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Abstract 

Introduction A novel coronavirus disease 2019 (COVID-19) has spread to all regions of the world. 

There is great uncertainty regarding how countries characteristics will affect the spread of the epidemic; 

to date, there are few studies that attempt to predict the spread of the epidemic in African countries. In 

this paper, we investigate the role of demographic patterns, urbanization and co-morbidities on the 

possible trajectories of COVID-19 in Ghana, Kenya, and Senegal. 

Methods We use an augmented deterministic SIR model to predict the true spread of the disease, under 

the containment measures taken so far. We dis-aggregate the infected compartment into asymptomatic, 

mildly symptomatic, and severely symptomatic to match observed clinical development of COVID-19. 

We also account for age structures, urbanization, and co-morbidities (HIV, tuberculosis, anemia). 

Results In our baseline model, we project that the peak of active cases will occur in July, subject to the 

effectiveness of policy measures. When accounting for the urbanization, and factoring-in co-morbidities, 

the peak may occur between June 2nd and June 17th (Ghana), July 22nd and August 29th (Kenya), and 

finally May 28th and June 15th (Senegal). Successful containment policies could lead to lower rates of 

severe infections. While most cases will be mild, we project in the absence of policies further containing 

the spread, that between 0.78 and 1.03%, 0.61 and 1.22%, and 0.60 and 0.84% of individuals in Ghana, 

Kenya, and Senegal respectively may develop severe symptoms at the time of the peak of the epidemic.  

Conclusion Compared to Europe, Africa’s younger and rural population may modify the severity of the 

epidemic. The large youth population may lead to more infections but most of these infections will be 

asymptomatic or mild, and will probably go undetected. The higher prevalence of underlying conditions 

must be considered. 
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Summary 

 

What is known? 

● While most COVID-19 studies focus on western and Asian countries, very few are 

concerned with the spread of the virus in African countries. 

● Most African countries have relatively low urbanization rates, a young population and 

context-specific co-morbidities that are still to be explored in the spread of COVID-19. 

 

What are the new findings? 

● In our baseline predictions 33 to 50% of the public will be actively infected at the peak of 

the epidemic and 1 in 36 (Ghana), 1 in 40 (Kenya) and 1 in 42 (Senegal) of these active cases may 

be severe.  

● With rural areas, infection may be lowered to 65-73% (Ghana), 48-71% (Kenya) and 61-

69% (Senegal) of the baseline infections.  

● Comorbidities may however increase the ratio of severe infections among the active cases 

at the peak of the epidemic.  

 

What do the new findings imply? 

● Rural areas and large youth population may limit the spread and severity of the epidemic 

and outweigh the negative impact of HIV, tuberculosis and anemia. 

 

 

INTRODUCTION 

 

Since the first reported severe acute syndrome coronavirus 2 (SARS-CoV-2) infection in December 2019, 

the virus has spread to all continents.[1]  There is still little evidence on the pattern of the spread in Africa.  

Although the African continent is made up of countries with different infrastructures, health policies, and 

characteristics in the face of this novel coronavirus disease 2019 (COVID-19); some characteristics such as 

a young population,[2] co-morbidities (tuberculosis, HIV, anemia[3,4]) and low urbanization rates 

transcend these differences and have been seldom considered in the large number of studies published to 

date. For example, the median age below 20,[5] and the low rates of urbanization, could potentially lead 

to a lower death toll of the epidemic in African countries than elsewhere.  

 

However, having a young population implies that many infected individuals may not display symptoms 

and will risk infecting more people than would symptomatic individuals.[6] Additionally, the large number 

of informal settlements could accentuate this phenomenon. It is therefore urgent to develop a framework 

that could accurately predict the spread of the virus, accounting for the idiosyncrasies of the African 

context. A country-specific model will provide policy makers with a wide range of prediction scenarios, 
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based on different actions they can take to address the pandemic. With the scarce resources at their 

disposal,[7,8] models like these will help target prevention strategies to individuals with co-morbidities 

who might suffer the most from the epidemic. Moreover, with containment policies that can grind 

economies to a halt,[9] understanding the trade-off between rural and urban spreads could lead to better 

informed decisions between the short term impacts of the epidemic, and the long-term looming shortage 

in the food-supply that could stem enforcing strict social distancing measures in rural areas.   

 

This study contributes to the meager literature on the burden of the virus on African countries; it also adds 

to the use of differential equation models to predict the spread of epidemics. This paper focuses on three 

African countries that have received little attention: Ghana, Kenya, and Senegal. We chose Kenya to have 

a comparison point with another in-depth study by Brand et al.[10] Ghana and Senegal on the other hand 

have had transparent data sharing policies from the start of the epidemic; they made available publicly the 

number of positive cases, the number tests conducted and a clear outline of the containment measures. 

Ghana has an extensive testing policy, while Senegal has tested very few individuals comparatively1, we 

are thus able to see the difference in predictions for two countries that have adopted widely different 

testing strategies.   

 

To project the trends of the epidemic, we augment the canonical Susceptible - Infected - Recovered by 

splitting the infected compartment into three groups: an infected without symptoms, an infected with mild 

symptoms, and finally, the infected with severe symptoms. With our projections accounting for policies 

implemented to date, we present different scenarios accounting for local policies, urbanization, and co-

morbidities. Our strategy is relevant beyond the application of this paper; it could be used in Asian or 

European contexts as well, and is similar to work by Ferguson et al.[12] who discuss suppression and 

mitigation measures in the UK and the USA.  

 

METHODS 

 

Compartmental epidemiological model 

Several models have been used to predict the spread of the virus. Read et al.[13] use a standard Susceptible 

– Exposed – Infected – Recovered (SEIR) model with an exposed compartment that comprises infected 

individuals who do not yet have symptoms and who are not infectious. Danon et al.[14] also use a SEIR 

model but split the infected compartment into two sub-compartments: mild symptoms and symptomatic. 

Finally, Arenas et al.[15] study use a model composed of susceptible, exposed, asymptomatic infectious, 

infected, hospitalized to ICU, dead, and recovered compartments; however, they assume that all 

asymptomatic infectious individuals cannot recover before they ever develop symptoms.  

 

There is early evidence that a large number of individuals infected with COVID-19 will recover without 

ever developing symptoms and that asymptomatic individuals are contagious to varying degrees.[16–19] 

 
1 As of May 1st, 2020, Ghana has conducted 3.37 tests per thousand individuals while Kenya and Senegal are respectively at 0.4 and 0.76.[11]  
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Based on these findings, our model assumes that individuals are contagious from the moment they get 

infected. We define a Susceptible - Infected – Recovered (SIR) model with vital dynamics (see figure 1 of 

the appendix). The known natural progression of the disease is (1) asymptomatic, (2) mild symptomatic, 

(3) moderate symptomatic, (4) severe, and (5) critical. There are benefits in understanding the 

heterogeneity among infected individuals namely, those carriers without symptoms (asymptomatic), 

carriers without symptoms (mild and moderately symptomatic), and severe cases who might seek medical 

attention (severe and critical). We therefore propose to divide the infected compartment into three sub-

compartments: asymptomatic infectious, mildly (and moderate) symptomatic infectious, and severely 

(and critically) infected requiring medical attention.  

 

We introduce some notations. S is the share of susceptible, i.e. individuals who are exposed to the virus 

but not immune. 𝐼𝑎𝑠, 𝐼𝑚𝑠, and 𝐼𝑠𝑠 are respectively the shares of asymptomatic, mildly symptomatic, and 

severely symptomatic individuals. R is the share of immune individuals. D is the share of deceased 

individuals (due to COVID-19 and other non-related causes). All numbers are expressed in terms of 

percentages of the total population. We note I = 𝐼𝑎𝑠 + 𝐼𝑚𝑠 + 𝐼𝑠𝑠 the total share of infected and N = S + I + R 

the share of individuals alive. We suppose that borders are closed. Moreover, all compartments experience 

natural vital dynamics via the birth rate 𝜇
𝑏𝑖𝑟𝑡ℎ

 and the death rate 𝜇
𝑑𝑒𝑎𝑡ℎ

 from causes unrelated to the virus 

(e.g. long-term diseases, accidents). Daily epidemic transmission is described by equations (1)-(5): 

 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝜇𝑏𝑖𝑟𝑡ℎ(𝑆 + 𝑅) − 𝜇𝑑𝑒𝑎𝑡ℎ𝑆              (1) 

 

where βSI = 𝛽
𝑎𝑠

S𝐼𝑎𝑠 +𝛽
𝑚𝑠

S𝐼𝑚𝑠 + 𝛽
𝑠𝑠

S𝐼𝑠𝑠. 

 

𝛽
𝑎𝑠

 is the contact rate between asymptomatic infected individuals and susceptible ones. Because 

asymptomatic individuals are not aware of their infection, their rate of contact with susceptible individuals 

is the same as the rate of contact within the group of susceptible individuals. This contact rate will vary with 

containment measures that are enforced within each country. We define the asymptomatic effective 

reproduction number 𝑅𝑡  = 𝛽
𝑎𝑠

 ∗ 𝑇𝑟𝑒𝑐,𝑎𝑠 as the average number of secondary cases per asymptomatic case at 

time t. 

 

𝛽
𝑚𝑠

 is the contact rate between mildly symptomatic individuals and susceptible ones. It is assumed to be 

lower than 𝛽
𝑎𝑠

 because symptomatic individuals tend to self-isolate, either because they are bedridden due 

to their symptoms or simply because they want to limit contacts with susceptible individuals. 

 

𝛽
𝑠𝑠

 is the contact rate between severely symptomatic and susceptible individuals. Individuals who 

experience severe symptoms may seek medical care and get admitted as inpatients at a hospital.  They might 

not get hospital care for various reasons (e.g. health facilities are overwhelmed). This rate accounts for 

contacts between hospitalized patients and healthcare workers, but can also be interpreted as contacts 

between severely symptomatic individuals and any care-giver (at home for instance, if the health services 
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are overloaded). It also accounts for the contacts between hospitalized severely symptomatic individuals 

and susceptible individuals outside of their care-takers. It remains unclear how contacts other than 

healthcare workers affect the value of 𝛽
𝑠𝑠

.   

 

𝑑𝐼𝑎𝑠

𝑑𝑡
= 𝛽𝑆𝐼 −

𝑟𝑎𝑠

𝑇𝑟𝑒𝑐,𝑎𝑠
𝐼𝑎𝑠 −

(1 − 𝑟𝑎𝑠)

𝑇𝑖𝑛𝑐
𝐼𝑎𝑠 − 𝜇𝑑𝑒𝑎𝑡ℎ𝐼𝑎𝑠                        (2)

where 𝑟𝑎𝑠  is the probability of recovery without ever developing symptoms, 𝑇𝑟𝑒𝑐,𝑎𝑠 is the recovery time of an 

asymptomatic individual, and 𝑇𝑖𝑛𝑐  is the incubation period during which an individual is infected and 

infectious, but does not have symptoms. 

 

𝑑𝐼𝑚𝑠

𝑑𝑡
=

(1 − 𝑟𝑎𝑠)

𝑇𝑖𝑛𝑐

𝐼𝑎𝑠 −
𝑑𝑚𝑠

𝑇𝑑

𝐼𝑚𝑠 − (1 − 𝑑𝑚𝑠) (
𝑟𝑚𝑠

𝑇𝑟𝑒𝑐,𝑚𝑠

+
1 − 𝑟𝑚𝑠

𝑇𝑠𝑒𝑣

) 𝐼𝑚𝑠 − 𝜇𝑑𝑒𝑎𝑡ℎ𝐼𝑚𝑠           (3)

 

where 𝑑𝑚𝑠 is the probability of dying from a fast deterioration, 𝑇𝑑 is the time elapsed between the 

appearance of first symptoms and the death of the individual, 𝑟𝑚𝑠 is the probability to recover from mild 

symptoms, 𝑇𝑟𝑒𝑐,𝑚𝑠 is the recovery time associated with 𝑟𝑚𝑠 and 𝑇𝑠𝑒𝑣 is the time for severe symptoms to 

develop. We deviate for the recovery rates of the mildly symptomatic compartment 𝑟𝑚𝑠 by taking the 

weighted average of age-grouped fatality rates of COVID-19 found in Hubei, Hong Kong, and Macau [40]: 

𝑟𝑚𝑠 = ∑
𝑎𝑔

𝑤𝑎𝑔(1 − 𝑓𝑎𝑔) 

 

Where the sum is over the age groups ag ∈ {[0, 9], [10, 19], ..., [70, 79], 80+}, 𝑤𝑎𝑔 is the share of the 

population in age group ag and 𝑓𝑎𝑔 is the fatality rate found in earlier studies for the population in age group 

[18].  

 

 

𝑑𝐼𝑠𝑠

𝑑𝑡
=

(1 − 𝑟𝑚𝑠)(1 − 𝑑𝑚𝑠)

𝑇𝑠𝑒𝑣

𝐼𝑚𝑠 −
𝑑𝑠𝑠

𝛼𝑇𝑑

𝐼𝑠𝑠 −
(1 − 𝑑𝑠𝑠)

𝑇𝑟𝑒𝑐,𝑠𝑠

𝐼𝑠𝑠 − 𝜇𝑑𝑒𝑎𝑡ℎ𝐼𝑠𝑠                           (4)

Where 𝑑𝑠𝑠 is the probability of dying after progressively developing severe symptoms that require 

hospitalization, 𝑇𝑟𝑒𝑐,𝑠𝑠 is the recovery time of the severely symptomatic. α𝑇𝑑 is the time to death from the 

start of severe symptoms, for individuals who pass away from severe, progressively developing symptoms. 

Intuitively, if most severe cases are hospitalized, α should be higher than 1 as health professionals will slow 

down the evolution of the disease. 

 

𝑑𝑅

𝑑𝑡
=

𝑟𝑎𝑠

𝑇𝑟𝑒𝑐,𝑎𝑠
𝐼𝑎𝑠 + (1 − 𝑑𝑚𝑠)

𝑟𝑚𝑠

𝑇𝑟𝑒𝑐,𝑚𝑠
𝐼𝑚𝑠 +

(1 − 𝑑𝑠𝑠)

𝑇𝑟𝑒𝑐,𝑠𝑠
𝐼𝑠𝑠 − 𝜇𝑑𝑒𝑎𝑡ℎ𝑅          (5) 

𝑑𝐷

𝑑𝑡
= 𝜇𝑑𝑒𝑎𝑡ℎ𝑁 +

𝑑𝑚𝑠

𝑇𝑑
𝐼𝑚𝑠 +   

𝑑𝑠𝑠

𝛼𝑇𝑑
𝐼𝑠𝑠                          (6)
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In our simulations, we include fatalities, but we do not include the outcomes in the results. We make this 

choice because of the high uncertainty around the capacity of the healthcare systems of each individual 

country to absorb the increased demand from severely ill patients. For instance, with the same predictions, 

a country that has a stock of ventilators of 1,000 will likely have less fatalities than a country with no 

ventilators. Because we do not have data on healthcare capacities, therefore we chose not to present these 

results. Our predicted number of fatalities are however subtracted from the number of susceptibles. 

 

Patient and Public Involvement 

Our study does not involve the participation of patients or any members of the public. All data used for 

the purpose of this study are aggregated and publicly available. 

 

 

RESULTS 

 

Baseline Simulations 

We use publicly available data from the European Center for Disease Control and Prevention, and from 

daily press releases made by the Senegalese ministry of health and social protection. [20,21]  We also do 

checks using the Ghana Health Service and the Kenya ministry of health websites. 

 

Whenever possible, we use values of parameters drawn from the literature to fit the model (see table 1).  

 

Although there are reports that as many as 80% of active cases are asymptomatic,[22] these reports are 

based on cases that are still active and include pre-symptomatic individuals. We thus use 40% as the share 

of individuals infected with COVID-19 who recover without ever developing symptoms.[16–19] 

 

Ghana, Kenya, and Senegal have extensive communication strategies including in local languages to ensure 

that communities are able to detect the symptoms of COVID-19 such as a cough and fever and would report 

any person with those symptoms. We there use the share of individuals who do not have a cough as a proxy 

for the rate of symptomatic infected individuals who can leave their home without being reported. Wang et 

al.[23] find that 59% of individuals who test positive for COVID-19 have a cough which implies 𝛽
𝑚𝑠

 = 

0.41𝛽
𝑎𝑠

. We set 𝛽
𝑠𝑠

 = 
𝛽𝑎𝑠

𝑇𝑟𝑒𝑐,𝑠𝑠
  as we presume that individuals are most at risk of infecting other susceptibles 

during their transport to the hospital. This ratio therefore mean that a severely ill patient would infect as 

many individuals over the course of their severely symptomatic phase as an asymptomatic individual would 

over the course of one day. 

 

We chose South-Korea as a benchmark to validate 𝛽
𝑚𝑠

, 𝛽
𝑠𝑠

, and other parameters of our model because it 

is cited as an example for its extensive testing, tracking, and tracing of infections. We calibrate 𝑅𝑡  by 

allowing it to change at each new containment measure taken by South-Korean authorities until the number 
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of identified cases reach a plateau. We solve an optimization problem constrained by (1)-(5) using the 

MATLAB optimization codes of D’Errico.[24] The values of 𝑅𝑡  obtained and other parameters are 

summarized in table 1. The number of infections computed with our model accurately approximates the 

positive cases in South-Korea (see figure 1). 

 

For the fatality rates 𝑑𝑠𝑠 and 𝑑𝑚𝑠 in Ghana, Kenya and Senegal, we split the reported regional fatality rate2 

2.37% between 𝑑𝑠𝑠 = 2% and 𝑑𝑚𝑠=0.37% as most deaths occurred for the severely symptomatic3.[25]  

However, in South Korea, we use the South Korean COVID-19 fatality rate — 1.07 % as of April 2, 2020 — 

and split it across 𝑑𝑚𝑠=0.03% and 𝑑𝑠𝑠=1.04%.  

𝐼𝑚𝑠 was initialized with the number of cases tested positive on the first day of the epidemic in the country. 

𝐼𝑎𝑠 was initialized with the number of cases 𝑇𝑖𝑛𝑐 = 5 days after this same date. 𝐼𝑠𝑠 was initialized at 0. 

 

Insert figure 1 

 

For Ghana and Senegal, 𝑅𝑡  is tuned to match the number of official cases until the first reported case of 

community transmission (see table 1), that is the transmission that cannot be traced back to one of the 

initial cases. Then, 𝑅𝑡  is increased once and then lowered as soon as the first containment policy is enacted 

in the country and further lowered at each additional containment measure. Because Kenya first reported 

community transmission case coincided with the enforcement of a curfew to limit the spread of the virus, 

we only change 𝑅𝑡  once for both the community transmission and the curfew.  

 

Since they alter 𝑅𝑡 , our baseline projections account for mitigation policies that were put in place in each of 

these countries (see figure 2).  For instance, on the eighth day of the epidemic, Ghanaian officials restricted 

internal travels between infectious hot-spots and the rest of the country. Because these restrictions were 

announced 48 hours before they were effective, there is anecdotal evidence that a lot of individuals who 

lived in these hotspots travelled to other areas of the countries; we thus increase 𝑅𝑡   for two days, before 

decreasing it again when the internal limitations of travel were effective. Similarly, 𝑅𝑡  is tailored to each of 

the three countries according to the different policies they enforced. For example, in Kenya, we decrease it less 

for school closings than for regional lockdowns. 

 

At the date of each containment measure, we adjust the value of 𝑅𝑡  and provide low policy and high policy 

effectiveness scenarios. Our baseline projections assume a moderate impact of the policy, while the high 

effectiveness projections correspond to the case in which containment measures reduce the reproduction 

 
2 As of April 25, 2020, the Western African fatality rate is 2.49% while the Eastern African fatality rate is 2.25%, we take the average of both these numbers. Note 
that we use the regional figures because the number of cases at the national level is still low in the three countries. Western Africa has 8,034 cases and Eastern Africa 
has 3,319 cases as of April 27, 2020 (Africa CDC). Although these numbers are much lower than the Africa-wide (32,182 cases) and the worldwide ones, we find them 
more appropriate as they are more faithful to the standards of living and the age pyramid of the countries we study. Particularly, Algeria (12.57% fatality rate) and 
Egypt (6.99%), among others, raise the Africa-wide fatality rate to 4.44% but are structurally different from Ghana, Kenya and Senegal. That being said, we 
acknowledge that our choice relies on the testing capacity in both Western and Eastern African regions  and might underestimate the true fatality rate as a 
consequence. 
3 Note that there are two ways to compute the fatality rate, either (1) as the ratio deaths / total cases, or (2) deaths / closed cases. While the former is likely to be an 
underestimate because lots of open cases can still end up in death, the latter is an overestimate because it’s likely that deaths are closed quicker than recoveries. As 
critical cases are more likely to be detected than mild infections, it is also likely that the number of true cases is underestimated by official numbers but the number 
of COVID-19 related deaths is relatively well captured by official reports. Therefore, the ratio (1) is likely to be a better estimate of the true fatality rate than (2), and 
we use this definition of fatality rate.   
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number significantly — that is the situation in which the policy has had large positive impacts to reduce the 

effective rate of reproduction (see table 1). Our low policy effectiveness scenario translates the instance in 

which, on the contrary, the impact of each policy on the reproduction number is minimal. 

 

Insert figure 2 

Insert table 1 

 

Results reported in figure 3 show how the predictions fit the detected cases in the early days of the 

pandemic. 

 

Insert figure 3 

 

We report predictions for a year (see figure 3). Under the assumptions of the baseline model and their 

limitations, we predict that the peak of the epidemic will occur in July for all three countries as detailed in 

table 2. For Ghana, Kenya, and Senegal respectively, this peak should lead to approximately 11.1, 18.9, and 

5.8 million active infections (including asymptomatic, and symptomatic cases) at the peak of the epidemic, 

with 308, 465, and 138 thousand individuals severely ill needing medical attention (see figure 3). 

 

These long-term scenarios should be interpreted with great caution as they do not consider future policies 

or actions that could drastically reduce the contact rates and subsequently, flatten the curve further4.  

Insert figure 3 

Insert table 2 

 

Testing the Sensitivity of the Simulations to 𝑹𝒕 
We perform a sensitivity analysis for 𝑅𝑡  on our baseline model.  We perturb it 100 times by 𝜀 drawn 

uniformly in [−5%𝑅𝑡 , +5%𝑅𝑡]. The number of infections at the peak fluctuates between 27% to 40% of the 

total population in the active infection compartment for Ghana, between 28% and 40% for Kenya and 

between 25% to 37% for Senegal (see figure 2 of the appendix). In countries that enforced strict social 

distancing measures, predictions were significantly updated down — from about 2.2 million deaths on 

March 16,[12] to about 60 thousand on March 30.[26] A similar update can be expected from the outputs 

of our model as authorities take effective measures to reduce 𝑅𝑡  and/or people in these countries gradually 

adopt behavior that would minimize contacts. 

 

Population Density and Rate of Reproduction 

As the population density increases, the rate of transmission of infectious diseases increases.[27] With 

respectively 43.3%, 72.2%, and 50.6% as a share of their population living in rural areas, Ghana, Kenya, and 

Senegal have sparsely populated areas outside of their main metropolitan areas, compared to countries like 

South Korea (18.5% of rural population). 

 
4 For instance, wearing a mask in public space is now mandatory in Kenya (since April, 15), Senegal (since April, 20) and Ghana (since April, 25). Additionally, the 
government of Ghana lifted its partial lockdown on April, 20. 
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There is little information on the relative rate of transmission of COVID-19 between rural and urban areas 

but we draw on other diseases, for which there is available data. During the 2014 Ebola outbreak in Sierra-

Leone,[28] we find that the basic reproduction number in Kambia (the least densely populated district of 

Sierra-Leone) is .56 times the one of the Western Area Urban district (the most densely populated district, 

that comprises the capital Freetown)5. We take that to mean that the 𝑅𝑡  in rural areas was .56 times that of 

urban areas. Other mostly rural districts had a higher 𝑅𝑡 . To mirror the range of ratios of reproduction rates 

observed in mostly rural and mostly urban districts for the Ebola epidemic in Sierra Leone, we run two 

simulations, one in which the rural to urban ratio is .50, and one where it is .75. These two ratios bound the 

difference between mostly rural districts and mostly urban areas for Ebola in Sierra Leone.[28] Using these 

ratios, we calibrate the rural and urban reproduction rates so their population-weighted average is equal to 

the national 𝑅𝑡  which we keep constant across our baseline scenario and this scenario: 

 

{
𝑅𝑡,𝑟𝑢𝑟  =  𝛾𝑅𝑡,𝑢𝑟𝑏

       𝑅𝑡  =  𝑟𝑢𝑟𝑏  𝑅𝑡,𝑢𝑟𝑏 + (1 − 𝑟𝑢𝑟𝑏)𝑅𝑡,𝑟𝑢𝑟
 

 

Where 𝑅𝑡,𝑟𝑢𝑟 and 𝑅𝑡,𝑢𝑟𝑏  are the rural and urban reproduction rates respectively;  𝛾= .50, or 𝛾=.75; 𝑟𝑢𝑟𝑏 is 

the national urbanization rate; 𝑅𝑡  is the national reproduction rate listed in table 1. We use the first day of 

the first community transmission as the day of the first case in the rural area.  Results are compiled in table 

3. Effectively, we see in figure 4 that when accounting for rural areas, we observe two peaks. The first peak 

is driven by the spread in urban areas while the second peak, delayed in time is driven by the spread in rural 

areas. Kenya, with a rural share of the population of over 70% has the most noticeable split across its rural 

and urban areas. 

 

Co-Morbidity and Rise in the Occurrence of Severe Symptoms 

Co-morbidity can impact the share of mild cases that develop severe symptoms.[29] In Asia and Europe, 

hypertension, obesity, diabetes, and coronary heart diseases have been drivers of adverse health 

outcomes.[29,30] Because the combined prevalence of diabetes, hypertension and obesity are not higher in  

Ghana, Kenya, and Senegal than they are in regions we use to derive the recovery rates,  the baseline 

simulations already account for  them. However, Ghana, Kenya, and Senegal have a persistent and high 

rates of anemia and tuberculosis[3] (see table 6). To our knowledge, there is no study on the magnitude of 

the impacts of anemia, tuberculosis, or HIV on the recovery of patients who have contracted the virus.  We 

simulate two scenarios, with 25% and 75% of the recovery rate of otherwise healthy individuals for 

individuals with one of these underlying conditions1 (see table 5). In comparison, Zhou et al.[29] find that 

in Wuhan, China, patients with comorbidities (hypertension, diabetes, coronary heart disease, chronic 

obstructive lung disease, carcinoma, chronic kidney diseases and others) have a recovery rate equal to 

73.2% of their otherwise healthy counterparts. Though uncertain for HIV, anemia and TB, the impact of 

these underlying conditions on the recovery of individuals will likely lie between these two bounds. This 

 
5 We chose the most and the lease populated districts, because all these districts include urban areas. 
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translates into adjusting 𝑟𝑚𝑠 for individuals with TB, HIV, and anemia. Comorbidities have age-specific 

incidence rates; anemia affects women of child bearing age primarily, while HIV affects young adults at higher 

rates. The prevalence of HIV, TB and anemia are extracted from the open database Global Burden Disease.[31] 

We account for these age-based differences to compute the recovery rate of the population accounting for 

comorbidities:  

𝑟𝑚𝑠,𝑚𝑜𝑟𝑏 = ∑
𝑎𝑔

𝑤𝑎𝑔𝑟𝑎𝑔(1 − 𝑖𝑚𝑜𝑟𝑏𝑥𝑎𝑔,𝑚𝑜𝑟𝑏) 

 

Where 𝑟𝑚𝑠,𝑚𝑜𝑟𝑏is the rate of recovery for infected individuals who develop mild symptoms and have one of the 

three comorbidities.  𝑟𝑎𝑔is the recovery rate of the otherwise healthy individuals in the age-group, 𝑖𝑚𝑜𝑟𝑏 is either 

1-.25 or 1-.75 depending on the scenario, and 𝑥𝑎𝑔,𝑚𝑜𝑟𝑏is the share of individuals in each age-group with the 

comorbidity.  

 

We report the results in figure 4 and table 3.  As expected, the predictions are higher in the case where we 

assume that individuals with comorbidities have a rate of recovery that is 25% that of otherwise healthy 

individuals. In the scenario with 𝑅𝑡,𝑟𝑢𝑟 = .75𝑅𝑡,𝑢𝑟𝑏, the number of active severe cases at the peak is 0.242M 

with a 75% recovery scenario for Ghana (0.308M for the 25% scenario), 0.313M for Kenya (0.631M) against 

and 0.104M (0.145M) for Senegal.  Kenya’s large impact is driven by its larger HIV positive population.  

 

Insert table 3 

Insert figure 4 

 

Mirroring South Korea’s effectiveness 

Unlike countries in Europe, Ghana, Kenya, and Senegal have taken containment measures very early in the 

progression of the disease. The policies could have had impacts similar to the ones in South Korea. We 

present results of simulations mirroring the 𝑅𝑡  for South Korea. Specifically, we decrease 𝑅𝑡  for each country 

three weeks after the last recorded policy to 0.88, and then again at 6 weeks to 0.3. We find that the peak is 

much lower, with a number of active severe infections at the peak between 166 and 214 individuals for 

Ghana, 208 and 286 individuals for Kenya, and 140 and 189 individuals for Senegal; with the two bounds 

being a for recovery rates of respectively 75% and 25% of the recovery rate otherwise healthy patients. These 

peaks will occur two to three months after the first case (see figure 5). This scenario is attainable only if 

these countries are able to maintain effective policies for an extended period. 

 

Insert table 4 

Insert figure 5 

 

DISCUSSION 

In this study, we account for the age structure of the population in each country, the burden of potential 

comorbidities and the differential spreads of the virus in rural and urban areas. We find that the relatively 
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young population may limit the severity of the epidemic, by lowering the number of infections that lead to 

severe symptoms. We also find that sparsely populated areas may limit the spread of the epidemic. Rural 

areas effectively may lead to staggered peaks; this has important implications for policy makers who may 

be faced with two waves, and so may need to adapt their responses to adaptively deploy personnel on their 

territory as these peaks occur.  

 

High rates of comorbidities however may lead to more individuals developing severe symptoms relative to 

a scenario with no comorbidities. We find that at the peak Ghana, Kenya, and Senegal are predicted to have 

respectively between 0.78 and 1.03%, 0.89 and 1.22%, and finally, 0.60 and .84% active clinical severe cases 

of COVID-19 with a peak of total infections predicted to occur between June 2 and June 17 (Ghana), July 

22 and August 29 (Kenya), and May 28 and June 15 (Senegal) respectively against a July timeline for our 

baseline specification. Successful containment policies could lead to even lower rates of severe infections.  

 
Though recent models look at a few countries in Africa,[32] or at the continent as a whole,[33,34], there are 

little to no studies predicting the spread of COVID-19 in Ghana and Senegal while incorporating specificities 

of these two countries. In Kenya, however Brand et al.[10] account for age-based population mixing and 

assume that asymptomatic individuals are as infectious as symptomatic individuals to predict that by the 

end of the year, 46.1 million (i.e. 89% of the public) of infections will have occurred. This prediction is 

comparable with the baseline results of our study in the absence of further containment policies. In that 

scenario, we find that about 47.7 million (93% of the public) individuals may be infected cumulatively.  

 

Containment measures will be successful only if the public complies; however, measuring compliance is 

complex and has not been rigorously studied in the context of COVD-19 in these countries. In Ghana, Kenya 

and Senegal poverty is the main challenge to compliance, with official unemployment rates reaching 68.7%, 

51.3% and 64.6% respectively.[35] As a response, authorities have implemented emergency transfer 

programs in cash and in-kind to the most vulnerable households partly to address compliance but also to 

avoid a humanitarian crisis (Senegal, Ghana). In urban areas, officials have required buses and taxis to 

reduce their number of passengers (Kenya, Senegal) and have mandated the use of masks (Ghana, Senegal).  

 
Looking at how spike in cases was met by various healthcare systems in Europe and Asia, it is likely that 

most asymptomatic and mild cases may remain undetected.  

 

Limitations 

Our model does not incorporate changes in the survival rate of the virus due to weather or humidity, and in 

that regard, our simulations are a worst-case scenario.[36,37] Additionally, the model assumes 

homogeneous mixing of individuals within rural areas and urban areas which is an unlikely assumption. In 

a future iteration of our model, we plan to use a spatially-structured model in order to relax the 

homogeneous mixing assumption by leveraging phone data.[38–40] 

 

The model also excludes international population flows. All countries in our sample have closed their 

international borders — airports and roads — before or a few days after their first confirmed imported case 
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(see figure 2). However, it is possible that COVID-19 was spreading undetected for days in the respective 

countries. If that is true, the peak of active cases might be delayed in comparison to the true peak. 

Furthermore, the spread of this disease is highly dependent on the reproduction number 𝑅𝑡 . Since this 

number is contingent upon many factors (policies, individuals’ behavior etc.); its value in the long-run is 

subject to large uncertainties. The projected number of infections in the medium to long term could thus 

be considerable overestimates (or underestimates) of the true number of infections (depending on the 

scenarios). 

 

These predictions aggregate infections in rural and urban areas, however, in practice, the peaks in urban 

areas, due to higher reproduction rates, will occur earlier. In rural areas however, the peaks will be delayed 

due to their lower 𝑅𝑡 . This distinction is important for policy makers who can target their resources 

accordingly. 

 

The use of the data also comes with limitations such as the inaccuracy of the data collection. For example, 

one person was tested positive for COVID-19 on March 4 but entered Senegal on February 24. We expect 

that all the countries in our sample are dealing with similar delays, however, we did not find a consistent 

way to address this issue. Additionally, given the low number of tests performed to detect the virus, we 

cannot ex-ante measure the accuracy of our model in Ghana, Kenya, and Senegal.  

 

Because outcomes of individuals with critical needs are highly dependent on the capacity of health care 

systems, having data on health care capacity is important in predicting the number of fatalities. In our 

simulations, information such as the number of intensive care unit beds would inform the fatality rate of 

individuals with severe symptoms (𝑑𝑠𝑠). Unfortunately, we do not have access to such data and we thus 

choose not to show the results for fatalities rates in these three countries. Finally, we use a SIR, which 

assumes perpetual immunity – however, there are still uncertainties regarding the possibility of 

reinfection.[41] 

 

 

CONCLUSION 

In conclusion, containment measures, age structures, low urbanization and co-morbidity may lead Ghana, 

Kenya, and Senegal to having different trajectories from the USA, and from Asian and European countries. 

This study is a first attempt at accounting for rural densities and co-morbidity, and it suggests that rural 

areas will slow down the spread of the epidemic, and that relatively young population will keep the number 

of severe cases low compared to the nearly 3.5% hospitalization rate in Europe and central Asia.[42] Our 

findings also show how sensitive these results are to different assumptions on the effectiveness of policies, 

assumptions on co-morbidities and differential effective rates of reproduction in rural and urban areas.  
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Figure 1: Benchmark, South Korea 

 

 

 

 

 

Figure 2: Timing of Policies Across Countries 
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Figure 3: Projection of Active Infections 
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Note: y-axis is percent of total population. 

Figure 4: Projected Active Infections Accounting for Underlying Conditions and Rural Areas 
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Figure 5: Projected Severe Active Infections Mirroring South Korean’s 𝑅𝑡  

 

Table 1: Parameters of the Model 

  Ghana Kenya Senegal South Korea Source 

1st Case 13-mars-20 14-mars-20 02-mars-20 20-janv-20 
European CDC (2020), 

Sen. Ministry of Health 
(2020) 

Pop. 30.497 M 51.808 M 17.354 M 51.410 M CountryMeters[43] 

µbirth  9.01E-05 9.71E-05 1.00E-04 2.51E-05 CountryMeters[43] 

µdeath 9.01E-05 9.71E-05 1.00E-04 1.60E-05 The World Bank [35] 

ras 0.4 0.4 0.4 0.4 Nishiura et al. [17] 

Trec,as 14d 14d 14d 14d 
Hubei: Mcintosh et 
al.[44] 

Tinc 5d 5d 5d 5d Mcintosh et al.[44] 

Td 6d 6d 6d 6d Mcintosh et al.[44] 

Trec,ms 16d 16d 16d 16d Mcintosh et al.[44] 

Tsev 5d 5d 5d 5d Mcintosh et al.[44] 

Trec,ss 18d 18d 18d 18d Mcintosh et al.[44] 

α 2 2 2 2 Mcintosh et al.[44] 

dms 0.37% 0.37% 0.37% 0.03% Country Meters[43] 

dss 2% 2% 2% 1.04% Country Meters[43]   

rms 98.34% 98.53% 98.62% 94.33% Verity et al. [45] 

Rt 
 

1.25, (1.0-1.4) if 0≤d<7 

2.35, (2.2-2.7) if 7≤d<9 

2.3, (1.7-2.5) if 9≤d<16 

1.6, (1.0-2.2) if 16 ≤ d 

2.4, (2.2-2.6) if 0≤d<7 

2.15, (1.8-2.5) if 7≤d<9 

2, (1.6-2.4) if 9≤d<14 

1.6, (1.0-2.2) if 14 ≤ d 

1.29, (1.1-1.48) if 0≤d<20 

2.4, (2.1-2.7) if 20≤d<26 

1.5, (1.0-2.00) if 26 ≤ d 

1.13 if 0 ≤d< 30 

3.02 if 30 ≤d< 41 

1.85 if 41 ≤d< 44 

0.88 if 44 ≤d< 49 

0.3 if 49 ≤d< 59 

Author’s estimates, 
adjusting Rt with 
timeline of govt. policies 
outlined in figure 2 
 

βms 0.41βas 0.41βas 0.41βas 0.41βas Author’s estimate using 
Wang et al.[23] βss βas/Trec,ss βas/Trec,ss βas/Trec,ss βas/Trec,ss 

Notes: Rt in parenthesis are Rt values for optimistic and pessimistic scenarios respectively. 
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Table 2: Projections of Active Cases at the Peak of the Epidemic for each Infected 
Compartment 

 
     Active Cases at Peak 

      
Days since first 

case 

Severe 

symptoms 
Mild symptoms No symptoms 

Ghana 

Low Policy Effectiveness 79 0.4M 9.1M 7.7M 

Baseline 114 0.3M 6.7M 4.9M 

High Policy Effectiveness 250 0.1M 2.7M 1.6M 

Kenya 

Low Policy Effectiveness 79 0.6M 15.4M 13.1M 

Baseline 116 0.5M 11.7M 8.3M 

High Policy Effectiveness 252 0.2M 4.6M 2.7M 

Senegal 

Low Policy Effectiveness 90 0.2M 4.8M 3.9M 

Baseline 128 0.1M 3.5M 2.5M 

High Policy Effectiveness 254 0.1M 1.5M 1.0M 

Note : The peaks of each infection sub-compartment might not align.  

 

Table 3: Projection of Infections Accounting for Africa Specific Factors 

  Co-morbidity 

  
 
 

% of the survival rate of healthy patients 

 𝑅𝑡(𝑟𝑢𝑟𝑎𝑙)

𝑅𝑡(𝑢𝑟𝑏𝑎𝑛)
 

75% 25% 

  Severe  Mild  Asympt. Days* Severe  Mild  Asympt. Days* 

Ghana 
50% 0.2M 4.4M 3.3M 81 0.3M 4.8M 3.9M 81 

75% 0.2M 4.8M 3.9M 96 0.3M 4.4M 3.3M 96 

Kenya 
50% 0.4M 8.2M 5.3M 167 0.4M 5.5M 4.2M 168 

75% 0.3M 5,6M 4.2M 130 0.6M 8M 5.3M 131 

Senegal 
50% 0.1M 2.2M 1.6M 87 0.1M 2.3M 1.9M 87 

75% 0.1M 2.4M 1.9M 105 0.1M 2.1M 1.6M 105 

*Days of total infection peak, since the first case tested positive.  

Note : The peaks of each infection sub-compartment might not align.  

 
 

Table 4: Projection of Active Cases at Peak Accounting of Co-morbidities, With South-Korea’s Rt 

 

  Co-morbidity 

% of the survival rate of healthy patients 

  
𝑅𝑡(𝑟𝑢𝑟𝑎𝑙)

𝑅𝑡 (𝑢𝑟𝑏𝑎𝑛)
 

 

75% 25% 

 Severe  Mild  Asympt. Days* Severe  Mild  Asympt. Days* 

Ghana 100% 166 3,164 2,428 57 214 3,110 3,110 57 

Kenya 100% 208 4,221 3,206 60 286 4,134 4,134 60 

Senegal 100% 140 3,253 2,661 69 189 3,183 3,183 69 

Note: The peak of each active cases for each sub -compartment might not align.  
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Appendix 
 

 
 

Figure 1: Visual representation of the model 

 
 
 
 
 

 

 
 

Figure 2: Sensitivity of Active Cases to Perturbations of 𝑅𝑡
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Table 1: Projection of Active Cases Accounting for Co-morbidity or Rural/Urban factors 

 
   Active cases at peak 

      Severe  Mild  Asympt. Days* 

Ghana 

Rural/Urban** 
50% 0.2M 4.8M 3.9M 81 

75% 0.2M 4.4M 3.4M 96 

Co-morbidity*** 
25% 0.5M 6.6M 4.9M 114 

75% 0.4M 6.7M 4.9M 114 

Kenya 

Rural/Urban 
50% 0.2M 5.7M 4.2M 167 

75% 0.4M 8.2M 5.3M 130 

Co-morbidity 
25% 0.8M 11.3M 8.3M 116 

75% 0.6M 11.4M 8.3M 116 

Senegal 

Rural/Urban 
50% 0.08M 2.4M 1.9M 87 

75% 0.09M 2.2M 1.6M 105 

Co-morbidity 
25% 0.2M 3.5M 2.5M 129 

75% 0.2M 3.5M 2.5M 128 

* Days of total infection peak, since the first case tested positive. 

**
𝑅𝑡 (𝑟𝑢𝑟𝑎𝑙)

𝑅𝑡 (𝑢𝑟𝑏𝑎𝑖𝑛)
 

***Recovery rate for patients with preexisting conditions as percentage of healthy patients’ recovery rates. 

Note: The peak of each active cases for each sub -compartment might not align.  
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