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Abstract

Generation of medical assisting tools using recent artificial intelligence advances is
beneficial for the medical workers in the global fight against COVID-19 outbreak. In
this article we introduce ai-corona, a radiologist-assistant deep learning framework for
COVID-19 infection diagnosis using the chest CT scans. Our framework incorporates
an Efficient NetB3-based feature extractor. We employed three independent dataset in
this work named: CC-CCII, MDH, and MosMedData; all includes 7184 scans from 5693
subjects which contained pneumonia, common pneumonia (CP), non-pneumonia, normal
and COVID-19 classes. We evaluated ai-corona on test sets from the CC-CCII set and
MDH cohort and the entirety of the MosMedData cohort, for which it gained AUC
score of 0.997, 0.989, and 0.954, respectively. We further compared our framework’s
performance with other deep learning models developed on our employed data sets, as well
as RT-PCR. Our results show that ai-corona outperforms all. Lastly, our framework’s
diagnosis capabilities was evaluated as assistant to several experts. We demonstrated an
increase in both speed and accuracy of expert diagnosis when incorporating ai-corona’s
assistance.
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Introduction

Since the beginning of 2020, novel Coronavirus Disease 2019 (COVID-19) has widely
spread globally and has taken countless lives. Patients infected with COVID-19 commonly
display symptoms such as fever, cough, tiredness, breathing difficulties, and muscle
ache [143].

Currently, the most common method of testing for COVID-19 is Real-Time Polymerase
Chain Reaction (RT-PCR) to detect viral nucleotides from upper respiratory specimen
obtained by nasopharyngeal, oropharyngeal, or nasal mid-turbinate swab [4]. It has been
shown that RT-PCR has several drawbacks. Reports suggest that since oropharyngeal
swabs tend to detect COVID-19 less frequently than nasopharyngeal swabs, RT-PCR
tends to have a high false-negative rate. Furthermore, RT-PCR has demonstrated a
decrease in sensitivity to below 70% due to a low viral nucleic acid load and inefficiencies
in its detection. This might be caused by immature development of nucleic acid detection
technology, variation in detection rate by using different gene region targets, or a low
patient viral load [5]. Besides, the availability of test kits and expert personnel to take
them is still suboptimal in some countries. Not to mention the extended time period for
the test completion contributes to ruling out RT-PCR as a reliable early detection and
screening method [7H9]. In contrast to RT-PCR, diagnosis from other measurements
such as chest Computed Tomography (CT) and blood factors is shown to be an effective
early detection and screening method with high sensitivity in both detection [10] and
anticipation of the severity of the disease [6].

Chest CT scan of a COVID-19 infected patient reveals bilateral peripheral involvement
in multiple lobes with areas of consolidation and ground-glass opacity that progresses to
“crazy-paving” patterns as the disease develops [10]. Asymmetric bilateral subpleural
patchy ground-glass opacities and consolidation with a peripheral or posterior distribution,
mainly in middle and lower lobes, are described as the most common image finding of
COVID-19 [11]. To elaborate more, additional common findings include interlobular
septal thickening, air bronchogram, and crazy paving pattern in the intermediate stages
of the disease [10]. The most common pattern in the advanced stage is subpleural
parenchymal bands, fibrous stripes, and subpleural resolution. Nodules, cystic change,
pleural effusion, pericardial effusion, lymphadenopathy, cavitation, CT halo sign, and
pneumothorax are some of the uncommon but possible findings [10,/12]. Recent studies
indicate that organizing pneumonia, which occurs in the course of viral infection, is
pathologically responsible for the clinical and radiological manifestation of Coronavirus
pneumonia [11].

Deep learning is an area of Artificial Intelligence (AI) that has demonstrated tremen-
dous capabilities in image feature extraction and has been recognized as a successful tool
in medical imaging-based diagnosis, performing exceptionally with modalities such as
X-Ray, Magnetic Resonance Imaging (MRI), and CT [13116}25]. Recently, the research
of Al-assisted respiratory diagnosis, especially pneumonia, has gained a lot of attention.
One of the well-established standards in this research is the comparison of Al with
expert medical and radiology professionals. As a pioneering work in this filed, [17]
introduced a radiologist-level deep learning framework trained and validated on the
ChestX-ray8 dataset [18] for the detection of 14 abnormalities, including pneumonia, in
chest X-Ray images, which was further developed to propose a deep learning framework
with pneumonia detection capabilities equivalent to that of expert radiologists [19]. [20]
introduced a novel dataset of chest X-Ray images annotated with 14 abnormalities (7
the same as ChestX-ray8) and a state-of-the-art deep learning framework. Lastly, [21]
proposed a deep learning framework with a feature extractor based on AlexNet [22]
to create a model capable of accurately diagnosing knee injuries from MRI scans and
further showcases the positive impact of Al assistance in expert diagnosis.

In COVID-19 related research, [7] has reported a sensitivity of 0.59 for RT-PCR
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test kit and 0.88 for CT-based diagnosis for patients with COVID-19 infection, and a
radiologist sensitivity of 0.97 in diagnosing COVID-19 infected patients with RT-PCR
confirmation. Furthermore, [23] introduces a deep learning framework with a 0.96 AUC
score in the diagnosis of RT-PCR confirmed COVID-19 infected patients. Zhang et
al. [24] proposed a model that on a dataset of 4154 subjects achieved an AUC score
of 0.98 for diagnosing COVID-19 from two other classes; normal and CP (Common
Pneumonia i.e. non COVID-19 viral and bacterial pneumonia). They further made
their dataset, CC-CCII [24], publicly available. In addition, the model proposed by Jin
et al. [26], developed on a dataset of 9025 subjects, which is an amalgamation of their
own data and several other public dataset (e.g. LIDC-IDRI [27], Tianchi-Alibaba [28],
MosMedData [29], and CC-CCII), gained an accuracy of 0.975 for diagnosing between
COVID-19 and three other classes (non-pneumonia, non-viral community acquired
pneumonia, Influenza-A/B), 0.921 for between COVID-19 and the CP and Normal
classes on the CC-CCII dataset, and 0.933 for between COVID-19 from non-pneumonia
on the MosMedData cohort. Further, this work manages to astoundingly diagnose
between COVID-19 and influenza type-A, which is surprising given the small amount of
influenza data in their study.

In this paper, we present ai-corona, a radiologist-level deep learning framework for
COVID-19 diagnosis in chest CT scans. Our framework was developed on a set of 7184
lung CT scans from 5693 subjects, for which 2032 subjects are from the Masih Daneshvari
Hospital (MDH) cohort and the rest belong to the CC-CCII set and MosMedData cohort.
This data was gathered from three countries; China, Iran, and Russia. In this work,
our framework diagnoses between COVID-19 and CP (common pneumonia), NCA (non
COVID-19 abnormal), non-pneumonia, and normal classes. We evaluate and compare
the performance of ai-corona with experts and RT-PCR in COVID-19 diagnosis and
further compare our framework with AT models proposed by Zhang et al. [24] and Jin et
al. [26). Finally, we examine the impact of Al as assistance to expert diagnosis.

Materials and methods

Data

Three datasets were employed in this work; The MDH cohort, the CC-CCII set, and the
MosMedData cohort. An overall summery of all the data employed in our work can be
found in [Table 11

The first dataset was obtained by our group from patients hospitalized at the Masih
Daneshvari Hospital (MDH) (Tehran, Iran). This cohort consists of 2121 lung CT scans
from 2032 subjects annotated into 3 classes: (1) Normal; (2) Non-COVID Abnormal
(NCA); and (3) COVID-19. Since differentiation between COVID-19 and Normal classes
is easier than differentiating between COVID-19 and NCA (especially if there are similar
imaging features), having the NCA class is very important. Using the search function of
the hospital’s PACS and by reviewing reports by two board-certified radiologists, we
gathered a preliminary dataset of CT scans with a balanced distribution over all three
classes.

All the participants in the MDH cohort gave written consent and our work has re-
ceived the ethical license of [R.SBMU.NRITLD.REC.1399.024] from the Iranian National
Committee for Ethics in Biomedical Research.

Cases in the Normal and NCA classes are from prior to the start of the Coronavirus
global pandemic. A subset of the data in these two classes was randomly selected for
testing. This portion was re-annotated by a different expert radiologist. Only the cases
with consistent labels (i.e. same label as in the initial report) were retained in the test
set. The MDH Normal and NCA cases that were not included in the test subset were
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further divided randomly into a training subset and a tuning subset.

The MDH COVID-19 group scans for testing were taken in the early stages of the
infection and included 119 lung CT scans from 109 patients hospitalized for more than
three days. These scans were selected by the consensus of several metrics that indicate
COVID-19 infection: (1) report by at least one radiologist on the scan; (2) confirmation
of infection by two pulmonologists; (3) clinical presentation; and (4) RT-PCR report.

Furthermore, unlike other works that take a positive RT-PCT as the sole criterion to
annotate a case with COVID-19 label, and since our evaluation includes comparing the
diagnosis performance of ai-corona with experts and RT-PCT, we clearly could not use a
dataset that was annotated solely based on RT-PCR test result. Our annotation strategy
is, therefore, more comprehensive and incorporates additional available metadata.

The MDH COVID-19 training (1518 subjects, 1590 scans) and tuning (168 subjects,
174 scans) subsets were annotated using the aforementioned reports made by the two
radiologists.

The CT scans in the MDH cohort contained between 21 to 46 slices acquired in axial
orientation with a slice thickness between 8 and 10 mm, The histogram representation
for the number of slices is indicated in[Figure 9h, while [Figure 9p and [Figure O illustrate
the age and sex distribution of the MDH cohort.

Moreover, as the NCA class of the MDH cohort includes many samples with non
COVID-19 pneumonia, we can take this class as the equivalent of the CC-CCI set CP
class for our model’s training.

The second dataset employed in this work was the publicly available CC-CCII
dataset [24]. After quality control (e.g. removing non-standard scans such as those with
a small number of slices), this set contains 3953 CT scans from 2551 subjects. The scans
in CC-CCII are annotated into three classes: Normal, Common Pneumonia (CP), and
COVID-19. This CC-CCII dataset was randomly split into three subsets for: (1) training
(2069 subjects, 3206 scans), (2) tuning (230 subjects, 352 scans), and (3) testing (252
subjects, 395 scans). The tuning subset was used for model checkpoint and selection the
best overall model.

The third dataset, MosMedData cohort, is also publicly available and is comprised
of 1110 CT scans from 1110 subjects. This dataset is annotated into two classes: Non-
pneumonia and COVID-19. We used the entire MosMedData cohort for external testing,
that is, testing on a dataset that has not been used for model training or tuning. To
evaluate our model on this cohort, we take the prediction of COVID-19 class (for binary
classification).

The public datasets LIDC-IDRI31 and Tianchi-Alibaba32 (which were used for the
training of the model proposed by Jin et al. [26]) was not used in our framework’s
development, as these sets are for benign and malignant tumor diagnosis and they might
introduce uncertainties to our framework.

For the RT-PCR evaluation set, 2672 subjects, each hospitalized more than three
days, were tested 6419 times between February to October 2020. Respiratory samples
including pharyngeal swabs/washing were obtained from the subjects. Nucleic acid was
extracted from the samples using a QiaSymphony system (QIAGEN, Hilden, Germany)
and SARS-CoV-2 RNA was detected using primer and probe sequences for screening
and conformation on the basis of the sequence described by [30]. An RT-PCR diagnosis
is considered correct when a patient has at least one positive test result.

Pre-Processing

For all the image slices, the top 0.5% of pixels with the highest values were selected
and their values were clipped to the lowest one in the range. Then, the intensities were
linearly transformed to the range [0, 255]. Since we utilize models pre-trained on the
ImageNet dataset [31], an additional ImageNet normalization was also carried out.
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Dataset Classes Training Tuning Test #
Normal 467 (470) 51 (51) 120 (121) 628 (642)
MDH NCA 576 (578) 64 (64) 117 (117) 757 (759)
COVID-19 475 (542) 53 (59) 109 (119) 637 (720)
Normal 670 (844) 72 (94) 81 (105) 823 (1043)
CC-CCII CpP 665 (1131) 67 (127) 87 (147) 828 (1405)
COVID-19 734 (1231) 82 (131) 84 (143) 900 (1505)
Non-Pneumonia 254 (254 254 (254
MosMedData  q5yp_19 - - 856 E856§ 856 E856;
# 3587 (4796) 398 (526) 1708 (1862) 5693 (7184)

Table 1. Number of subjects and (number of scans) for each class in the CC-CCII set, MDH cohort, and
MosMedData cohort separated over training, tuning, and test.

w I“P Average ;36 -
o rRGe /[ EfficientNetB3 Pooling | I:BD
@ =/ - Feature Extractor @
—
PrE=o T1 e
§ A Average
= ; : Pooling Fully
“] v r : 51536 Connected
: [T e |
| HENES

Fig 1. The schematic structure of ai-corona’s deep learning model. The total number of utilized slices is
labeled by S. Each selected slice is fed to the feature extractor block pipeline one by one so that we end up
with S vectors, which is then transformed to a single vector via an average pooling function. Afterwards, the
result is passed through a fully connected network to reach the three output neurons, corresponding to our
three classes.

We also opted to not perform any segmentation (i.e. patch extraction) in our pre-
processing. This is due to the manual annotation of each dataset (like Jin et al. [26])
being time and resource consuming. On the other hand, using automated methods,
such as image processing techniques and pre-trained segmentation deep learning models,
would introduce further unwanted error and uncertainty to our data, and subsequently,
to the model’s inference.

Deep Learning Method

Inspired by [21], ai-corona’s deep learning model consists of two main blocks; a feature
extractor and a classifier. The main challenge is mapping a 3-dimensional CT scan,
which is a series of image slices, to a probability vector with a length equal to the number
of classes. Another challenge is that all the scans not having the same number of slices
and not all the slices being useful for diagnosis. To address this, we take the middle 50%
image slices in each scan and denote the number of selected slices from each scan with
S. We also experimented with other slice selection strategies (such as a portion larger
than 50%, top/bottom 50%, etc.), from which none performed better.

As shown in the feature extractor block is a pipeline, receiving each slice
with dimensions 512 x 512 x 3 (3 represents the number of color channels, but with all
templates being exactly the same as for each image) and outputting a vector of length
1536 through an average pooling function. After all the slices have passed through the
feature extractor block, we end up with S vectors. After all the S slices have passed
through the feature extractor block, another average pooling is applied to the results
which yields a single vector of length 1536.

This pipeline manner ensures that our framework is independent of the number of
slices in a CT scan, as we always end up with a single vector of length 1536 at the end
of the feature extractor block. The pipeline receives any number of slices, extracts their
features, and finally outputs a single vector of known length. Moreover, the use of only
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a single feature extractor at a time significantly reduces the computational load of our
framework, resulting in a much faster training and prediction time.

Convolutional Neural Networks (CNN) were used for the feature extraction block.
We experimented with different CNN models, such as DenseNet, ResNet, Xception, and
EfficientNetB0 through EfficientNetB5 [32H35], taking into account their accuracy and
accuracy density on the ImageNet dataset [36]. All of these models were initialized
with their respective pre-trained weights on the ImageNet dataset. At the end, the
EfficientNetB5 model stripped of its last dense layers was chosen as the primary feature
extractor for our deep learning framework. The vector output of the EfficientNetB3
feature extraction block is then passed through the classifier block, which contains
yet another average pooling layer that is connected to the model’s output neurons
corresponding to the classes via a dense network of connections. ai-corona is implemented
with Python 3.7 [37] and Keras 2.3 [38] framework and was trained on NVIDIA GeForce
RTX 2080 Ti for 60 epochs in a total of three hours. The Pydicom [39] package was
used to read the DICOM file of the cases.

Class Activation Maps

In order to generate the class activation map of an image slice, we computed a weighted
average across the 1536 values of the feature vector using weights from the classification
block to obtain a 10 x 10 image. The result map was then mapped to a color scheme,
upsampled to 512 x 512 pixels, and overlaid with the original input image slice. Employ-
ing parameters from the classification block to weigh the feature vectors makes, more
predictive features appear more bright. This leads to regions of the image slice that
most influence the model’s prediction to appear brighter. The class activation maps
highlight which pixels in an image slice are important for the model’s prediction [40].

Statistical Inference

In order to quantify the reliability of our findings and the performance of our results
based on the model’s detection of COVID-19 in chest CT scans, we provide a thorough
comparison with expert practicing radiologists diagnosis. To achieve a more conservative
discrimination strategy, we compute the following evaluation criteria ranging from
sensitivity (true positive rate), specificity (true negative rate), Fl-score, Cohen’s kappa,
and finally to AUC. Moreover, the confusion matrix for all the classes of each individual
study is also calculated.

We set the presence of the underlying class with a positive label and the rest of
the classes assigned by negative label. Incorporating error propagation and using the
Bayesian statistics, we calculate the marginalized confidence region at 95% level for each
computed quantity. The significance of diagnostic results is examined by computing the
p-value statistics systematically. To achieve a conservative decision, the 3o significance
level is usually considered.

Since the radiologists’ diagnosis is given by “Yes” or “No” statements for each class,
it is necessary to convert the probability values computed by our model to binary values.
Hence, we selected an operating point for distinguishing a given case among others and
compute the true positive rate (sensitivity) versus false positive rate (1-specificity). This
operating point was selected such that the model would yield a high specificity. To make
more sense, as well as the other mentioned evaluation criteria, the Receiver Operating
Characteristic (ROC) diagram is also estimated for our studies. All of our criteria were
calculated using the scikit-learn [41] package.
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Experts Evaluation

Our team of experts annotated cases in the CC-CCII test set and MDH test set, with
”Yes” and "No” labels for each class. To prevent a loss in experts’ diagnosis performance
due to fatigue, they were asked to work on small time chunks. Their performance was
then evaluated and recorded. Next, to evaluate the impact of Al assistance in the experts’
performance, after an appropriate amount of time and shuffling the sets (to prevent any
remembrance), the experts re-annotated the two sets for a second time, while this time
having access to the output of the model. They incorporated the model’s opinion for
suspicious cases on their own authority. Their performance was evaluated and recorded
again.

Our team of four experts incorporates two practicing academic senior radiologists
with 15 years of experience each. In our study, they’re referred to as Senior Radiologist
1 and Senior Radiologist 2. Another expert is a practicing academic radiologists with
5 years of experience, which is referred to as Junior Radiologist. The last member is
a senior radiology resident, referred as Radiology Resident. The team of experts were
chosen such that a wide range of experience and background knowledge would be present
for our studies, in order to make it more comprehensive.

Results

Training, Evaluation, and Testing Datasets

To develop ai-corona, we utilized data from three different sources: (1) the MDH
cohort, (2) the publicly available CC-CCII dataset [24], and (3) the publicly available
MosMedData cohort. The combined data were from multiple international sites and
comprised of 7184 CT scans from 5693 subjects categorized into five classes: normal,
CP, NCA, non-pneumonia, and COVID-19. For a better comparison of the diagnosis
performance between RT-PCR and CT scans, the RT-PCR test records of 2672 patients
in a 7-month period were gathered.

The MDH and the CC-CCII data were used for training, evaluation (tuning), and
testing. The MosMedData was used entirely for testing. Overall, 5322 scans from 3985
subjects were used for training and tuning, and three sets were used for testing: (1)
CC-CCI1I test set (105 normal, 147 CP, and 143 COVID-19 scans), (2) MDH test set (121
normal, 117 NCA, and 119 COVID-19 scans), and (3) the entire MosMedData cohort
(254 non-pneumonia and 856 COVID-19 scans).

Taking into consideration the ground truth annotation of all the works involved, the
CC-CCII test set was used to compare ai-corona with the models proposed by Zhang et
al. |24], Jin et al. |26], and with expert radiologists. Furthermore, the MDH test set was
used to compare ai-corona with the radiologists and RT-PCR. Lastly, The MosMedData
cohort was used to compare ai-corona with the model proposed by Jin et al. [26].

RT-PCR Sensitivity

Since the truth annotation methodology described in yields accurate labels, it
was used to annotate a separate set for RT-PCR evaluation. This set is used to showcase
the evolution of RT-PCR’s sensitivity over a period of 7 months in (sensitivity
of each day is calculated as the average sensitivity of a 15-day period centered around
that day). RT-PCR’s sensitivity oscillates in the range [0.351, 0.722]. The decrease in
sensitivity to 0.351 on April 29*" is due to changing the specimen obtaining method to
oropharygeal wash [42]. This changed later and nasopharyngeal and oropharyngeal swabs
were used. The biggest value for RT-PCR’s sensitivity in this evaluation is considered
its best, denoted by RT-PCR Best.
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Performance Evaluation and Comparison

Having three test sets, our framework’s COVID-19 diagnosis performance for the CC-CCIIT
test set, MDH test set, and the MosMedData cohort for all the studies is evaluated (an
operating point was selected for each study). The confusion matrices for our evaluation
results can be found in Moreover, for the COVID-19 class, ROC curves are
showcased in and a more thorough look using the four metrics is depicted in
[Figure 5h and [Figure 5b. At last, the complete numerical reports for this evaluation can
be found in Values denoted with ”-” in the table correspond to a lack of report.

through show that ai-corona has performed better in all three
classes (Normal, CP, COVID-19) compared to Zhang et al. [24] and Jin et al. [26] on
the CC-CCII test set and achieves an AUC score of 0.997, sensitivity of 0.972, and
specificity of 0.968 on the COVID-19 class. The confusion matrix in showcases
our framework’s performance on MDH test set for the three classes of Normal, NCA,
and COVID-19. For this dataset, our framework gains scores of 0.989, 0.924, and
0.983 for AUC, sensitivity, and specificity, respectively. In addition, and
showcase that our framework surpasses that of proposed by Jin et al. [26] on
the MosMedData cohort with an AUC of 0.954. Although both have similar sensitivities
in COVID-19 diagnosis, ai-corona outperforms Jin et al.’s model in non-pneumonia
diagnosis with 83.07% accuracy, reporting fewer false positives.

The better diagnosis performance over the CC-CCII test set indicates that the task
of diagnosing NCA from the other classes is indeed more difficult than diagnosing CP
from the other classes. This due to all the different abnormalities present in the NCA
class having their unique imaging features.

Comparison with Experts and RT-PCR

[Figure 4h and [Figure 5a showcase the COVID-19 diagnosis performance of ai-corona
and its comparison with that of experts for the CC-CCII test set. As shown, our
framework performs better in all cases (except for the specificity of Senior radiologist
1). Furthermore, [Figure 4] and [Figure 5p showcase the same comparison, but for MDH
test set. This time, the framework performed similar to radiologists in specificity, but
outperformed in the other metrics. In this comparison, 93.3% of COVID-19 cases in
MDH test set (111 of 119) were diagnosed as infected by at least one expert. Out of
the other 8 that were not, our framework managed to report one and RT-PCR reported
three as infected. If RT-PCR was the only criteria for the truth annotation, the overall
sensitivity of radiologists would improve to 97%, which would further confirm the findings
in [7]. The complete reports for these two evaluations are in sections a and b of
In [Figure 4p, the sensitivity of RT-PCR based diagnosis and CT based diagnosis is
compared. The figure shows that RT-PCR Best sensitivity of 0.722 is lower than every
expert diagnosing via CT. The RT-PCR Best sensitivity is an upper bound. Because
if instead of testing patient hospitalized for more than three days, every COVID-19
admitted patient was tested, RT-PCR’s sensitivity would be much lower than 0.722.

Model as Expert Assistant

The goal of any Al assistant model is to improve the diagnosis performance of experts.
For the evaluation, first, the radiologists annotate the test set. After an appropriate
amount of time, the radiologist re-annotated the set for a second time while having the
diagnosis of ai-corona for the entire set. The test set was also shuffled the second time
to eliminate any remembrance of cases. Experts’ diagnosis performance is depicted in
[Figure 5h, and [Figure 5p. For the CC-CCII test set, all the experts (except the radiology
resident) had an improvement in their sensitivity. A significant improvement in the other
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Fig 2. Fluctuations in RT-PCR sensitivity on a daily basis. The highest peek reaches 0.722, which is
denoted as RT-PCR Best.

metrics is also seen for everyone (except Senior 1). For MDH test set, improvement in
sensitivity can be seen for Senior 1 and Junior. Specificity only had an improvement in
the Radiology Resident and remained unchanged for others. In every other evaluation
criterion, the AI model had a positive impact on the experts’ performance.

Interpretation of ai-corona

To ensure that ai-ccorona was learning the correct imaging features, class activation
maps were generated This is done by following the methodology described
in In the class activation map of a slice in a scan, more predictive areas (that
hold the correct imaging features) appear brighter. Thus, the brightest areas of the class
activation map correspond to regions that most influence the model’s prediction.

Additional Evaluations

We made other evaluations as well, for which the complete details can be found in
Supplementary Materials. First, over the MDH test set, performance of diagnosis between
NCA and Normal classes was evaluated using the four metrics and was compared to the
experts. Furthermore, all of the possible comparisons between every pair of classes were
made to ensure the thoroughness and completeness of our evaluation. As an example,
this extra study showcased that radiologists perform better in diagnosing NCA from
Normal compared to the AT model.

Lastly, it is important to note the speed at which different methodologies perform
diagnosis. As shown in, RT-PCR is extremely slow. Moreover, our framework is faster
than the best radiologist by 25 orders of magnitude. This is showcased in

at-corona Senior 1 Senior 2 Junior Radiology resident
Diagnosis Time 12 man. 360 min. 300 min. 320 min. 400 min.

Table 2. Diagnosis time comparison for ai-corona and radiologists on the 357 case test set.
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Sensitivity Specificity Fl-score Kappa AUC
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
a (CC-CCII test set)

) 0.972 0.968 0.970 0.935 0.997
a-corona (0.956, 0.988)  (0.954, 0.982)  (0.954, 0.986)  (0.909, 0.961)  (0.993, 0.999)
Zhang et al. |24] O'?49 O'?ll B - (0.9(?7'?80(?990)
Jin et al. 26| 0.921 0.780 i i 0.921

(0.918,0.926)  (0.770-0.789) (0.918, 0.926)
Senior 1 0.895 0.956 0.908 0.857

enior (0.874, 0.916)  (0.945, 0.967)  (0.892, 0.924)  (0.837, 0.877) -

Senior 1-4AI 0.937 0.948 0.924 0.88 i
(0.919, 0.955)  (0.937, 0.959)  (0.91, 0.938) (0.86, 0.9)

Senior 2 0.909 0.917 0.884 0.816 i
(0.888,0.93)  (0.903, 0.931)  (0.868, 0.9) (0.792, 0.84)

Semior 2-4AL 0.965 0.94 0.932 0.892 i
(0.954, 0.976)  (0.927, 0.953)  (0.92, 0.944)  (0.876, 0.908)

Tunior 0.636 0.897 0.7 0.555 i
(0.605, 0.667)  (0.882, 0.912)  (0.677, 0.723)  (0.523, 0.587)

Juniort Al 0.776 0.913 0.804 0.7

unior+ (0.75, 0.802)  (0.898, 0.928)  (0.782, 0.826)  (0.672, 0.728) -

R, resident 0.839 0.663 0.69 0.459 i
(0.813, 0.865)  (0.639, 0.687)  (0.67, 0.71)  (0.426, 0.492)
R.res.t+ Al 0.853 0.778 0.76 0.599 i

res. (0.826, 0.88)  (0.758, 0.798)  (0.74, 0.78) (0.568, 0.63)

b (MDH test set)

) 0.924 0.983 0.953 0.917 0.989

ar-corona (0.895, 0.953)  (0.961, 1.000)  (0.935, 0.971)  (0.887, 0.947)  (0.984, 0.994)

0.722

RT-PCR (0.661, 0.783) - - - -

Senior 1 0.857 0.979 0.903 0.858 i
(0.833, 0.881)  (0.963, 0.995)  (0.886, 0.92)  (0.838, 0.878)

Semior 1-4AI 0.908 0.987 0.939 0.91 i
(0.887, 0.929)  (0.975, 0.999)  (0.927, 0.951)  (0.892, 0.928)

Senior 2 0.899 0.979 0.926 0.891 i
(0.874, 0.924)  (0.965, 0.993)  (0.912, 0.94)  (0.868, 0.914)

Senior 24 AT 0.899 0.992 0.939 0.91

enior 2+ (0.877, 0.921) (0.983, 1.0) (0.928, 0.95)  (0.894, 0.926) -

Junior 0.765 0.992 0.858 0.8 i
(0.738,0.792)  (0.982, 1.0)  (0.838, 0.878)  (0.775, 0.825)

Junior-+AL 0.857 1.0 0.923 0.889 i
(0.833, 0.881) (1.0, 1.0) (0.908, 0.938)  (0.869, 0.909)

R, resident 0.882 0.92 0.864 0.794 i
(0.858, 0.906)  (0.898, 0.942)  (0.846, 0.882)  (0.766, 0.822)

R.rest Al 0.899 0.966 0.915 0.873 i
(0.877,0.921)  (0.948, 0.984)  (0.901, 0.929)  (0.853, 0.893

¢ (MosMedData Cohort)

) 0.939 0.831 0.954

au-corona (0.924, 0.954)  (0.802, 0.86) - - (0.937, 0.971)
0.945 0.661 0.933

jin

(0.938, 0.951)

(0.636, 0.686)

(0.926, 0.938)

Table 3. Evaluation results of all the studies with a 95% confidence interval using the metrics sensitivity,
specificity, Fl-score, Kappa, and AUC. A ”-”” value corresponds to a lack of data. Reports in the sections a,
b, and c are for the CC-CCI test set, the MDH test set, and the MosMedData Cohort, respectively.
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Fig 3. Top row left-to-right: Confusion matrices for ai-corona, the model proposed by Zhang et al. ,
and the model proposed by Jin et al. for the CC-CCI test set, respectively. Bottom row left and middle:

Confusion matrices for ai-corona on the MosMedData cohort, respectively. Bottom row right: Confusion
matrix for the model proposed by Jin et al. for the MosMedData cohort.
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Fig 4. ROC curve diagrams for ai-corona on the (a) CC-CCII test set (b) MDH test set (c) MosMedData
cohort. Diagrams in the bottom row correspond to a zoom-in of their respective curves. Hollow shapes
represent an expert un-aided by AI, where filled shapes represent expert with AI assistance. As RT-PCR
sensitivity was not available, its sensitivity is shown as a solid line in .
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Fig 5. Detailed comparison of all the studies using our evaluation metrics for above: CC-CCII test set,
below: MDH test set. Hollow shapes represent an expert un-aided by AI, where filled shapes represent
expert with Al assistance.

Fig 6. Class activation maps for ai-corona interpretation. This highlight which pixels in the images are
important for the model’s classification decision.
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Conclusion and Discussion

We introduce ai-corona, a radiologist-assistant deep learning framework capable of
accurate COVID-19 diagnosis in chest CT scans. Our deep learning framework was
developed (training and tuning) on 5322 scans, 3985 subjects, gathered from cohorts
from two countries, China and Iran, and was tested against three sets; the CC-CCII
test set from China (395 scans, 252 subjects), MDH test set from Iran (357 scans, 346
subjects), and the MosMedData cohort from Russia (1110 scans, 1110 subjects). Our
framework was able to learn to diagnose patients infected with COVID-19, as well being
able to distinguish between COVID-19, other types of common pneumonia (CP) such as
viral and bacterial, and other non COVID-19 abnormalities (NCA). Moreover, a set of
2672 subjects was used to calculate the sensitivity of RT-PCR.

The use of multiple datasets, each with scans differing in the number of slices, and
a lack of slice-specific labeling, presented a challenge for this work. To address this,
we dynamically select the middle 50% of slices in each scan and feed them to a single
EfficientNetB3-based feature extractor, which after an average pooling operator, will
result in a single feature vector that will be classified. This method, alongside the use of
only one 2D CNN;, will not only make our framework more robust, but it will also make
its predictions faster and capable of running on slower hardware.

Our framework was compared to two other AI models, proposed by Zhang et al. [24]
and Jin et al. |26] respectively. Its diagnosis performance is also compared to that of
experts and other means of diagnosis in order to achieve a comprehensive and sensible
image of the framework’s abilities. In the end,ai-corona managed to outperform the two
other AI models in COVID-19 diagnosis. Our framework achieves high sensitivity, while
also having a high specificity.

Our framework achieved an AUC score of 0.997 on the CC-CCII test set and performed
better than models proposed by Zhang et al. [24] and Jin et al. |26] on all four metrics.
On the MDH test set,ai-corona gained an AUC score of 0.989 and performed mostly
better in all of the metrics compared to the experts. It is worth mentioning that for our
framework, diagnosing between the COVID-19 and CP classes was easier than between
COVID-19 and NCA. Yet for the experts, it was the opposite. RT-PCR, as another
method of diagnosis, had a sensitivity of 0.722 at best, worse than all the experts and
the Al. At last, our framework gained a 0.954 AUC score on the MosMedData cohort,
which outperforms Jin et al. [26]. A complete report of these evaluations can be found
in through [Figure 5| and [Table o}

In COVID-19 diagnosis, ai-corona’s impact on assisting experts’ diagnosis was
evaluated, which in COVID-19 diagnosis, mostly indicates a positive improvement on at
least their sensitivity or specificity. This improvement is most noticeable for the junior
radiologist and the radiology resident. Additionally, incorporation of the class activation
maps in the experts’ diagnosis can help them examine the involved regions better.

On having a positive impact on experts’ diagnosis, two cases are discussed here to
showcase how ai-corona made experts change their minds for good in suspicious cases. At
least one expert misdiagnosed [Figure 7Th’s case as NCA at first, but upon seeing the AI's
diagnosis, correctly diagnosed as COVID-19. This expert cited seeing Peribrochovascular
distribution, which is not common in COVID-19 (no subpleural distribution), as the
reason for their misdiagnosis. In addition, [Figure 7b’s case was initially misdiagnosed
as COVID-19 by at least one expert, but was changed correctly to NCA when seeing
the AD’s correct diagnosis. They cited that cavity, centrilobular nodule, mass, and mass
like consolidations are not commonly seen in COVID-19 pneumonia and might implicate
other diagnostics. On the other hand, the existence of error in CT-based
diagnosis, both for ai-corona and experts, encourages us to study the cause for such
errors, which might lead to better and more accurate predictions, or point out any if
existing fundamental flaws in CT-based diagnosis. [Figure 7h’s case was misdiagnosed
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as COVID-19 by all the experts. Our framework, while correctly diagnosing for NCA,
was not able to change the experts’ minds. In a consensual final report, the experts
cite that Mediastinal and bilateral hilar adenopathies were seen, as well as Anterior
mediastinal soft-tissue density. In addition, Diffuse bilateral interstitial infiltrations were
detected with crazy paving pattern, ground glass, and traction bronchiectasis, mainly in
the right lung and partial volume loss of the right lung. Also, the position of central
venous catheter tip was seen in the left brachiocephalic vein.

The success of Al in medical imaging-based diagnosis has been proven by this work
and many others before it. ai-corona can positively influence an expert’s opinion and
improve the speed at which the subject screening process occurs, such that it helps
critical cases get the care they urgently need faster.

But our work has its own drawbacks and shortcomings. Since the gathering of
a dataset with a better labeling (one that alongside its accurate annotations also
accompanies localization and slice labels) is time and resource consuming, we decided
to opt for an approach that favours robustness and is capable of learning on simpler
dataset. Developing our framework on a better dataset would certainly improve its
performance. In addition, the CP class contains all kinds of conditions and diseases
that cause pneumonia. As each of these conditions and diseases have their own distinct
imaging features, having separate classes for them, especially Influenza-A, would improve
the framework’s performance. Lastly, our framework’s learning would certainly benefit
from more cases that are positive for COVID-19, yet have a negative RT-PCR result.
As these cases are mostly experiencing the early stages of the infection, diagnosing them
is more difficult. Moreover, classifying cases with a negative RT-PCR as non COVID-19
is illogical and their labeling protocol should be something else.

In future, approaches that do a better job incorporating clinical reports with the
imaging data should be explored. In conclusion, with the individual drawbacks of
diagnosing based on clinical representation, RT-PCR, and CT-based diagnosis, a method
comprised of all three would definitely yield the most accurate diagnosis of COVID-19.
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Fig 7. Panels (a), (b), and (c), are the chest CT scans of patients who were initially misdiagnosed by at
least one radiologist but were then diagnosed correctly upon incorporating ai-corona’s correct prediction.
Panel (d) shows the chest CT scans of patient that was misdiagnosed by ai-corona and radiologists.
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Supporting information

All Cases

Patients: 2371
Scans: 2510

Cleaning

Cleaned Cases

Patients: 2032
Scans: 2121

Y

Training
Patients: 1518 - Scans: 1590
Normal Ab-nC COVID-19
Patients: 467 Patients: 576 Patients: 475
Scans: 470 Scans: 578 Scans: 542
Tuning
Patients: 168 - Scans: 174
Normal Ab-nC COVID-19
Patients: 51 Patients: 64 Patients: 53
Scans: 51 Scans: 64 Scans: 59
Intemal Test
Patients: 346 - Scans: 357
Normal Ab-nC COVID-19
Patients: 120 Patients: 117 Patients: 109
Scans: 121 Scans: 117 Scans: 119

Fig 8. The cascade structure of the MDH. Number of subjects and scans in each split and set is indicated.
The preliminary dataset was cleaned, by removing abdomen and high-resolution CT scans. The train and
tuning sets were labeled by two expert radiologists. The NCA and normal classes of the test set was
re-annotated by three expert radiologist (one new). The COVID-19 class are patients that meet our criteria
and were hospitalized for more than three days.
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Fig 9. The left panel corresponds to the distribution of image slices for cases in the MDH, middle panel
shows the distribution of Age, while the right panel illustrates the sex distribution of cases in the MDH.
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Table 4. The quantitative evaluation of ai-corona, radiologists, and model-assisted radiologists
performance results for distinguishing between the COVID-19 class and the normal class at a 95%

Sensitivity Specificity F1-score Kappa
(95% CI) (95% CI) (95% CI) (95% CI)

i ooron 0.983 0.967 0.975 0.95
ar-corona (0.971, 0.995)  (0.951, 0.983)  (0.965, 0.985)  (0.929, 0.971)
Senior 1 0.958 0.992 0.974 0.95

enio (0.947, 0.969)  (0.987, 0.997)  (0.967, 0.981)  (0.938, 0.962)
Senior 1+AL 0.992 0.983 0.987 0.975

(0.987,0.997)  (0.976,0.99)  (0.983, 0.991)  (0.966, 0.984)
Senior 2 0.966 0.942 0.954 0.908

(0.957, 0.975)  (0.93, 0.954)  (0.944, 0.964)  (0.892, 0.924)
Senior 2+ AL 0.975 0.975 0.975 0.95

enor (0.967, 0.983)  (0.966, 0.984)  (0.969, 0.981)  (0.938, 0.962)
Juni 0.983 0.959 0.971 0.942

unior (0.977, 0.989)  (0.949, 0.969)  (0.965, 0.977)  (0.93, 0.954)
Jumior-LAL 0.983 0.95 0.967 0.933

unior (0.976, 0.99)  (0.939, 0.961)  (0.96, 0.974)  (0.919, 0.947)
R, residont 0.966 0.917 0.943 0.883

- residen (0.957, 0.975)  (0.904, 0.93)  (0.934, 0.952)  (0.867, 0.899)
Fores. AL 0.966 0.967 0.966 0.933

(0.957, 0.975)

(0.956, 0.978)

(0.959, 0.973)

(0.919, 0.947)

confidence interval.

Table 5. The quantitative evaluation of ai-corona, radiologists, and model-assisted radiologists

Sensitivity Specificity Fl-score Kappa
(95% CI) (95% CI) (95% CI) (95% CI)

i corona 0.924 0.974 0.949 0.898
ar (0.901, 0.947)  (0.959, 0.989)  (0.934, 0.964)  (0.872, 0.924)

Senior 1 0.857 0.957 0.903 0.814
(0.836, 0.878)  (0.944, 0.97)  (0.89, 0.916)  (0.794, 0.834)

Senior 1+AL 0.908 0.974 0.939 0.881
(0.892, 0.924)  (0.965, 0.983)  (0.929, 0.949)  (0.865, 0.897)

Senior 2 0.899 0.957 0.926 0.856
erior (0.884, 0.914)  (0.946, 0.968)  (0.916, 0.936)  (0.837, 0.875)

Senior 24 AL 0.899 0.983 0.939 0.881
(0.881, 0.917)  (0.976, 0.99)  (0.929, 0.949)  (0.863, 0.899)

Jumior 0.765 0.983 0.858 0.746
(0.743, 0.787)  (0.974, 0.992)  (0.843, 0.873)  (0.723, 0.769)

Janiort AL 0.857 1.0 0.923 0.856
u (0.839, 0.875) (1.0, 1.0) (0.912, 0.934)  (0.837, 0.875)

R, rosident 0.882 0.855 0.871 0.737
- res (0.863, 0.901)  (0.838, 0.872)  (0.858, 0.884)  (0.711, 0.763)

Rores +AL 0.899 0.94 0.918 0.839
res. (0.882, 0.916)  (0.927, 0.953)  (0.906, 0.93)  (0.815, 0.863)

performance results for distinguishing between the COVID-19 class and the NCA class at a 95% confidence

interval.

Table 6. The quantitative evaluation of ai-corona, radiologists, and model-assisted radiologists

Sensitivity Specificity Fl-score Kappa
(95% CI) (95% CI) (95% CI) (95% CI)

. 0.915 0.929 0.922 0.831
a-corona (0.883, 0.947)  (0.893, 0.965)  (0.894, 0.95)  (0.793, 0.869)
Senior 1 0.897 0.946 0.894 0.841

enor (0.876, 0.918)  (0.925, 0.967)  (0.877, 0.911)  (0.815, 0.867)
Senior 1+AL 0.949 0.95 0.925 0.887

enor (0.934, 0.964) (0.93, 0.97) (0.911, 0.939)  (0.87, 0.904)
Senior 2 0.949 0.938 0.914 0.869

(0.934, 0.964)  (0.916, 0.96) (0.9, 0.928) (0.848, 0.89)
Senior 2+AL 0.974 0.95 0.938 0.906
1963, 0.985 0.932, 0. 1926, 0.95 .89, 0.9

enior 0.963, 0.98 932, 0.968 0.926, 0.9 0.89, 0.922
Tani 0.923 0.871 0.844 0.757
~unior (0.901, 0.945)  (0.843, 0.899)  (0.824, 0.864)  (0.733, 0.781)
Junior+ AL 0.983 0.912 0.909 0.86

(0.974, 0.992)  (0.89, 0.934)  (0.896, 0.922)  (0.838, 0.882)
R resident 0.821 0.925 0.831 0.75

- residen (0.793, 0.849)  (0.897, 0.953)  (0.81, 0.852)  (0.723, 0.777)

Rores Al 0.923 0.954 0.915 0.873

(0.904, 0.942)

(0.935, 0.973)

(0.901, 0.929)

(0.854, 0.892)

performance results for distinguishing between the NCA class and the other two classes at a 95% confidence

interval.
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Sensitivity Specificity Fl-score Kappa
(95% CI) (95% CI) (95% CI) (95% CI)
. 0.942 0.919 0.931 0.841
- 917, 0. .883, 0.955 .907, 0.955 .801, 0.881
ar-corona 0.917, 0.967 0.883, 0.9 0.907, 0.9 0.801, 0.88
Senior 1 0.992 0.949 0.949 0.92
enior (0.985, 0.999)  (0.929, 0.969)  (0.937, 0.961)  (0.904, 0.936)
Senior 1+ AL 0.983 0.983 0.975 0.963
(0.975, 0.991)  (0.971, 0.995)  (0.967, 0.983)  (0.952, 0.974)
Senior 2 0.942 0.979 0.95 0.925
enior (0.926, 0.958)  (0.964, 0.994)  (0.941, 0.959)  (0.909, 0.941)
Sentor 2+ AL 0.975 0.983 0.971 0.956
(0.964, 0.986)  (0.971, 0.995)  (0.962, 0.98)  (0.944, 0.968)
Jumior 0.959 0.962 0.943 0.913
(0.946, 0.972)  (0.943, 0.981)  (0.931, 0.955)  (0.896, 0.93)
JaniorL Al 0.95 0.983 0.958 0.937
(0.933, 0.967)  (0.97, 0.996)  (0.947, 0.969)  (0.921, 0.953)
R, rosident 0.917 0.966 0.925 0.887
- res (0.899, 0.935)  (0.949, 0.983)  (0.911, 0.939)  (0.866, 0.908)
Rores +AL 0.967 0.975 0.959 0.938
res. (0.954, 0.98)  (0.962, 0.988)  (0.95, 0.968)  (0.923, 0.953)

Table 7. The quantitative evaluation of ai-corona, radiologists, and model-assisted radiologists
q g g
performance results for distinguishing between the normal class and the other two classes at a 95%

confidence interval.

Sensitivity Specificity Fl-score Kappa
(95% CI) (95% CI1) (95% CI) (95% CI1)

. 0.906 0.917 0.912 0.823
ar-corona (0.878, 0.934)  (0.891, 0.943)  (0.893, 0.931)  (0.789, 0.857)
Senior 1 0.94 0.992 0.965 0.933

(0.927, 0.953)  (0.986, 0.998)  (0.958, 0.972)  (0.921, 0.945)
Senior 1+AL 0.974 0.983 0.979 0.958

(0.966, 0.982)  (0.976, 0.99)  (0.973, 0.985)  (0.948, 0.968)
Senior 2 0.991 0.942 0.967 0.933

(0.987, 0.995)  (0.93,0.954)  (0.96, 0.974)  (0.92, 0.946)
Senior 2+ AL 0.991 0.975 0.983 0.966

(0.986, 0.996)  (0.966, 0.984)  (0.978, 0.988)  (0.957, 0.975)
Jumior 0.94 0.959 0.948 0.899

(0.928, 0.952)  (0.949, 0.969)  (0.938, 0.958)  (0.879, 0.919)
Jumior+ AL 0.983 0.95 0.966 0.933

(0.976, 0.99)  (0.939, 0.961)  (0.96, 0.972)  (0.919, 0.947)
R, rosident 0.966 0.917 0.942 0.882

: (0.957, 0.975)  (0.903, 0.931)  (0.933, 0.951)  (0.866, 0.898)
Rores AL 0.983 0.967 0.975 0.95

res. (0.977, 0.989)  (0.957, 0.977)  (0.969, 0.981)  (0.94, 0.96)

Table 8. The quantitative evaluation of ai-corona, radiologists, and model-assisted radiologists

performance results for distinguishing between the NCA class and the normal class at a 95% confidence

interval.

AUC

abnormal vs normal + COVID

normal vs abnormal + COVID

COVID vs normal

COVID vs abnormal

normal vs abnormal

0.959
(0.944, 0.974)
0.978
(0.968, 0.988)
0.997
(0.995, 0.999)
0.986
(0.981, 0.991)
0.961
(0.951, 0.971)

Table 9. Area Under Curve (AUC) summary
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Fig 10. The ROC diagram representing the performance of various pipelines for the different
combinations of comparison. The Solid blue line is for ai-corona by adapting different discrimination
threshold value which is used to convert the continuous probability to binary ” Yes” or "No” results. The
filled triangle symbols are the (1-specificity, sensitivity) for the individual clinical expert, while the filled

circle symbols are for the model-assisted radiologist. The inset plots magnify the highest part of sensitivity
and specificity.
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