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ABSTRACT

Background: Tuberculosisis expensive to treat, especially since therapy duration is at least Six-
months, and patients must be followed for up to two years in order to document relapse. Thereis
an urgent need to discover biomarkers that are predictive of long-term treatment outcomes.
Currently, tuberculosis programs use two-months sputum conversion for clinical decision
making, while phase | clinical trials use extended [14 day] early bactericidal activity [EBA] to
triage regimens. Our objective was to develop early treatment stage biomarkers that are
predictive of long-term outcomes.

M ethods and Findings: Data from 1,924 patients in the REMoxTB study was divided into [1] a
derivation data-set of 318 patients on six-months standard therapy, [2] two sets of validation
datasets comprised of 319 patients on six-months standard therapy, and 1,287 patients
randomized to four-months experimental therapy. Sputum time-to-positivity [TTP] data was
modeled using a system of ordinary differential equations that identified bacillary kill rates
[termed y-dlopes], for fast-replicating bacteria [ys] and for semi-dormant/non-replicating
persistent bacteria[ys], and to estimate time-to-extinction for all bacteria sub-populationsin each
patient. Time-to-extinction is used to predict the minimum therapy duration required to achieve
cure. Using the derivation dataset, machine learning identified the ysslope, calculated using first
8 weeks of therapy TTP data, as the highest ranked predictor for treatment outcomes. We then
computed ysslope thresholds that would reliably predict relapse-free cure for 2, 3, 4, and 6
months therapy duration regimens, and used these to create a diagnostic rule. In the first-
validation dataset for six-months therapy duration, the y%-derived decision rule demonstrated a
sensitivity of 92% and a specificity of 89%; among patients with positive biomarker the relative

risk [RR] of failure was 20.40 [95% confidence interval (ClI): 7.17-58.08]. In comparison, two-
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month sputum culture conversion had a sensitivity of 33% and specificity of 71% [RR=1.20
(95% CI: 0.60-2.34)], while for extended-EBA sensitivity was 14% and specificity was 92%
[RR=1.71[95% CI: 0.73-3.48]. In the second validation dataset for four-months therapy
duration, the y-derived diagnostic rule sensitivity was 81% while specificity was 87% for
picking failure versus cure [RR=14.51 (95% CI: 8.33-25.41)]

Conclusions: The ability to predict treatment outcomes during the first el ght-weeks of therapy
could accelerate evaluation of novel regimens, development of new clinical trial designs, as well
as allow personalization of therapy duration in routine treatment programs. Future research

applying these diagnostic rules to different clinical trials data are required.


https://doi.org/10.1101/2020.05.03.20086579
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.03.20086579; this version posted May 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

INTRODUCTION

Tuberculosis[TB] isthe most important infectious cause of death worldwide, accounting
for 3% of all desths; it killed one billion people over the last two centuries[1]. In both
drug-susceptible TB and multidrug-resistant TB (MDR-TB) [2], therapy duration is 6
months, after which patients are followed for up to 18 months to document relapse. The
large numbers of patients with TB [10 million/year], the long therapy duration, and the
follow up period of up to 2 years, makes TB one of the most expensive diseases to treat.
Thus, it isof crucial importance to identify TB treatment regimens that are equally as
effective in drug-resistant TB asin drug-susceptible TB, to identify regimens that can
shorten therapy duration, and to identify early biomarkers that obviate the need for 2-year
follow up [1-11]. A closely related problem isthe time it takes to evaluate and compare
such new regimens in phase I-111 clinical trials; they take decades to complete given the
long follow-up time required to document relapse. Thus, biomarkers that obviate the need
for the long follow up to document relapse, and that can be deployed immediately on a
global scale at little cost, need to be urgently developed for both routine patient care and

to accelerate the time-table of clinical trials.

The tools currently used to monitor TB treatment in the clinic and in clinical trials arose
in the historical context of the microbiology technology of 50 years ago. In the late 1970s
Jindani and Mitchison performed a 14-day treatment clinical study in East Africa[n=124
patients] that utilized solid agar-based Mycobacterium tuberculosis (Mtb) colony-forming
unit [CFU]-derived kill rates defined by linear regression slopes to define early

bactericidal activity [EBA], and the 14-day or extended-EBA to capture sterilizing
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activity, which are the basis of current phase | clinical trials[7, 8]. In 1993 Mitchison
summarized results of seven clinical studiesto propose the use of two-months sputum
culture and smear as a surrogate of relapse; the two-month [e ght-week] endpoint is now
the basis of clinical decision-making in routine clinical care [3, 10-13]. Eight-week
studies are also widely used as phase 11 studiesto select TB regimens that go into the
larger phase |11 studies in which long-term outcomes such as relapse, death, and cure are
evaluated. However, the accuracy of these phase I/11 studiesin predicting hard clinical
outcomes such as cure, therapy failure, and relapse, have been challenged [10-12, 14, 15].
In addition, more recent technological advances with semi-automated liquid cultures have
demonstrated that the elght-week agar-based cultures may have been over-optimistic and
are associated with substantial false-negative rates [16-19]. On the other hand, time-to-
positivity [TTP] in the liquid cultures can be used in place of CFUs[20, 21]. Theliquid
culture technology is semi-automated and has been widely deployed across the world for
routine clinical care as a diagnostic and for susceptibility testing. Here, we sought to
identify mechanistic biomarkers (based on quantitative biology of the disease) that fulfill
the definition of the US Food and Drug Administration BEST (Biomarkers, EndpointS,
and other Tools) Resource, for use early during therapy to predict long-term hard clinical

endpoints such as cure, therapy failure, and relapse[ 22, 23].

We have developed a mechanistic model to quantitatively explain the drug-regimen
bacterial kill kinetics and dynamics of both fast-replicating and semi-dormant/non-
replicating persistent [NRP] Mtb subpopulationsin TB patients as reflected in sputum

[24]. Here, we used serial sputum TTP-data from patientsin the Rapid Evaluation of
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Moxifloxacin in Tuberculosis[REMoxTB] phase Il clinical trial to identify the
trajectory of these two bacterial sub-populations and to estimate time in which both Mtb
bacteria subpopulations reach extinction (time-to-extinction) [24]. According to Burman,
“The ability to prevent relapse istermed sterilizing activity becauseit is presumed to
require killing nearly of all bacilli remaining after the initial phase of therapy” [9].
Restated, failure to reach extinction by the Mtb population in lung lesionsis a required
condition for therapy failure and relapse. Therefore, the time-to-extinction of all bacillary

populations marks the required minimum duration of therapy in order to avoid relapse.

MATERIALSAND METHODS

Study design, data extraction and definitions

Our study design isreported in detail in Figure. 1. Briefly, we took data for
bacteriologically confirmed TB patients that were enrolled in the REMoxTB clinical
study [3]. In which patient sputum was cultured in the Mycobacteria Growth Indicator
Tube [MGIT] to confirm bacteria viability. Since our aim was to develop a method
agnostic of regimens used and drug-resistance status, patient data from the study [3] was
used in our analyses regardless of drug-resistance status. Patients with majority of sputum

samples that were contaminated or missing were excluded.

Patient and microbial details, including therapy regimens and serial TTPs, were extracted
from the CPTR website [http://www.cptrinitiative.org]. Time-to-extinction was defined
as achieving a bacterial burden <10 colonies/mL, as mathematically justified in our

prior work [24]. Microbiologic cure was defined as two negative sputum cultures without
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an intervening positive. Relapse was defined by the re-appearance of positive cultures
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SteP 1 (REMoxTB TRIAL DATABASE N=1924 patients

Patient with sufficient serial sputum samples chosen
-6 months duration standard therapy arm [N=637]
-4 months duration isoniazid arm [N=654]

L—4 months duration ethambutel [N=633]

¥ ¥

Step 2 (REMoxTB TRIAL DATABASE N=1924 patients |

ordinary differential equations that track fast replicating and slow replicating
bacteria subpopulations in lung lesions using the sputum TTP proxy

-Output 1: Microbial kill slopes for fast replicating bacteria
=0Output 2: Microbail kill slopes for slow replicating bactetria
=Output 3: Time-to-extinction of all bacteria subpopulations

Y ¥
[REMoxTB TRIAL DATABASE N=1924 patients |

Data partitioning Into derlvation dataset of 6-months standard
therapy [N=318] and validation datasets [N=1606] (two 4-months
Lexperimental arms and the remaining half of the 6-months standard arm)

A ¥

[REMoXTB TRIAL DERIVATION DATABASE N=318 patients |

\

y

Step 3

Step 4

IDENTIFYING BIOMARKERS USING MACHINE LEARNING

Stage 1: Classification and regression trees [CART] to rank top
predictors for time-to-extinction (TTE) defined outcomes

Stage 2: Clustering of TTE defined outcomes versus top ranked
CART predictors

Stage 3: Monte-Carlo simulations identify biomarkers thresholds
in indeterminate outcome zones

Stage 4: Creation of a biomarker rule to predict outcomes for
different therapy durations

[REMoXTB TRIAL PREDICTION/VALIDATION [6-months]  N=218 patients

Sensitivity and specificity for the biomarker rule in patients on
L standard therapy using TB protocol definitions for clinical outcomes

¥ ¥
(REMoXTB TRIAL PREDICTION/VALIDATION [4-months] N=1063 patients )

Sensitivity and specificity for the biomarker rule in patients in experimental

therapy regimens using TB protocol definitions for clinical outcomes
- Isonlazid arm [N=530]

& Ethambutol arm [N=533]

Step 5

y

Step 6

Figure 1. Biomarker Development Steps. Step 1: Patients without sufficient data points to derive bacterial kill slopes
were removed. Step 2: The weekly sputum time-to-positivity data was then converted to colony forming units and the
modeled using ordinary differential equations. Step 3: Data partitioning of 50% of patients in stanadrd of care six-
months therapy as derivation data-set and the other 50% into valdiation dataset. All patients in experimental arm,
administered over 4 months were assigned to validation datasets. Step 4: Four mathematical modeling and machine
learning types of analysis in derivation dataset to [1] identify predictors of time-to-extinction [TTE] and [2] threshold
values deliniating different TTE, and [3] design a diagnostic rule for different therapy durations. Step 5: Accuracy of
diganostic rule/biomarker for six-months therapy duration in standard of care validation dataset using clinical
definitions of outcome [relapse, cure]. Step 6: Accuracy of diganostic rule/biomarker for four-months therapy duration
in two experimental arms in validation dataset using clinical definitions of relapse and cure.



https://doi.org/10.1101/2020.05.03.20086579
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.03.20086579; this version posted May 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

in patients deemed cured at the end of therapy. Relapses were confirmed by 24-locus
mycobacterial-interspersed-repetitive-unit analysis [24]. Failure to attain microbiologic

cure at the end of therapy defined therapy failure, as per REMoxTB study protocol [24].

Data partitioning

Patients on the standard TB therapy regimen were randomly partitioned into two subsets
of equal size. Thefirst set was designated as the moddl derivation set, while the
remainder was assigned for use in model validation [validation data set]. To capture
sufficient relapse events, only patients with at least two consecutive sputum samples
during follow-up after treatment were used in modd training and cross validation.
Patients who received the experimental REMoxTB arms were used only in the validation

dataset for senditivity and specificity of predictors with 4 months therapy duration.

Mathematical modeling for converting TTPsto CFUs
In order to convert TTPsto CFU/mL, we applied the formula:

F=oe™7 [1]
where o, is 8.09 [95% confidence interval (Cl) 6.64-9.96], 3 is0.084 [95% CI: 0.08-
0.087] and yis 0.011[95% CI: -0.2 to 0.2], which we previously derived using more than
600 data point pairs from logarithmic phase growth and semi-dormant (or non-replicating
phase) hollow fiber system model experiments[24]. Bacterial burden from these
experiments were quantified using (i) solid agar culture for CFUs, and (ii) liquid medium
inthe MIGIT for TTP. The hollow fiber model is repetitively sampled for CFUs and

TTPsfor up to 56 days on therapy. Bowness and colleagues have found that as treatment
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progresses, the recovered Mtb grew more slowly in culture, so that a linear equation
mode [including only constants a, b, c] that remain unchanged during treatment would
be incorrect by day 14, and instead a Gompertz model with atime parameter would be
better [25]. While our formulais not alinear regression equation, we still wanted to find
out if it was accurate at the start of therapy as at 56 days, in patients. Therefore, we
applied formula/equation #1 to an independent clinical data set of patients on TB therapy,
the vitamin A study in which we had weekly TTPs and CFUs in 56 patients as part of our
morphism mapping between the hollow fiber system and patients on standard therapy
[18, 24]. Results are shown in Figure S1, which shows that our formularemained
accurate at 56 days as on day 0. Therefore, we employed equation #1 for toggling

between CFU/mL and TTP.

Mathematical Model

Our mathematical model, described in detail in the past [24], recapitul ates events [i.e,
Mtb burden] at site of infection, and, assumes two bacterial phenotypic populations:. B,
fast replicating bacteriain log phase, which grows at rate r; and Bs, non-replicating
persisters which bacteria grow at rate rs, such that where r >r as observed by Canetti,
McDermott et al, Sloan et al, Eum et a, and formalized by Mitchison [26-31] . Our
assumption isthat, in the lungs or at the site of infection, Mtb populations exhibit
different physiological states, but share the same maximal bacterial burden, Knax [32, 33].
The parametersr; and rs also measure of the reproductive or growth fitness, a measure of
their virulence. The fast replication (log phase growth) Mtb grow at rate rs while the slow

at raters. It has been shown that in TB patients, these bacteria subpopulations co-exist,
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however, in active TB disease, the population of bacteriain log-phase is dominant [26,
27,29-31, 34].

de _ rPr K. ) Y°r

=r — —vysB;. (3)
dt sT™s Kmax s™s

The model has flexihility to track the time evolution of both Mtb subpopulations
simultaneously, under effect of treatment with different combination regimens. In relation
to assessing new surrogate markers or biomarkers for predicting TB treatment outcomes,
the model has two sets of quantifiable parameters (i) ry, rs and Kyex (Mth growth
parameters) and (ii) y andyx (drug-regimen based microbial kill slopes), that are linked to
disease pathogenesis, and therefore has the ability to predict disease outcomes
independent of a specific TB therapy regimen. Further mathematical details and

assumptions of the model are shown in supplementary methods.

ODE-based model to data fitting

First, all patient TTP longitudinal observations were converted to CFU values using equation 1.
Then the data was fit to the system of ODESs (Equations 2 and 3). We implemented the Markov
chain Monte Carlo (MCMC) method in R [22, 24, 35] to estimate the drug kill parameters
using 50, 000 runs of the chain. A Gaussian log-likelihood was used to generate posterior
distributions for parameters assuming uniform distribution for the priors. Model to data fitting
was done to estimate the % and 5% slopes. The estimates were derived as medians of the
MCMC posterior distribution, the uncertainty was given by 95% credible intervals (Crls)

calculated from the 2.5% and 97.5% quantiles of the MCM C parameter posterior distribution.
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MCMC convergence was assessed visually and by using the chain convergence diagnostic

toolsin the R coda package.

| dentification of biomarkers predicting outcomesin derivation dataset
Identification of biomarkers that best predicted therapy outcomes was carried out using
classification and regression criteria[ CART] of Breiman et al [36]. Using the derivation
dataset, we examined all demographic, clinical, and radiological factors, aswell as
model-derived % and y slopes and theinitial bacterial burdens[B(0)], as potential
predictors of outcome. Outcome was defined as either therapy success at end of therapy,
or therapy failure (failure at the end of treatment or relapse), or relapse. The steps we
followed were implemented by two independent investigatorsin R (Rpart) and Salford

software, and have been described in detail in the past [37] .

First, CART analysis was used to identify and rank the top predictors of therapy failure
and relapse. Second, we used clustering to characterize the relationship of the top
predictors for each specific treatment outcome, and also identified the statistical
association [38]. TTP trgectories were clustered using the K-means algorithm
implemented in the KM L-package in R [38]. The 6-month TTP datafor each cluster was
reduced to derive (i) the 4-month slopes [using the first 4 months accrued data] and (i)
then 2-month slopes [based on the first eight-week accrued data]. The model was fitted to

datafor each separate cluster and their respective reduced subsets.
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Finally, we utilized Markov chain Monte Carlo simulations of time-to-extinction in
tandem with CART to identify slope thresholds and initial bacterial burden that best

classified relapses and therapy failure [35].

Mathematical smulationsfor indeter minate data zones

We computed 10,000 bacteria trajectories to simulate different treatment outcomes. The
initial bacterial burdens based on the range in derivation data set of between 3-7 logio
CFU/mL and y-slopes between 0.05 to 0.5 logyo CFUS/day, were varied simultaneously,
with therest of all model parameters held constant. TTE for each separate trgjectory was
computed. The TTE values define the transcritical bifurcation points that explains when
the Mtb NRP stable state switches to extinction. Regions of time within which bacteria
subpopulations would go extinct were constructed and partitioned to reflect the expected

clinical treatment duration intervals.

Sengitivity analysisfor treatment duration

Monte-Carlo experiments were carried out to identify changes in y% values that resulted in
treatment duration shortening (2 and 4 months) and those that led to prolonged treatment
duration (7, 8 and 9 months). Magnitudes that correspond to these treatment end-points
were determined relative to different categories of patient initial bacterial load, (i) high
(>5-0 logip CFU/mL), (ii) medium (3-5-5-0 log;o CFU/mL) and (iii) low (<35 logio
CFU/mL). These bounds were selected to toggle between CART discrete bounds and
sweep across continuous patient CFU burdens to examine effect of different slope

magnitudes on outcome for the defined therapy durations.
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Validation of identified biomarkers

Individual patient TTP trajectories were fitted to the model to identify the corresponding
% and ¥ in the validation datasets. The accuracy, sensitivity, and specificity of biomarkers
derived in the derivation dataset were calculated using the validation dataset for cure,
relapse, or therapy failure, for 6 and 4-months duration of therapy. The definitions for
cure, relapse, and therapy failure used were those defined by the REMoxTB clinical trial
protocol [3]. We used the standard statistical and clinical definitions for sensitivity,

specificity, accuracy, and the number needed to diagnose failure and relapse [39, 40].

Statistical analysis

Mean values between groups were compared using Student’ s t-test or analysis of variance
(ANOVA) F-test, while the Mann-Whitney test was used for proportions and compare
medians from distributions of the fast and slow slopes derived at 2-months, 4-months and
6-months accrued TTP data. Spearman’s correlations were used to examine correlation
while un-weighted Cohen’ Kappa coefficients examined agreements of clinical outcomes
derived from REMoxTB study definition versus those derived from the model based on

time-to-extinction. All analyses were performed with packagesin R.

RESULTS

Clinical and laboratory characteristicsin derivation and validation datasets

First, REMoxTB clinical trial patients who had insufficient serial sputum samples were
removed, leaving 637 [33%)] patients randomized to the standard therapy arm, 654 [34%]

randomized to the isoniazid arm, and 633 [33%] randomized to the ethambutol arm
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[Figure 1]. Thiswas followed by converting the 1,924 patients TTP-series to CFU/mL
using equation 1, before modeling the data with a set of ODESs 2 and 3, to describe
trajectories of Mtb CFU/mL with time[i.e., lopes]. Weidentified ODE-model parameter
estimates using 8-week [2-months]-, 4-months-, and 6-months accrued TTP-derived data
for al 1,924 patients. The model parameter estimates are shown in Table S1. We termed
the Mtb kill rates y-slopes, where y; is the lope for fast- replicating Mtb and ys is the slope
for semi-dormant/NRP Mtb. The model was also used to calcul ate the time-to-extinction

of the total Mtb population for each patient, with results shown in Figure 2.
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0 T [ I I .
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Time-to-extinction in days

Number of patients

Fig 2. Distribution of time-to-extinction for all 1,924 patients. Shown is the data for al the 1,646 patients
who achieved bacillary population extinction; bacilli in the remainder of patients did not reach extinction, so
thetime is at infinity. The mean time to extinction and 95% confidence intervals were 122.4 [117.9 to 126.9]

days.

Data partitioning into derivation and validation datasets
We separated the 1,924 patients’ data into derivation and validation datasets, shown in

Table 1. The derivation dataset was comprised of 318 [50%] patients on standard
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Table 1. Clinical featuresof patientsin derivation and validation datasets.

(SD) at start of therapy

22

-3

53

Variable Total sample Derivation dataset ~ Validation datasets p-value é’ g
n=1924 (%) Standard therapy;  Standard therapy;  Ethambutol; I soniazid; ié’

n=318 (%) n=319 (%) n=633 (%) n=654 (%) g5

Age, years[mean (SD)]  33.40 (12.16) 33.10 (11.93) 33.81(12.40) 33.88 (12.15) 32.89 (12.17) 0.442 3 g
Sex, Female 585 (30) 91 (29) 101 (32) 188 (30) 205 (31) 0.767 iy
Mae 1339 (70) 227 (71) 218 (68) 445 (70) 449 (69) 35 o
Race 0.663 825
Black 861 (45) 149 (47) 146 (46) 289 (46) 277 (42) g gg
Asian 586 (30) 96 (30) 96 (30) 193 (30) 201 (31) T
Mixed 451 (23) 66 (21) 74 (23) 142 (22) 169 (26) =3
Other 26 (1) 7(2) 3(1) 9(1) 7(1) 238
Country site 0.986 228
China 22(1) 6 (2) 2 (1) 5 (1) 9 (1) 828
India 372 (19) 58 (18) 61 (19) 126 (20) 127 (19) © g'g
Kenya 136 (7) 26 (8) 18 (6) 43 (7) 49 (7) zg o
Mexico 22 (1) 72 2(1) 8(1) 5() 29 3
Malaysia 69 (4) 10 (3) 13 (4) 20 (3) 26 (4) ~25
Thailand 119 (6) 21 (7) 19 (6) 41 (6) 38 (6) 2 g
Tanzania 211 (11) 37 (12) 37 (12) 73 (12) 64 (10) g2
South Africa 908 (47) 142 (45) 156 (49) 297 (47) 313 (48) g %j =
Zambia 65 (3) 11 (3) 11 (3) 20 (3) 23 (4) 225
5o

Sputum TTP in days 5.16 (1.21) 5.26 (1.16) 5.13 (1.26) 5.15 (1.20) 5.13(1.21) 0.420 % ‘g’?E
e

g%
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therapy, as shown in Figure 1. All patientsin the derivation dataset were randomized to
six-months therapy duration. The validation datasets comprised of (i) 319 patients on
standard therapy for six-months duration, and (ii) 1,287 patients randomized to the
experimental arms [isoniazid or ethambutol] that had a four-months therapy duration.
Table 1 shows that the demographic and clinical characteristics were similar between the
derivation data set and all validation data sets, which means that the data-partitioning step

was executed successfully.

Time-to-extinction versusclinical trial-based outcome definitions

We then used the derivation dataset to determineif the time-to-extinction of the total Mtb
sputum population for each patient have clinical relevance, especially given that TTP
versus CFU/mL relationship could change with time during treatment. The number of
patients deemed cured at different time intervals in the course of treatment obtained by
counting the number of negative cultures/TTP as defined in the REMoxTB protocol
versus those identified using our time-to-extinction model definitions [derived from
CFUs calculated from TTPs] had a Spearman rank correlation of 1.0 [p=0.017].
Moreover, when we used Cohen’s kappa [ k] to assess agreement between individual
pairs of either time-to-extinction versus standard clinical definitions, they were highly
concordant [k=0.65, p<0.001]. Furthermore, the Spearman rank correlation between
(fast slope) and 14-day extended-EBA [derived using linear regression] was 0.68 [p
<0.001], which suggests that the extended-EBA mainly reflects the effect of treatment on
Mtb in logarithmic-growth phase and not semidormant/NRP bacilli, as was assumed in

the past [8].
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Predictor s of outcomein derivation dataset

Classification and regression trees [CART] were used, to identify predictors of target
outcome, defined as sputum microbial outcomes [cure at end of therapy, therapy failure
or relapse], using potential predictors that included ALL the clinical and laboratory
features, including ODE-model derived y-slopes, for the tasks of classification and
regression as input/independent variable. CART identified the % [semi-dormant/NRP
kill] slope asthe primary predictor [which had a variable importance score of 100%],
followed by initial bacterial burden just prior to therapy commencement [which we
termed B (0)], which had a variable importance score of 91.7%. This means that the
initial TTP [B(0)] improved the primary predictor by an extra 91.7%. Notably, % was not
ranked as a predictor using this agnostic machine learning method. CART performs its
own cross-validation within the derivation dataset, in this case by randomly splitting the
derivation dataset five times. With the cross-validation, the post-test validation area under
the curve [AUC] in the same derivation set was >85%, demonstrating that 5% plusinitial

TTP[B(0)] will likely perform as good predictorsin future datasets.

Clustering-based approachesto identify biomarkersin derivation dataset
Clustering identified four distinct outcome groups based on individual trgjectories versus
time-to-extinction analysis in the 238 patients in the derivation dataset, as shown in
Figure 3. These were, [1] acure cluster of 80 (33.61%) patients, [2] a Slow-cure cluster
of 100 (42.02%), [3] arelapse cluster of 34 (14.28%) patients, and [5] atreatment failure
cluster of 24 (10.08%) patients. The slow cure cluster identified by this unsupervised

machine learning method denoted those patients who had delayed attainment of
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Figure 3. Clusters of treatment outcomes. Clusters of CFU/TTP tragjectories of each individual
patient are shown side by side with median logio CFU/mL plus interquartile range, for the follow
up periods of 6 to 18, months. (A) Cured patients' tragjectories and (B) summary of tragjectories
during follow-up. (C) Slow cure trgjectories and (D) box-plots of CFUs after therapy completion.
Relapse patterns (E) and the corresponding patterns during follow up (F). Failed treatment cluster
(G) and follow-up period summarizing boxplots (H).
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microbiologic cure at the end of six months therapy [failed therapy at the end of six
months] but achieved relapse-free cure when standard therapy was continued beyond six
months duration. These four clusters represented 238/318 [74.84%] of patients with less
than 2 or more missing observations during follow up. The model explained these data
well, asisshown in online Figure S2, Figure S3, and Table S1, while the corresponding

summary statistics for each cluster are shown in Table S2.

We used this clustering step to identify the minimum duration of data gathering that
would give ay-slope that could accurately predict cure or therapy failure or relapse.

Figur e 4 shows the distribution of model derived »% and x values, when these slopes were
derived based on 8-weeks-derived TTP data[2-months], 4-months-derived TTP data, and
6-months-derived TTP data. The 8-week-, 4-months-, and 6-months-derivedj and
values [shown in Table S1] versus outcomes were examined in pairwise comparisons
using the Mann-Whitney-Wilcoxon test. Figur e 4 shows that the ¥ values did not
discriminate failures from cures, consistent with CART findings. However, %=0.15 or
<0.1 logip CFU/mL/day [modeling semi-dormant/NRP Mtb] were better at discriminating
these outcomes. The slopes derived with 8-week-vs-4 months data differed in the
misclassification of patients’ outcomes, the former misclassifying more relapses as cures
and the latter misclassifying more cures as relapses. Neverthel ess, as demonstrated by the
statistical comparisonsin Figure 4l, the 8-week derived TTP data % adequately
diagnosed relapse versus other outcomes. In other words, % calculated using el ght-week-
derived TTP datais agood predictor of sterilizing effect up to 18-months after therapy

cessation, and this eight-week data-derived slope thus measures sterilizing activity rate.
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Figure 4. Distributions of model estimated kill rates/biomarkers. Distributions of - and x -slopes based on 2-
months, 4-months and 6-months accrued TTP data. (A) % -slopes based on 2 months TTP data, (B) % -slopes based on 4
months TTP data, and (C) % -slopes based on 6 months TTP data. (D) The magnitude of ¥ -slopes at 2 months, (E) at 4
months, and (F) at the end of 6 months. (H) Pairwise analysis using the Mann-Whitney test for distributions of slopes
based on 2, 4 and 6 months data versus each cluster (cure, slow-cure, relapse and failure) for the j¢-slopes shows p-values
in each cell that were significant even with 2-months of data, except with cure versus slow cure group. (). Pairwise

statistical difference analysis for ¥, found that few p-values were significant, and even those had an inconsistent pattern.
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Subsequently, all 5% discussed herein were those identified using the first eight-weeks-

derived data

Monte Carlo Simulationsto identify biomarker thresholdsin indeter minate
outcome zones

Given the misclassification of relapses as cures by the eight-week TTP-derived %, and 5%
thresholds in the indeterminate outcomes region [i.e, overlap of relapse versus slow
cures|, we utilized Monte Carlo Simulations [MCS] of time-to-extinction in tandem with
CART to further discriminate ycut-off values in indeterminate outcome zones, with
results shown in Table S3, Figure $4 and Figure S5. Cure was clearly delineated by 5%
>0.15, therapy failure by %<0.1 plusinitial bacterial burden B(0)>5.6 logio CFU/mL
[TTP=5.49 days], and relapse delineated from cure by %<0.13. Figur e SAC-D shows the
CART-derived biomarker thresholds based on the smulation for predicting treatment
outcomes after either 4-months or 6-months therapy duration. Patients with initial
bacteria burden B(0)>4.5 logio CFU/mL [TTP=8.11 days], and y-slopes between 0.1 and
0.15 had >55% chance of failing treatment at 6 months[Fig. SA4C]. However, for afour-
month therapy duration regimen, patients with B(0)>5.4 logio CFU/mL [TTP=5.93] and
7% between 0.09 and 0.14 had a >65% chance of failing treatment. Figure $4 aso shows
that in order to achieve cure/bacillary population extinction within 2 months of treatment,
then %>0.15[-3.90 TTP per day] would be required, while patients with %< 0.1 [-2.60
TTP per day] would fail. Patients on standard therapy with B(0)>5.6 logio CFU/mL

[TTP=5.49] with 7%<0.13 would relapse.
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Creation of %-based ruleto predict relapsefor different therapy durationsfrom

derivation dataset

In thefinal derivation step, we established a diagnostic rule for the relationship between
1%-slopes and the outcomes, using Latin hypercube sampling for sensitivity analyses, with

results shown in Figure 5. Figur e 5A-D shows that increasing or reducing the %
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Figure5. Sensitivity analyses and rule-making of ¥, slopes versustime-to-cure. (A) Shown are }:
slopes reguired to achieve cure within 6 months for patients with high bacterial burden compared to
those with medium and lower bacterial burdens. (B-D) The ¥ slopes required to achieve cure at 2, 4 and
6 months duration or for delayed cure of an additional 1 to 3 months beyond month 6 [i.e, 6 months +1,
or +2, or +3 months], are shown for patient starting with high (B), medium (C), and low (D) Mtb
burdens. (E). Magnitudes of slopes for therapy duration of only 1 and 3 months (for high, medium and
low Mtb burden) could be extrapolated and interpolated in log ;o0 CFU/mL/day as (0.42, 0.36, and 0.30)
and (0.22, 0.20, and 0.17), respectively, based on the relationships between slope and duration of
therapy (r*>0.999). (F) Magnitudes of slopes for therapy duration of 1 and 3 months are extrapolated
and interpolated TTP-slope as (12.08, 10.08 and 8.49) and (5.67, 5.06 and 4.48), respectively, based on
the relationships between TTP-derived slope and duration of therapy (r*>0.999).

[i.e., speed of kill of slow-replicating bacteria] changes the time-to-extinction and
therefore the required minimum duration of therapy. As an example, the six-months
therapy duration would need to be extended to eight-months duration [i.e., Sow-cure] in
patients with high bacterial burden when % is reduced from 0.148 to 0.131 and extended
to 9-months when its reduced to 0.125 [Figur e. 5B]. However, for patientsin the medium
and low CFU load categories, lower slopes can still achieve cure within 6 months
[Figure. 5C-D]. On the other hand, to reduce treatment duration to four-months 7 should
increase to 0.183, and in order to reduce therapy duration to two-months % should
increase to 0.286 [Figure. 5B]. The relationship betweeny and initial TTP versus
minimum duration of therapy is shown in Figure. 5E-F, and is non-linear function. From
this, we calculated the target % to achieve cure [extinction of bacterial population] with
one-month therapy duration, shown in Figure. 5E-F. This establishes a diagnostic rule

between versus minimum treatment duration for relapse-free cure for different initial
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Mtb burdens. After this step, the derivation work was completed, and the derivation

dataset patients excluded from subsequent validation studies.

Performance of y4-based rulesin forecasting outcomes for 6 monthstherapy
duration

Next, we calculated the accuracy of how well our diagnostic rule performed in the six
months therapy duration validation datasets, using the clinical and microbial treatment
outcomes defined by the REMoxTB trial protocol. Treatment outcome calls could be
made in 218 of the 319 patients who also had more than 4 data points within eight-weeks
to give statistically robust estimates of the bacteriakill slopes: 169/218 (74.31%)
achieved relapse-free cure, 137/218 (16.97%) had therapy failure at the end of treatment,
and 19/218 (8.72%) relapsed after initially looking like cure at the end of therapy. The
accuracy of the y<-based rules are compared to the extended-EBA and two months
sputum conversion in Table 2, together with the relative risk [RR] of failure when each
biomarker was positive versus not-positive [numbers in each cell shown in Table #4].
Table 2 shows that the extended-EBA had a sensitivity of 14% and specificity of 92% in
identifying failure from cure without relapse and the RR 95% confidence interval crossed
1 [p=0.205]; the number needed to diagnose [NND] failure/relapse was 15.27. Similarly,
two-months sputum conversion had a sensitivity of 33% and specificity of 71%, RR was
statistically 1, and NND was 21.41. On the other hand, the eight-weeks-data derived ¥
combined with theinitial TTP at treatment commencement had a sensitivity of 92% and

specificity of 86% in identifying failure from relapse-free cure, the RR of failure when
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Table 2. Biomarker threshold values, sensitivity and specificity scores, and risk of failure, with 95% confidenceintervals

Biomarker using log;o CFU/mL Sensitivity Specificity Accuracy Relativerisk of failure with positive
biomar ker

Six-monthstherapy duration

Extended EBA: Failure vs Cure 0.14 (0.05-0.30) 0.92 (0.87-0.96) | 0.79(0.73-0.84) 1.71 (0.73-3.48)

2 months smears/culture: Failure vs Cure

0.33(0.17-0.53)

0.71 (0.64-0.78)

0.65 (0.58-0.72)

1.20 (0.60-2.34)

751 slope (<0.1): Failure vs Cure

0.57 (0.39-0.73)

0.95 (0.91-0.98)

0.89 (0.84-0.93)

752 slope (>0.15): Failure vs Cure

0.91 (0.78-0.98)

0.86 (0.79-0.90)

0.87 (0.81-0.91)

Slow slope plus B(0): Failure vs Cure 0.76 (0.59-0.88) 0.89 (0.83-0.93) | 0.87(0.81-0.91) 29.84 (10.20-89.07)
%75 BO)
Slow dope plus B(0): Failure-vs-Relapse 0.92 (0.78-0.98) 0.89 (0.67-0.99) | 0.91(0.80-0.97) 20.40(7.17-58.08)

%1%, B(O)

Four monthstherapy duration

Isoniazid arm

Extended EBA: Failure vs Cure

0.10(0.04-0.21)

0.95(.93-0.98)

0.84(0.80,0.87)

2.14 (0.99-3.99)

75,17/52, B(0): Failure vs Cure

0.81 (0.70-0.90)

0.87 (0.83-0.90)

0.86 (0.83-0.89)

1451 (8.33-25.41)

75,17/52, B (0): Failure vs Relapse

0.75(0.58-0.87)

0.60(0.51-0.69)

0.64(0.56-0.71)

3.15(1.65-6.01)

Ethambutol arm

Extended EBA: Failure vs Cure

0.10(0.05-0.19)

0.94(0.92-0.96)

0.79(0.76-0.83)

1.66 (0.89-2.81)

75,1752, B (0): Failure vs Cure

0.70 (0.60-0.79)

0.71 (0.67-0.75)

0.71 (0.67-0.75)

4.10 (2.78-6.08)

75,17/52, B (0): Failure vs Relapse

0.70(0.59-0.79)

0.65(0.55-0.74)

0.68(0.60-0.74)

2.07(1.50-2.87)

TTP (0) isthe corresponding TTP in days for B (0): A dash means no cut-off value evaluated. The thresholds for predicting relapses-vs-cure

are multiple steps however, are with the 0.1 to 0.15 indeterminate regions of the slow slope cut-offs for screening cures and failures.
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this biomarker was positive versus not positive was 28 [Table 2 and Table $4], while
NND was 1.29. Failures either arise as therapy failure or relapse; Table 2 shows the
sengitivities for these different biomarkers in predicting relapses from treatment failures.
The slope decision rule based on 3%>0.15 has a sensitivity of 92% and a specificity of
89% in predicting relapses from failures. Thus, the biomarkers we derived were highly

specific at identifying relapse-free cure, therapy failure, and relapse.

Performance of y%-based rulesin forecasting 4-months therapy duration outcomes
Next, we tested the accuracy of the diagnostic rule for four-months therapy duration in
the validation datasets comprised of the REMoxTB trial experimental arm patients. In the
arm in which isoniazid was replaced by moxifloxacin and therapy administered for four-
months (n=655), 530 patients had enough TTP data in the first 8 weeks to calculate
slopes. In this dataset, 369/530 (69.62%) patients achieved cure, 40 (7.55%) patients had
therapy failure at the end of 4 months of therapy, and 121 patients (22.83%) relapsed.
Table 2 shows that the 3%>0.15 had a sensitivity of 81% and specificity of 89% for
relapse-free cure versus failure, and among the failures had a sensitivity of 75% and
specificity of 60% for separating relapse from therapy failure. The relative risk of failure
in patients with positive slope-based biomarker versus negative biomarker was
approximately 15 [Table 2 and Table $4]; the NND was 1.47. The 2-month sputum
conversion was not designed for 4 months therapy duration regimens, and is not shown,
while the extended-EBA which is used to triage shorter duration regimens is shown; the

NND was 16.69.
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In the arm in which ethambutol was replaced by moxifloxacin (n=633), 533 patients had
enough datato calculate 8-week slopes. In this dataset 385 (72.23%) of patients achieved
cure, 46 (8.63%) had therapy failure, while 102 relapse (19.4%). The sengitivity of the
extended EBA was only 10%, and the NND was 18.73. The sensitivity of y-based slopes
was 70% and the specificity 71% for cure versus therapy failure, while the sensitivity was

70% and specificity 65% for picking relapse versus therapy failure. The NND was 1.89.

In order to summate, we calculated an overall value of the relative risk of failure when
our B(0) and y-based slope predicted poor outcome for a specified duration of therapy
[using 6-months and 4-month duration data combined]. Among patients with positive
biomarker for specified therapy duration, 159/205 [ 78%] failed therapy compared to
218/1072 [20%] in whom the biomarker was negative. The RR of failure with the rule
was 8.25 [95% ClI: 6.09-11.20]; p<0.0001. In terms of cure only 4% of entire validation
dataset cohort of patients achieved relapse-free cure when our rule was positive while

67% achieved cure when it was negative.

DISCUSSION

First, we found that the % [slow replicating] slope isagood surrogate of sterilizing
activity, based on ability to predict relapse. Conversely, the extended EBA had a
sensitivity of 14% for predicting outcomes at 6 months and beyond, and a poor accuracy.
The extended EBA is effectively two-weeks accrued data; the poor sensitivity means that
the total time for which the bacterial kill datais collected istoo short to accurately

capture sterilizing activity slopes. Indeed, the poor sensitivity of y;—slope-based metric
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means that most regimens with good sterilizing effect could be thrown away [too many
false negatives for sterilizing activity] in regimen selection for sterilizing activity.
Similarly, the 2-month sputum conversion had a sengitivity of 33% and specificity of
71%. These commonly used clinical indices gave us an opportunity to externally validate
our modeling approach. In this case, the last major meta-analyses on 2-month cultures as
apredictor of long-term outcomein TB performed by Horne et a in 2010 identified a
sengitivity of 40% [95% Cl, 25-56%] and specificity of 85% [95% CI, 77%-91%)], which
was confirmed in subsequent studies[14, 41, 42]. Thus, our modeling findings are
consistent with results of these major meta-analyses. This means that our 8-weeks-
derived % sope plusinitial bacterial burden, which had a sensitivity of 92% and
specificity of 86% for 6 months therapy duration regimens, would perform better than the
2-month sputum conversion. In addition, our % slope can predict outcomes at shorter
therapy durations than 6 months such as 4-months duration; the relative risk of therapy
failure among patients with positive biomarker for specified therapy duration was >8.0
Thus the y%-sope based on the first 8-weeks TTP datais a good response biomarker for
sterilizing activity, even for therapy duration less than standard short course

chemotherapy.

The %-slope, which we will henceforth term the “sterilizing activity rate”, fulfills the
BEST criteria and definition of a monitoring biomarker in the category of a
pharmacodynamic/response biomarker, in asimilar fashion to HIV and hepatitis C viral
load biomarker, and could play the samerolein TB therapeutics and clinical trials[23,

43-45]. According to BEST criteria, a pharmacodynamic/response biomarker provides
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early evidence [in this case 8-weeks| that atreatment might have an effect on alater
pharmacologic clinical endpoint [in this case relapse at 2 years]. In the case of HIV
treatment trials, identification of viral load as a surrogate of efficacy in 1995 dramatically
cut the duration and costs of clinical trials, while avoiding use of potentially catastrophic
clinical endpoints such as therapy failure and death [43]. For TB, we propose
identification and ranking of regimens using preclinical models that can accurately
translate the sterilizing activity rate to patients [24, 46]. The regimens so derived,
including optimal doses, and the trandated sterilizing activity rate will provide good
priors for the design of 8-week clinical trials for novel regimens versus standard therapy,
with weekly TTP as the main output and drug pharmacokinetics as a secondary outcome.
The sterilizing effect rate [ys-dlope], initial TTP, and trgjectories can then be used to
estimate therapy duration for the novel regimens and determine if indeed the new
regimens can shorten TB treatment prior to performance of phase Il studies. The 8-
weeks TTP-data derived slopes can be used to compute a lower and more accurate patient
sample sizes required to power the phase I11 trials, given the good accuracy in forecasting
relapse. As an example, the number needed to diagnose [NND] failure and relapse of <2,
when compared to ~20 for extended EBA and 5-6 for 2-months therapy, gives a more
straightforward insight into the relative number of patients tested in each arm by different
biomarkers. Moreover, since the predictive value of the sterilizing activity rates on
relapse or cure or therapy failure is independent of the regimen the slopes can be used in
clinical trials of MDR-TB and for “ pan-susceptible” TB regimens, indeed for any TB

regimen.
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Asregardsto clinical practice, our findings add to the recent discovery that initial Mtb
burden can be used to determine patients who can benefit from 4-month duration therapy
[47]. Here, we found that the sterilizing activity rate was ranked higher than initial
bacterial burden. To put thisis context, the risk of development of AIDS and death in
patients whose HIV viral load did not reach undetectable within first 12 months was
2.40-fold compared to those who had, and a <75% reduction in viral load had a RR of
2.27-fold for poor outcomes [48-50]. Patients in whom the %-slope-based rule was
positive for different durations of therapy had a an 8.25-fold higher risk of failure, which
is better performance than this commonly used HIV test used to individualize therapy.
Thus, our findings could also be used to individualize therapy, in place of two-month
smears/cultures currently recommended in routine care in TB programs worldwide. First,
if these patients with potentially higher rates of therapy failure and relapse were
identified during the first eight weeks of therapy, then interventions such as dose
increases or switching therapy regimens could be made [37]. Second, the sterilizing effect
rate [ys slopes] could also be used by TB programs to identify patients who could be
cured with specific shorter therapy durations of either 2, 3 or 4 months, on any regimen.
Alternatively, they could be used to identify how long therapy duration should be
extended beyond 6 months, thereby individualizing therapy duration, in patients with
sputum s slopes that predict the slow cure clusters. Since many TB programs across the
world aready employ liquid culture systems that generate TTP, it means that the
biomarker we propose would come at no extra cost to those TB programs. Computation
of the slope could easily be implemented on a computer [or on a phone with specifically

designed app].
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Our study has some limitations. First, it could be argued that our findings are specific to
the dataset we analyzed. However, the machine-learning cross-validation procedures we
used are scored on how well predictors will perform on an entirely independent dataset in
the future. Nevertheless, the accuracy of the biomarkerswill still need to be further
confirmed in other large datasetsin arange of clinical contexts and with different
regimens. Further, this approach can be adapted for other non-tuberculosis bacterial
infections. Second, calculation of slopesis relatively complex. However, software can
easily be written to automate this, aswe have attempted elsewhere. Finally, not all
patients who do not reach bacterial population extinction will fail therapy or relapse. This
means that our approach may lead to over treating of these patients who would otherwise
be cured. Examination of our proposed biomarkers with other tests such as radiological
findings and therapeutic drug monitoring could reduce the number of over treated
patients and are subject to ongoing analyses. However, even with these limitations, the
early TTP-based biomarkers that we identified as predicting long-term clinical outcomes
such as relapse for different therapy durations, have sensitivities and specificities that are

higher than currently employed methods.
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Table S1: Estimated kill ratesand initial bacterial load by cluster versusperiod of data derivation.

Period in which data | Cluster logi0 B£(0) f % 15

was derived
Cure 5.18 (4.91-5.45) 0.66 (0.61-0.73) 0.80 (0.62-0.98) | 0.17 (0.16-0.19)

First 8-weeks Slow cure 5.10 (4.78-5.37) 0.71 (0.64-0.79) 0.75(0.54-0.97) | 0.17 (0.15-0.19)
Relapse 5.02 (4.57-5.50) 0.81 (0.66-0.89) 0.75(0.36-0.99) | 0.15(0.11-0.18)
Failure 5.35 (4.78-5.86) 0.65 (0.60-0.81) 0.60 (0.41-0.93) | 0.12 (0.09-0.15)
Cure 4.87 (4.59-5.15) 0.61 (0.60-0.63) 0.60 (0.48-0.80) | 0.13(0.12-0.15)

First 4-months Slow cure 4.79 (4.52-5.10) 0.61 (0.60-0.64) 0.45 (0-40-0-66) | 0.12 (0.11-0.13)
Relapse 4.87 (4.43-5.43) 0.67 (0.60-0.80) 0.39 (0.30-0.91) | 0.11(0.10-0.13)
Failure 5.30 (4.71-5.81) 0.64 (0.60-0.75) 0.57 (0.40-0.90) | 0.11 (0.10-0.12)
Cure 4.57 (4.33-4.84) 0.60 (0.60-0.62) 0.50 (0.42-0.65) | 0.12(0.11-0.13)

6 Months Slow cure 4.46 (4.25-4.68) 0.60 (0.60-0.62) 0.41 (0.36-0.49) | 0.11(0.10-0.11)
Relapse 4.78 (4.39-5.27) 0.63 (0.60-0.73) 0.36 (0.30-0.72) | 0.10(0.10-0.11)
Failure 5.10 (4.56-5.56) 0.62 (0.60-0.70) 0.51 (0.36-0.80) | 0.09 (0.09-0.10)

Estimates for kill rate are given as median values obtained from the model to data fitting of the different patient treatment outcome
clusters. The uncertainties in the estimates are given by 95% credible intervals. B¢(0) in theinitial log phase bacterial load and the
semi-dormant bacteria, B¢(0), isestimated as f x B,(0), where f estimates the fraction of B;(0) with respect to B¢(0). TheKkill rates

were estimated with the 2, 4 and 6 months-derived data sets.
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Table 2. Cluster summary for bacterial burden

Cluster 6-Months 9-Months 12-Months 15-M onths 18-Months
Cure 0.24 0.24 0.24 0.24 0.24

Slow cure 0.24 (0.24-0.40) 0.24 (0.24-0.43) 0.24 (0.24-0.40) 0.24 (0.24-0.39) 0.24 (0.24-0.48)
Relapse 0.24 (0.24-1.11) 2.20(0.31-4.40) 1.65 (0.24-4.43) 2.10(0.24-3.88) 0.24 (0.24-1.00)
Failure 3.19 (1.42-4-46) 0.66 (0.24-1.00) 0.73 (0.24-2.53) 0.64 (0.24-1.84) 2.61 (1.06-4.50)

Summary estimates for different clusters during follow up period. Median estimates are given and the 1% and 3" quartile values are
given in brackets. The value 0.24 log10 CFU represent the limit of detection that corresponds to 42 days for TTP MGIT readouts.
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Table S3. Two month-derived ¥ magnitude cut-off values and initial bacteria burden

Conditional cureregions
6 months outcomes

4 months outcomes
Failureregions

6 months outcomes

4 months outcomes

High chance of relapse regions
4 months and 6 months outcomes

7% cut-off [logio CFU/mL /day]
0.1< %<0.15
0.09< x<0.14

<0.1
<0.1

0.1<%<0.15

7% cut-off [TTP day]
-3.9<x<-2.6
-2.86< 4<-2.34

<-2.60
<-2.60

-3.9<%<-2.6

Initial bacterial [TTP/day]
-<8.11
-<5.93

<-5.49
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Table $4. Contingency tables of outcomes ver sus different biomarkers

8week-Biomar ker

Extended EBA

2 month smears

Positive Negative Positive Negative Positive  Negative
6 monthstherapy duration
Cure 3 155 30 155 20 117
Failure 34 26 5 13 10 47
4 monthstherapy duration- isoniazid arm
Cure 13 361 53 344 36 299
Failure 56 55 6 15 20 47
4 monthstherapy duration- ethambutol arm
Cure 30 338 77 378 61 334
Failure 69 137 9 23 25 76
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Figure S1. Converting TTP to CFU and vise-versa. lllustrating conversion of serial
TTP values from patients to corresponding CFU values. Panels A showing model
function correlating TTP to CFU, here the model has two parameters to the estimated, in
B the modd with three parameters has wider uncertainty. While conversion for bacteria
in log phaseis shown in A and B, conversion for slow (non replicating) replicating
bacteriais shown in C and D, then in panels E and F, combined subpopulations are
shown. Panel G shows TTP patient clinical data and the corresponding converted CFU

are shown in H at start of therapy [Day 0] and every 7 daystill day 56.
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Figure S2. Modédl fitting to accrued data at 8-weeks, 4-months and 6-monthstime
points. Shown are modd fitting to the accrued cure data cluster at 8-weeks/2M (A), 4M
(B) and 6M (C), respectively. Model fitting to the slow successful cure cluster data are
shown in D (at 2M), E (at 4M) and F (at 6M). Relapsing disease data patterns are given

in G, H, and | and while treatment failureareshownin J, K and L at 2M, 4M and 6M,
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respectively. The gold dots represent the observations, the solid lines are the model

predictions and the shaded regions represent the 95% credible intervals.
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Figure S2Evolution of treatment outcome biomarkers. (A) The evolution of

biomarkers patterns that identifies cured patients at 2M, 4M and 6M, respectively.

Summary trajectories for patientsin the slow successful treatment cluster (B), relapsing

cases (C) and treatment failure cluster (D) demonstrate how these patterns diverge.

Further comparisons of all biomarkers for each cluster and their respective 95% credible

intervalsat 2M (E), at 4M (F) and at 6M (G) end points are shown.
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Figure $4. Biomarker characterization in indeter minate data zones. Thresholds for

m
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the biomarkers that enable treatment outcome predictions at 2, 4 and 6-months are
shown. (A) Simulation-based derivation of the biomarker thresholds and how they vary
with initial patient bacteria burden, B(0). (B) A combination of y,-slopesand B(0) in
classifying outcomes classification regression trees (CART). In C and D, shown are the
biomarker breakpoints predicted with CART using 6M and 4M treatment outcomes,
respectively. In C), failures at 6 months are predicted with ay,-slope that isless than 0.1.
In D), the 4-month failure threshold is predicted to be 0.1(0.097), while 0.14 predicts
cures. Bothin C and D, the zone between y,-dope of 0.1 and 0.15 has high
misclassification. The mixed regionsin A and B demonstrate conditional outcomes

dependent on initial bacterial burden and y, rates (Figure $4).
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Figure S5. Thresholdsfor regionswith mixed outcomes.
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Figure S5. Thresholdsfor regionswith mixed outcomes. y, values greater than 0.125
cure patients with initial bacteria burden between 4-6 log 10CFU/mL and values below
0.125 will result in failure using smulations. (B) illustrates the overlap between the
initial bacteria and the slopes for the 4-month outcomes. In A and B regions of failure are
shaded orange and the cure region has the grey shading). (C) CART derived cut-off
values for 6 months outcomes. (D) CART derived predictor (initial burden and y,-slope)

cut-off to delineate relapses from cure.
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