series r with size N-1, and lambda Poisson 

distribution equal to R0, according to pdf T. In other words, the infection between i and j shall 

occur according to the conditional function: 
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u(j) = 1, for Cij ≥ T(r(i))  [1] 

The weight of connections Cij had a random uniform distribution, leading to a topographic 

connectivity spread. 

Model parameters - predictors: 

The parameters and values adopted in this model were:  

Virus reproduction number in a non-immune population: R0 = [2.7, 5.7], according to Wu et al. 

(2020) and Sanche et al (2020), respectively. This parameter is dynamic in practice, as the non-

immune population decreases over time, becoming Re (effective reproductive number) 

(Aronson et al, 2020). For simulations for Rio de Janeiro, according Mellan et al. (2020), on 

May 8th the effective reproductive number (Re) in Rio de Janeiro State was 1.44 (C.I. 1.28, 

1.60).   

Days of individual infection progression: p = 14, which is the mean period of infection and 

transmission by COVID-19 and we presumed that 50% of infections occur between the fourth 

and eighth days, when the elimination of viral particles is higher (Cevik et al, 2020).  

Finally, the parameters analyzed are lockdown period,  = [21, 35, 70, 140], in days, and 

relative lockdown coverage,  = [Inf, 4, 2, 1.12], corresponding to no coverage, 25%, 50%, and 

90% of coverage, respectively.  

In the model dynamics, lockdown is the reduction in values of matrix C proportional to (k) 

during a period (k), where k = 1,..,4 and  t = 1,...,  i.e., lockdown always on the first day of 

epidemic progression in population u, which is characterized by the confirmed first case of 

community transmission, as described in the next section. Values C are determined according 

to the conditional function below: 

Cij’ = Cij – [|max(Ci*) – T(r(i))|/ (k)], when t ≤ (k’)  [2] 

Where k and k’ progress independently.  

 

Model dynamics 

First, one individual i is randomly selected to be the first patient with community transmission, 

u(i) = 1 at t=1.  

In simulations for Rio de Janeiro, we randomly selected a proportional number of initially 

infected (u(i) =1) and immune/deceased subjects (u(i) = NaN) as initial conditions (t=1). 

Estimating the number of total cases about 582000 (C.I. 492000, 657000) with 1285 deaths. 

The recovery rate to Rio de Janeiro is about 70% (Sec Estado Saúde RJ, 2020), what is, about 

173000 people is infected now and 409000 is immune or deceased. The state population was 

estimated in 17.264.943 (IBGE, 2019). Thus, about 3,4% of all state people could be infected by 

SARS-CoV2, where roughly 1,0% remain active. We feed our model with this mean Re (1.44) 

and we randomly turned 240 subjects as immune/death (not-a-number) and 100 people are 

active at t=1. 

From this point on, each infected subject remains infected and transmitting over the period p. 

A vector, (1 : p) = 0, is initially determined, representing  days of infection. Infections are 

distributed semi-randomly in , according to the following conditional function: 
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(4:8) = 1; if r(i) ≤ 4,       [3] 

(4:8) = 1 and (rndp(r(i)-4)) = (rndp(r(i)-4)) +1; otherwise 

Where rnd is the generation function of r(i)-4 random values between 1 and p. In other words, 

it is possible to have 1:r(i)-3 infections on one single day. In the course of time, t, subjects j are 

infected by i while 1 < t < p, in a decreasing likelihood order (first, the most likely), given pdf 

T. Each u(j) = 1 starts a cycle of p days of transmission, until u(j) = NaN, if t - p ≥ 1. 

In each cycle (t = 1), subject i infected new subjects j at (t-1, ..., t-13). Each infected subject i 

becomes immune/deceased with t = 14, turning into u(i) = NaN. At the end of the iteration by 

all N subjects, the current status u is stored. 

 

Outputs and Analysis 

As outputs for analysis, we evaluated the total number of infections per day, n(t), where t = 

1,...,1000, from which the curves of new infections (n(t) – n(t-1)), called incidence curves, and 

the curve of epidemic growth rate (n(t)/n(t-1)) are derived.  

In order to validate the model, we calculated coefficients of Growth Rate, rRo(1) and rRo(2),  

through the best-fit curve of an exponential model (Ma et al., 2013), applied to the incidence 

curve: 

n(t) = n0.er.t   [4] 

Where n0 = 1 (initial number of infected subjects), t is the time in days, and r is the exponential 

growth coefficient of the curve. In order to apply the best-fit model, we varied the r-value from 

0.05 to 0.35 with 0.005 increases.  

Given the pseudo-random nature of the network model, we performed 30 simulations by 

raffling the corresponding 30 initial patients, for each parameter, R0,  and , which 

determined 26 groups for comparison, since parameter  is irrelevant for (1) = Inf (in 

lockdown).  

The values calculated were peak amplitude of the curve of new cases, peak latency, and total 

number of infected and outcomes in u, when t = 1000.  Peak latency of each output "k" was 

weighed to correct distortion effect in the sample, and it was multiplied by the corresponding 

peak amplitude and divided by the mean amplitudes calculated in the output sample. 

In order to describe the magnitude of the inherent non-linearity of the model, we showed 

sample statistics in terms of median and confidence interval (90%) for each scenario, 

discriminated according to the R0 adopted (table 1). The figures show pairwise comparison 

tables, where we indicate the intersection of confidence intervals for the measurements 

described in table 1. Graphs are the mean values of each scenario. Due to the accuracy and 

predictability inherent to prediction models, inferences are irrelevant since likelihood of 

equality shall always be inversely proportional to the size of the simulated sample.  

 

COMMENTED RESULTS 

PART I: Simulation about Theoretical Scenarios 
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PART I: POPULATION DESCRIPTIONS 

Using pseudo-random Poisson distributions (see methodology) to adjust the likelihood of 

transmission in the connections between subjects, we found that the maximum number of 

subjects infected by the same subject was 8, 11 and 17 for Re=1.14, and R0 = 2.7 and 5.7, 

respectively. Additionally, the proportion of non-transmitters was 23.84%, 6.9% and 0.23% for 

these reproductive number, respectively.  

 

PART II: SIMULATIONS ON THEORETICAL SCENARIOS TO COVID-19 EPIDEMY 

Ideal and homogeneous and isotropic population of 10 thousand non-imune individuals in 30 

simulations whose initial conditions are one patient-zero randomnly chosen per simulation, 

using R0=2.7 and 5.7. We collectively consolidated individual outcomes (having been infected 

or not) by the end of the 1000 simulated days for a descriptive analysis of each lockdown 

scenario, and the comparison between them, as shown in table 1, where we described data in 

terms of median and percentis p5 and p95, once simple average distort really representative 

latency values (wave peak latency is indeed weighted by its amplitude, as is seen when we 

average curves. Thus, means are good only for graphical representation). 

Validating the model using growth rate coefficient 

The reliability of the model is indicated by the comparison between the growth Rate (r) 

estimated by Sanche et al (2020) for R0 = 5.7 and the growth rate observed. The simulation 

shows dynamic rates, which is perfectly predictable considering that the effective variation of 

R0 into Re was progressively lower than R0, until epidemic progression was stabilized, when 

n(t)-n(t-1) = 0.  When R0 = 2.7, the epidemic progresses more slowly, maintaining an r lower 

than that for R0 = 5.7.  Figure 1 shows the rate dynamics of new infections (growth rate), 

which is determining for the adjustment of the incidence curve to one of the exponential 

models. 

Using the exponential model (eq. 4), we found r(R0=2.7) = 0.16 and r(R0=5.7) = 0.28, according 

to the incidence curves, i.e. the progression of new infections and individual outcomes. The 

most recent r estimates occurred in the interval 0.21–0.3/day, related to R0= 5.7, as opposed 

to the previously estimated r, of 0.1–0.14, related to R0 = 2.7 (Sanche et al, 2020).  
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Figure 01. Growth rate profile of the epidemic. Dotted lines represent the medians between t=1 and t = 

max(n(t)-n(t-1))) for R0 = 2.7 (blue) and 5.7 (red), which are the peak of the incidence curve, from 

whence the growth rate declines.  

 

Behavior of epidemics without lockdown 

As the incidence curves in figure 02 show, the epidemic progresses more rapidly with R0 = 5.7, 

establishing a higher and earlier peak of infection than with R0 = 2.7. Both infections result in 

more than 90% of subjects contaminated until immunological barriers are established.  

 

 

Figure 02. Transmission curves in a sample with thirty simulations for R0 of 2.7 and 5.7. Mean values 

are plotted above the corresponding samples, in black and blue, respectively. Peaks are indicated with 

red crosses. On the upper right-hand corner, there is a table with descriptive statistics (median, M, and 

90% CI) and inference of differences between samples using a non-parametric test.  
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Behavior of incidence curves during Lockdown 

Descriptive data of peak amplitude, peak latency, and total number of infected subjects (mean 

values and standard deviations) for outputs related to R0 equal to 2.7 and 5.7 might be seen in 

table 01, where there are also inferences in comparisons between the output samples 

obtained. The first observation is related to the wide data dispersion when the epidemic with 

R0=2.7 has a 90% coverage, because the likelihood of an epidemic not progressing increases as 

patient zero might have very thin connections with other subjects. In other words, viruses with 

reproductive rate of 2.7 could be immediately contained with a lockdown with intense 

coverage. 

Effect of lockdown duration with ideal coverage. 

We evaluated the effect of lockdown period (21, 35, 70, or 140 days) on the incidence curve, 

considering the ideal lockdown (90%). We observed that all curves are statistically different 

from each other in latency and amplitude for R0=5.7, except for curve amplitude related to the 

period of 21 days compared with the curve with no lockdown. The curves related to 70 and 

140 days of lockdown overlap, as they are the only ones that showed a relevant flattening 

effect on the incidence curve (figure 3, upper). Considering R0=5.7, a lockdown of 21 and 35 

days with 90% of coverage only delays incidence curve peak by a few days, and longer periods 

of time are required to flatten the curve. For R0 = 2.7 (figure 3, down), lockdown with 90% of 

coverage was only effective in delaying the incidence curve peak more significantly with 70 

and 140 days of lockdown, although there was no flattening of the curve. Periods of 21 and 35 

days, once again, seem to have been effective to delay the incidence curve peak. Lockdowns of 

70 and 140 days reduced the number of infected subjects only for R0 = 5.7,   (see table 1). 
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Figure 3. Effect of Lockdown Duration (days), with 90% coverage (mean values). Top, R0 = 5.7. Down, 

R0 = 2.7. color crosses: respective medians. See values in table 1.   

 

Effect of lockdown coverage. 

Considering R0 = 5.7, intensity of coverage (25%, 50%, or 90%) had a visible effect on curve 

peak amplitude and latency during lockdown of 70 days (figure 4, top, tables included), 

although it was relevant only for coverages of 90%, when the curve was effectively flattened. 

Coverage intensity also affected the total number of infected subjects, although a relevant 

reduction, of approximately 12% of the infection cases (see descriptive values in table 01), only 

occurred with 90% coverage.  

When we consider results for R0=2.7, we observe that any coverage intensity affected curve 

behavior compared to no lockdown (figure 4, down, tables included). For 25 and 50% of 

coverage, there was flattening of the curve with observed effect of approximately 20% on the 

total number of cases compared to no lockdown. 
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Figure 4. Effect of Lockdown coverage during 70 days (means). Top, R0 = 5.7. Down, R0 = 2.7. 

color crosses: respective medians. See values table 1.   

 

Effect of soft lockdown with short duration. 

Coverages of 25 and 50% during 21 and 35 days did not have any relevant effect on the  

dynamics of epidemic progression, whether in terms of incidence curve peak amplitude and 

latency, for either R0=2.7 or 5.7 (figure 5), or in terms of final number of cases (table 1). 
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Figure 5. Effect of Lockdown with short duration and soft coverage (mean values). Right, R0 = 5.7. Left, 

R0 = 2.7. See values table 1.   

 

PART III: SIMULATIONS ON REAL SCENARIO OF RIO DE JANEIRO AT MAY 6TH 2020. 

Model Validation 

As mortality is an index that suffers lower under-reporting, and (2) mortality/total cases is a 

fixed rate before health system collapse (thus indicating proportional progression of epidemy), 

we used cumulative mortality reports between May 6th and 16th as indicator to validate the 

model (as made by Melan et al, 2020). The cumulative mortality was normalized to best fit it 

upon predicted curve (red curve in figure 6):  

fit mortality = 100 *[mortality * max(model data between 1-10 days)] / max (mortality) 

The proportional error varied from 0.91 to 18.88% between curves, with average equal to 

5.27% ± 5.57%. 

 

 

Figure 6. Evidence of validity – real data series upon modeled data from may 6th to 16th for State of Rio 

de Janeiro. Red: normalized data about cumulative mortality (see text). Blue: predicted data about 
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epidemy progression (cumulative cases, mean of 50 simulations). Yellow: ± 2 standard deviation of 

mean. Table: error rate (%) between real and predicted data. 

 

Estimates For Rio de Janeiro, Brazil with diferent lockdown coverages 

Under current status in Rio de Janeiro (effective reproductive number = 1.44, with 

approximately 3.4%  of population already infected, 2.4% recovered/deceased and 1.0% with 

active disease), the epidemic progresses rapidly reaching its peak in 32.66 + 3.32 days 

(mean+std. dev). Total infected subjects will be 54.03% + 0.05% of State population (nearly 8.5 

million of people) roughly in next 90 days. See figure 06. 

Increasing social confinement, the incidence softly falls near to zero. However sooner or later 

the incidence increases again depending on the duration of the lockdown. With at least +25% 

of lockdown coverage during 140 days the incidence modestly increases after lockdown, and 

the total number of cases will drop at least to 21.61% + 12.17% of State population.  Coverages 

with duration of 70 days flatten the curve but reduce the total number of cases nearly 10%. 

See figure 06. In line with results above described, the main determinant of lockdown efficacy 

would be its duration, since coverages of plus 25 or 50% show similar effects. Really, +90% of 

coverage (practically a total lockdown) would drastically reduce total number of infected 

subjects.  

 

 

Figure 7. Effect of Lockdown Coverage(+%) and duration with Re = 1.44 (Rio de Janeiro scenario). 

Initial conditions: 100 active and 240 imunne/deceased (see text). 50 simulations. Blue: No lockdown, 

Green: respective lockdown parameters (subplot title). Yellow: standard error of mean. In plots, total of 

cases (mean ± std. dev).  

Regarding mortality at May, 6th (1205 deceased people), we can estimate a total of nearly 

19468 ± 189 deaths (mean  ± standard deviation) directly caused by COVID-19. With +50% 
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coverage, this number falls to 6999 ± 4334 deaths. Proportionally, we can infer about total of 

cases. 

 

Figure 7. Effect of Lockdown Coverage(+%) and duration with Re = 1.44 (Rio de Janeiro scenario): 

cumulative cases. Initial conditions: 100 active and 240 imunne/deceased (see text). 50 simulations. See 

color captions.   

 

DISCUSSION 

Network models are frequently used in simulation of neural and cognitive processes, and are a 

quite realistic modelling strategy for the dynamics of a complex collectivity, as they simulate 

dynamic information and energy flows through the connection matrix between Network units 

(Haykin, 1994). With adequate parameters, a network model virtually behaves as a real life 

population.  

In order to simulate realistic scenarios, which have an intrinsic non-linear nature, we used here 

generators of stochastic numbers: raffles shall always be required to define who is connected 

to whom and with what intensity. In this application, elucidating behavior patterns of the 

simulated collectivity occurs by empirical observation of the progression of this interconnected 

collectivity. In this case, the non-linearity is in the connection matrices (which are here 

interpreted as the likelihood of subjects being contaminated). Therefore, we worked with 

output samples, derived from different simulations: several evolutions are possible as initial 

conditions change. So, we must work with a larger sample of outputs as possible from 

different simulations, varying initial conditions (i.e. “patients-zero” or sets of initially infected 

subjects that will start de epidemy). Dispersion measures as standard deviation indeed reflect 

the “range of freedom” among all possible evolutions concerning those possible initial 

conditions. So, these measures equate to confidence intervals in conventional models.  

 As the network models are realistic and dynamic, the reproductive number of the epidemic 

does not need to be adjusted in the equations, as in conventional models. Because this model 

reproduces the dynamics from where reproductive number is changing as more subjects have 

their outcomes (immune/deceased) and inter-people connectivity is modulated by factors as a 

lockdown. This is an advantage of this modeling strategy. 
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Model validity was checked by a comparative analysis of behavior characteristics previously 

determined for the population or real data about epidemy evolution, and data from patterns 

(i.e. median or means) obtained with many simulations (as explained above). In other words, 

are two ways to prove the representativity of the model. First, for theoretical scenario, 

extracting the coefficient of exponential growth from the simulated incidence curve and 

verifying if corresponds to adopted values to R0. For R0 values found in literature (Sanche et 

al., 2020) in this model (Ma et al, 2013), we obtained incidence curves that fit (best-fit) an 

exponential with growth rate parameters that are nearly the same as those of the actual 

incidence curve. Using the exponential model (equation 4), we found r of 0.16 and 0.28, 

respectively, for R0 equal to 2.7 and 5.7, inside or near the respective intervals previously 

estimated for these R0 (Sanche et al, 2020). Therefore, this model might be considered 

representative of the evolution of an epidemic such as that of COVID-19 a priori. Second, for 

real scenario, we simply fit empiric data serie, representative to epidemic progression (here, 

cumulative mortality counting), upon simulated data. We found overlapping curves with small 

estimated error, nearly 5%. In both scenarios, we can regard this model as representative to 

COVID-19 epidemics. 

Simulations about theoretical scenarios did not estimate objective parameters of lockdown 

coverage and time. Due to its validity, this model might possibly be useful for quantitative 

estimates in further studies. A qualitative evaluation performed with our model using current 

parameter for a theoretical population with low and high R0 values indicates some paradigms 

for lockdown effectiveness: (1) even in ideal lockdown coverage conditions (90%), only periods 

longer than 5 weeks would be effective to control the epidemic; (2) softer coverages would 

only be effective if the epidemic has a lower R0, and even so, for relatively longer periods; and 

(3) for non-immune population, in epidemics with R0 relatively low, lockdowns with strong 

coverage (here 90%) did not flatten the curve, although they significantly delay the peak or 

break the epidemy without population immunization (what occurs using R0=1.44, data not 

shown). 

However, these conclusions are only appliable to non-imunne populations.  Changes in 

lockdown when epidemics in course (heterogeneus population, as in Rio de Janeiro scenario), 

the behavior of incidence curves was different.  Feeding the model with updated parameters 

such as Re rather than R0 and the current epidemic status from a specific population, we can 

infer estimates. Despite our small population size, the model is representative if the behavior 

of real population is homogenous and its dynamics is isotropic, as in the model. Thus, 

differences between model outputs and real outcomes would be merely scalar. 

The local authorities have currently calculated the social confinement nearly to 50% in last 30 

days (In Loco, 2020). Under this status (Melan et al., 2020; Secretaria de Saúde do Estado do 

Rio de Janeiro, 2020; In Loco, 2020) we could predict for Rio de Janeiro the incidence peak in 

approximately 30 days, with a devastating effect due the total number of active (and severe) 

COVID-19 cases, nearly 8,5 million of people.  

However, it is possible that increasing the social distancing at least to 75% during 4 or 5 

months this scenario would be different. Thus, any lockdown could be necessary. Roughly, at 

least qualitative predictions could be made, which are: a “mild” lockdown (nearly 70% of 

coverage) by a long time (20 weeks) could control the epidemic evolution with substantial 

flattening of incidence curve, minimizing deaths and allowing immunity to nearly 20% of total 

population.  
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Indeed, observing theoretical and real scenarios, we can conclude that the reproductive 

number is a determining factor of lockdown characteristics, although lockdown duration is the 

less dependent factor on virus reproductive number; that is why the priority factor to be 

included in epidemic containment policies is: lockdown must be relatively long.  

In Brazil, despite the low lockdown coverage (generally below 50% and never above 60%), we 

have an estimated reproductive number 1.8 or lower for over 80% of national territory 

(Perone, 2020). We know that SARS-CoV2 is especially sensitive to heat (Le Page, 2020), and 

we are still in the hotter seasons in Brazil, which is unfavorable for the propagation of 

respiratory infections such as COVID (Kissler et al, 2020; Sun et al, 2020). Therefore, due to 

climatic and seasonal characteristics of Brazil, it is possible that R0 is lower than that estimated 

for China, in wintertime. Hence, lockdown duration might be the determining factor for the 

epidemic, even with lower coverage. On the other hand, early release of lockdown might 

trigger uncontrollable growth of the incidence curve.  

At first glance, our results seem to conflict with the Chinese experience of 5 weeks of 

lockdown to control the pandemic. The determining factor is undoubtedly physical lockdown 

with maximum restriction of urban mobility. However, there are other important factors in the 

control of epidemic spread: the correct and general use of homemade masks, per se, reduces 

the transmission of respiratory viruses by approximately 95 to 99% (Sunjaya e Jenkins, 2020).  

The Chinese people have experienced respiratory virus outbreaks for decades and it is part of 

their daily lives to have this self-care behavior, which certainly maximizes the effect of 

lockdown.  

 Therefore, we interpreted any decrease in likelihood of infection as "lockdown coverage". In 

fact, for human beings to be successful in this war against the virus, staying at home is the 

most important factor, yet it is not enough: creating habits to mitigate transmission must be a 

priority in people's daily lives during this tragedy. The paradigms predicted by this model might 

provide guidance in terms of state policies and individual behavior related to these habits.    
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Table 01 – descriptive statistics regarding R0 values groups (n=30). 

 R0 = 2.7 R0 = 5.7 

Scenario median p5 p95 median p5 p95 

       

No Ld,kt=21-amp' 558 535 582 887 869 916 

No Ld,kt=21-lat' 42 38 48 27 25 29 

No Ld,kt=21-ene' 9076 9056 9087 9902 9893 9913 

       

kr=90%,kt=21-amp' 556 1 568 884 860 915 

kr=90%,kt=35-amp' 554 1 580 853 808 881 

kr=90%,kt=70-amp' 535 1 573 356 337 368 

kr=90%,kt=140-amp' 478 1 547 356 341 368 

kr=90%,kt=21-lat' 60 10 69 40 37 43 

kr=90%,kt=35-lat' 73 10 83 48 46 50 

kr=90%,kt=70-lat' 100 10 109 53 50 59 

kr=90%,kt=140-lat' 167 10 180 53 50 59 

kr=90%,kt=21-ene' 9076 4 9089 9901 9892 9911 

kr=90%,kt=35-ene' 9071 4 9087 9894 9870 9907 

kr=90%,kt=70-ene' 9042 4 9084 8803 8645 9125 

kr=90%,kt=140-ene' 8937 4 9052 7744 7738 7748 

       

kr=50%,kt=21-amp' 558 1 577 872 839 917 

kr=50%,kt=35-amp' 540 1 573 783 747 793 

kr=50%,kt=70-amp' 291 1 308 780 760 799 

kr=50%,kt=140-amp' 292 1 310 776 754 817 

kr=50%,kt=21-lat' 50 13 57 32 30 33 

kr=50%,kt=35-lat' 55 13 62 33 31 34 

kr=50%,kt=70-lat' 57 13 76 33 31 35 

kr=50%,kt=140-lat' 59 13 70 33 31 35 

kr=50%,kt=21-ene' 9077 4 9088 9899 9885 9905 

kr=50%,kt=35-ene' 9062 4 9083 9662 9557 9715 

kr=50%,kt=70-ene' 7785 4 8498 9701 9687 9708 

kr=50%,kt=140-ene' 7234 4 7241 9699 9688 9708 

       

kr=25%,kt=21-amp' 553 1 584 870 842 892 

kr=25%,kt=35-amp' 533 1 567 840 819 870 

kr=25%,kt=70-amp' 335 1 357 841 807 875 

kr=25%,kt=140-amp' 337 1 347 836 814 873 

kr=25%,kt=21-lat' 48 13 57 30 28 32 

kr=25%,kt=35-lat' 53 13 60 31 28 32 

kr=25%,kt=70-lat' 56 13 66 30 28 32 

kr=25%,kt=140-lat' 56 13 65 30 28 33 

kr=25%,kt=21-ene' 9078 4 9090 9895 9887 9904 

kr=25%,kt=35-ene' 9052 4 9086 9675 9645 9694 

kr=25%,kt=70-ene' 7860 4 8312 9852 9841 9858 

kr=25%,kt=140-ene' 7695 4 7715 9852 9838 9859 
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Abbreviations: p5 = percentil 5%, p95 = percentil 95%, kr = lockdown coverage (%), kt = 

lockdown period (in days), amp = peak amplitude, lat = peak latency, ene = total of infected 

subjects. Flatten curves are in yellow. 
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