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ABSTRACT 

Background: Tuberculosis is expensive to treat, especially since therapy duration is at least six-

months, and patients must be followed for up to two years in order to document relapse. There is 

an urgent need to discover biomarkers that are predictive of long-term treatment outcomes. 

Currently, tuberculosis programs use two-months sputum conversion for clinical decision 

making, while phase I clinical trials use extended [14 day] early bactericidal activity [EBA] to 

triage regimens. Our objective was to develop early treatment stage biomarkers that are 

predictive of long-term outcomes. 

Methods and Findings: Data from 1,924 patients in the REMoxTB study was divided into [1] a 

derivation data-set of 318 patients on six-months standard therapy, [2] two sets of validation 

datasets comprised of 319 patients on six-months standard therapy,  and 1,287 patients 

randomized to four-months experimental therapy. Sputum time-to-positivity [TTP] data was 

modeled using a system of ordinary differential equations that identified bacillary kill rates 

[termed γ-slopes], for fast-replicating bacteria [γf] and for semi-dormant/non-replicating 

persistent bacteria [γs], and to estimate time-to-extinction for all bacteria sub-populations in each 

patient. Time-to-extinction is used to predict the minimum therapy duration required to achieve 

cure. Using the derivation dataset, machine learning identified the γs slope, calculated using first 

8 weeks of therapy TTP data, as the highest ranked predictor for treatment outcomes. We then 

computed γs slope thresholds that would reliably predict relapse-free cure for 2, 3, 4, and 6 

months therapy duration regimens, and used these to create a diagnostic rule. In the first-

validation dataset for six-months therapy duration, the γs-derived decision rule demonstrated a 

sensitivity of 92% and a specificity of 89%; among patients with positive biomarker the relative 

risk [RR] of failure was 20.40 [95% confidence interval (CI): 7.17-58.08]. In comparison, two-
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month sputum culture conversion had a sensitivity of 33% and specificity of 71% [RR=1.20 

(95% CI: 0.60-2.34)], while for extended-EBA sensitivity was 14% and specificity was 92% 

[RR=1.71 [95% CI: 0.73-3.48]. In the second validation dataset for four-months therapy 

duration, the γs-derived diagnostic rule sensitivity was 81% while specificity was 87% for 

picking failure versus cure [RR=14.51 (95% CI: 8.33-25.41)] 

Conclusions: The ability to predict treatment outcomes during the first eight-weeks of therapy 

could accelerate evaluation of novel regimens, development of new clinical trial designs, as well 

as allow personalization of therapy duration in routine treatment programs. Future research 

applying these diagnostic rules to different clinical trials data are required.  
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INTRODUCTION 

Tuberculosis [TB] is the most important infectious cause of death worldwide, accounting 

for 3% of all deaths; it killed one billion people over the last two centuries [1]. In both 

drug-susceptible TB and multidrug-resistant TB (MDR-TB) [2], therapy duration is 6 

months, after which patients are followed for up to 18 months to document relapse. The 

large numbers of patients with TB [10 million/year], the long therapy duration, and the 

follow up period of up to 2 years, makes TB one of the most expensive diseases to treat. 

Thus, it is of crucial importance to identify TB treatment regimens that are equally as 

effective in drug-resistant TB as in drug-susceptible TB, to identify regimens that can 

shorten therapy duration, and to identify early biomarkers that obviate the need for 2-year 

follow up [1-11]. A closely related problem is the time it takes to evaluate and compare 

such new regimens in phase I-III clinical trials; they take decades to complete given the 

long follow-up time required to document relapse. Thus, biomarkers that obviate the need 

for the long follow up to document relapse, and that can be deployed immediately on a 

global scale at little cost, need to be urgently developed for both routine patient care and 

to accelerate the time-table of clinical trials.  

 

The tools currently used to monitor TB treatment in the clinic and in clinical trials arose 

in the historical context of the microbiology technology of 50 years ago. In the late 1970s 

Jindani and Mitchison performed a 14-day treatment clinical study in East Africa [n=124 

patients] that utilized solid agar-based Mycobacterium tuberculosis (Mtb) colony-forming 

unit [CFU]-derived kill rates defined by linear regression slopes to define early 

bactericidal activity [EBA], and the 14-day or extended-EBA to capture sterilizing 
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activity, which are the basis of current phase I clinical trials [7, 8]. In 1993 Mitchison 

summarized results of seven clinical studies to propose the use of two-months sputum 

culture and smear as a surrogate of relapse; the two-month [eight-week] endpoint is now 

the basis of clinical decision-making in routine clinical care [3, 10-13]. Eight-week 

studies are also widely used as phase II studies to select TB regimens that go into the 

larger phase III studies in which long-term outcomes such as relapse, death, and cure are 

evaluated. However, the accuracy of these phase I/II studies in predicting hard clinical 

outcomes such as cure, therapy failure, and relapse, have been challenged [10-12, 14, 15]. 

In addition, more recent technological advances with semi-automated liquid cultures have 

demonstrated that the eight-week agar-based cultures may have been over-optimistic and 

are associated with substantial false-negative rates [16-19]. On the other hand, time-to-

positivity [TTP] in the liquid cultures can be used in place of CFUs [20, 21]. The liquid 

culture technology is semi-automated and has been widely deployed across the world for 

routine clinical care as a diagnostic and for susceptibility testing. Here, we sought to 

identify mechanistic biomarkers (based on quantitative biology of the disease ) that fulfill 

the definition of the US Food and Drug Administration BEST (Biomarkers, EndpointS, 

and other Tools) Resource, for use early during therapy to predict long-term hard clinical 

endpoints such as cure, therapy failure, and relapse[22, 23].   

 

We have developed a mechanistic model to quantitatively explain the drug-regimen 

bacterial kill kinetics and dynamics of both fast-replicating and semi-dormant/non-

replicating persistent [NRP] Mtb subpopulations in TB patients as reflected in sputum 

[24]. Here, we used serial sputum TTP-data from patients in the Rapid Evaluation of 
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Moxifloxacin in Tuberculosis [REMoxTB] phase III clinical trial to identify the 

trajectory of these two bacterial sub-populations and to estimate time in which both Mtb 

bacteria subpopulations reach extinction (time-to-extinction) [24]. According to Burman, 

“The ability to prevent relapse is termed sterilizing activity because it is presumed to 

require killing nearly of all bacilli remaining after the initial phase of therapy” [9]. 

Restated, failure to reach extinction by the Mtb population in lung lesions is a required 

condition for therapy failure and relapse. Therefore, the time-to-extinction of all bacillary 

populations marks the required minimum duration of therapy in order to avoid relapse.  

 

MATERIALS AND METHODS  

Study design, data extraction and definitions 

Our study design is reported in detail in Figure. 1. Briefly, we took data for 

bacteriologically confirmed TB patients that were enrolled in the REMoxTB clinical 

study [3]. In which patient sputum was cultured in the Mycobacteria Growth Indicator 

Tube [MGIT] to confirm bacteria viability. Since our aim was to develop a method 

agnostic of regimens used and drug-resistance status, patient data from the study [3] was 

used in our analyses regardless of drug-resistance status. Patients with majority of sputum 

samples that were contaminated or missing were excluded. 

 

Patient and microbial details, including therapy regimens and serial TTPs, were extracted 

from the CPTR website [http://www.cptrinitiative.org]. Time-to-extinction was defined 

as achieving a bacterial burden ≤10-2 colonies/mL, as mathematically justified in our 

prior work [24]. Microbiologic cure was defined as two negative sputum cultures without 
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an intervening positive. Relapse was defined by the re-appearance of positive cultures
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Figure 1. Biomarker Development Steps. Step 1: Patients without sufficient data points to derive bacterial kill s
were removed. Step 2: The weekly sputum  time-to-positivity data was then converted to colony forming units and
modeled using ordinary differential equations. Step 3: Data partitioning of 50% of patients in stanadrd of care six
months therapy as derivation data-set and the other 50% into valdiation dataset. All patients in experimental arm, 
administered over 4 months were assigned to validation datasets. Step 4: Four mathematical modeling and machin
learning types of analysis in derivation dataset to [1] identify predictors of time-to-extinction [TTE] and [2] thresh
values deliniating different TTE, and [3] design a diagnostic rule for different therapy durations. Step 5: Accuracy
diganostic rule/biomarker for six-months therapy duration in standard of care validation dataset using clinical 
definitions of outcome [relapse, cure]. Step 6: Accuracy of diganostic rule/biomarker for four-months therapy dura
in two experimental arms in validation dataset using clinical definitions of relapse and cure.    
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in patients deemed cured at the end of therapy. Relapses were confirmed by 24-locus 

mycobacterial-interspersed-repetitive-unit analysis [24]. Failure to attain microbiologic 

cure at the end of therapy defined therapy failure, as per REMoxTB study protocol [24].  

 

Data partitioning 

Patients on the standard TB therapy regimen were randomly partitioned into two subsets 

of equal size. The first set was designated as the model derivation set, while the 

remainder was assigned for use in model validation [validation data set]. To capture 

sufficient relapse events, only patients with at least two consecutive sputum samples 

during follow-up after treatment were used in model training and cross validation. 

Patients who received the experimental REMoxTB arms were used only in the validation 

dataset for sensitivity and specificity of predictors with 4 months therapy duration.  

  

Mathematical modeling for converting TTPs to CFUs 

In order to convert TTPs to CFU/mL, we applied the formula: 

 F=αe-βx+γ  [1] 

where α is 8.09 [95% confidence interval (CI) 6.64-9.96], β is 0.084 [95% CI: 0.08-

0.087] and γ is 0.011[95% CI: -0.2 to 0.2], which we previously derived using more than 

600 data point pairs from logarithmic phase growth and semi-dormant (or non-replicating 

phase) hollow fiber system model experiments [24]. Bacterial burden from these 

experiments were quantified using (i) solid agar culture for CFUs, and (ii) liquid medium 

in the MIGIT for TTP. The hollow fiber model is repetitively sampled for CFUs and 

TTPs for up to 56 days on therapy. Bowness and colleagues have found that as treatment 
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progresses, the recovered Mtb grew more slowly in culture, so that a linear equation 

model [including only constants a, b, c] that remain unchanged during treatment would 

be incorrect by day 14, and instead a Gompertz model with a time parameter would be 

better [25]. While our formula is not a linear regression equation, we still wanted to find 

out if it was accurate at the start of therapy as at 56 days, in patients. Therefore, we 

applied formula/equation #1 to an independent clinical data set of patients on TB therapy, 

the vitamin A study in which we had weekly TTPs and CFUs in 56 patients as part of our 

morphism mapping between the hollow fiber system and patients on standard therapy 

[18, 24]. Results are shown in Figure S1, which shows that our formula remained 

accurate at 56 days as on day 0. Therefore, we employed equation #1 for toggling 

between CFU/mL and TTP. 

 

Mathematical Model 

Our mathematical model, described in detail in the past [24], recapitulates events [i.e, 

Mtb burden] at site of infection, and, assumes two bacterial phenotypic populations: Bf, 

fast replicating bacteria in log phase, which grows at rate rf  and Bs, non-replicating 

persisters which bacteria grow at rate rs, such that where rf >rs, as observed by Canetti, 

McDermott et al, Sloan et al, Eum et al, and formalized by Mitchison [26-31] . Our 

assumption is that, in the lungs or at the site of infection, Mtb populations exhibit 

different physiological states, but share the same maximal bacterial burden, Kmax [32, 33]. 

The parameters rf  and rs also measure of the reproductive or growth fitness, a measure of 

their virulence. The fast replication (log phase growth) Mtb grow at rate rf while the slow 

at rate rs. It has been shown that in TB patients, these bacteria subpopulations co-exist, 
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however, in active TB disease, the population of bacteria in log-phase is dominant [26, 

27, 29-31, 34]. 
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The model has flexibility to track the time evolution of both Mtb subpopulations 

simultaneously, under effect of treatment with different combination regimens. In relation 

to assessing new surrogate markers or biomarkers for predicting TB treatment outcomes, 

the model has two sets of quantifiable parameters (i) rf, rs and Kmax (Mtb growth 

parameters) and (ii) γs andγf (drug-regimen based microbial kill slopes), that are linked to 

disease pathogenesis, and therefore has the ability to predict disease outcomes 

independent of a specific TB therapy regimen. Further mathematical details and 

assumptions of the model are shown in supplementary methods.  

 

ODE-based model to data fitting  

First, all patient TTP longitudinal observations were converted to CFU values using equation 1. 

Then the data was fit to the system of ODEs (Equations 2 and 3). We implemented the Markov 

chain Monte Carlo (MCMC) method in R [22, 24, 35] to estimate the drug kill parameters 

using 50, 000 runs of the chain. A Gaussian log-likelihood was used to generate posterior 

distributions for parameters assuming uniform distribution for the priors. Model to data fitting 

was done to estimate the γf  and γs slopes. The estimates were derived as medians of the 

MCMC posterior distribution, the uncertainty was given by 95% credible intervals (CrIs) 

calculated from the 2.5% and 97.5% quantiles of the MCMC parameter posterior distribution. 
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MCMC convergence was assessed visually and by using the chain convergence diagnostic 

tools in the R coda package.  

 

Identification of biomarkers predicting outcomes in derivation dataset 

Identification of biomarkers that best predicted therapy outcomes was carried out using 

classification and regression criteria [CART] of Breiman et al [36]. Using the derivation 

dataset, we examined all demographic, clinical, and radiological factors, as well as 

model-derived γs  and γf slopes and the initial bacterial burdens [B(0)], as potential 

predictors of outcome. Outcome was defined as either  therapy success at end of therapy, 

or therapy failure (failure at the end of treatment or relapse), or relapse. The steps we 

followed were implemented by two independent investigators in R (Rpart) and Salford 

software, and have been described in detail in the past [37] . 

 

First, CART analysis was used to identify and rank the top predictors of therapy failure 

and relapse. Second, we used clustering to characterize the relationship of the top 

predictors for each specific treatment outcome, and also identified the statistical 

association [38]. TTP trajectories were clustered using the K-means algorithm 

implemented in the KML-package in R [38]. The 6-month TTP data for each cluster was 

reduced to derive (i) the 4-month slopes [using the first 4 months accrued data] and (ii) 

then 2-month slopes [based on the first eight-week accrued data]. The model was fitted to 

data for each separate cluster and their respective reduced subsets.  
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Finally, we utilized Markov chain Monte Carlo simulations of time-to-extinction in 

tandem with CART to identify slope thresholds and initial bacterial burden that best 

classified relapses and therapy failure [35].  

 

Mathematical simulations for indeterminate data zones 

We computed 10,000 bacteria trajectories to simulate different treatment outcomes. The 

initial bacterial burdens based on the range in derivation data set of between 3-7 log10 

CFU/mL and γ-slopes between 0.05 to 0.5 log10 CFUs/day, were varied simultaneously, 

with the rest of all model parameters held constant. TTE for each separate trajectory was 

computed. The TTE values define the transcritical bifurcation points that explains when 

the Mtb NRP stable state switches to extinction. Regions of time within which bacteria 

subpopulations would go extinct were constructed and partitioned to reflect the expected 

clinical treatment duration intervals.  

 

Sensitivity analysis for treatment duration 

Monte-Carlo experiments were carried out to identify changes in γs values that resulted in 

treatment duration shortening (2 and 4 months) and those that led to prolonged treatment 

duration (7, 8 and 9 months). Magnitudes that correspond to these treatment end-points 

were determined relative to different categories of patient initial bacterial load, (i) high 

(>5·0 log10 CFU/mL), (ii) medium (3·5-5·0 log10 CFU/mL) and (iii) low (<3·5 log10 

CFU/mL). These bounds were selected to toggle between CART discrete bounds and 

sweep across continuous patient CFU burdens to examine effect of different slope 

magnitudes on outcome for the defined therapy durations. 
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Validation of identified biomarkers  

Individual patient TTP trajectories were fitted to the model to identify the corresponding 

γs and γf in the validation datasets. The accuracy, sensitivity, and specificity of biomarkers 

derived in the derivation dataset were calculated using the validation dataset for cure, 

relapse, or therapy failure, for 6 and 4-months duration of therapy. The definitions for 

cure, relapse, and therapy failure used were those defined by the REMoxTB clinical trial 

protocol [3]. We used the standard statistical and clinical definitions for sensitivity, 

specificity, accuracy, and the number needed to diagnose failure and relapse [39, 40].  

 

Statistical analysis 

Mean values between groups were compared using Student’s t-test or analysis of variance 

(ANOVA) F-test, while the Mann-Whitney test was used for proportions and compare 

medians from distributions of the fast and slow slopes derived at 2-months, 4-months and 

6-months accrued TTP data.  Spearman’s correlations were used to examine correlation 

while un-weighted Cohen’ Kappa coefficients examined agreements of clinical outcomes 

derived from REMoxTB study definition versus those derived from the model based on 

time-to-extinction. All analyses were performed with packages in R.  

 

RESULTS 

Clinical and laboratory characteristics in derivation and validation datasets   

First, REMoxTB clinical trial patients who had insufficient serial sputum samples were 

removed, leaving 637 [33%] patients randomized to the standard therapy arm, 654 [34%] 

randomized to the isoniazid arm, and 633 [33%] randomized to the ethambutol arm 
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[Figure 1]. This was followed by converting the 1,924 patients TTP-series to CFU/mL 

using equation 1, before modeling the data with a set of ODEs 2 and 3, to describe 

trajectories of Mtb CFU/mL with time [i.e., slopes]. We identified ODE-model parameter 

estimates using 8-week [2-months]-, 4-months-, and 6-months accrued TTP-derived data 

for all 1,924 patients. The model parameter estimates are shown in Table S1. We termed 

the Mtb kill rates γ-slopes, where γf is the slope for fast- replicating Mtb and γs is the slope 

for semi-dormant/NRP Mtb. The model was also used to calculate the time-to-extinction 

of the total Mtb population for each patient, with results shown in Figure 2. 

 

 

 

 

Data partitioning into derivation and validation datasets 

We separated the 1,924 patients’ data into derivation and validation datasets, shown in 

Table 1. The derivation dataset was comprised of 318 [50%] patients on standard  
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Fig 2. Distribution of time-to-extinction for all 1,924 patients. Shown is the data for all the 1,646 patients 
who achieved bacillary population extinction; bacilli in the remainder of patients did not reach extinction, so 
the time is at infinity. The mean time to extinction and 95% confidence intervals were 122.4 [117.9 to 126.9] 
days.   
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Table 1. Clinical features of patients in derivation and validation datasets.  
 

Variable Total sample Derivation dataset 
 

Validation datasets p-value 

 n=1924 (%) Standard therapy; 
n=318 (%) 

Standard therapy; 
n=319 (%) 

Ethambutol;  
n=633 (%) 

Isoniazid; 
n=654 (%) 

 

Age, years [mean (SD)] 33.40 (12.16) 33.10 (11.93) 33.81 (12.40) 33.88 (12.15) 32.89 (12.17) 0.442 
Sex, Female 585 (30) 91 (29) 101 (32) 188 (30) 205 (31) 0.767 
         Male 1339 (70) 227 (71) 218 (68) 445 (70) 449 (69)  
Race      0.663 
Black 861 (45) 149 (47) 146 (46) 289 (46) 277 (42)  
Asian 586 (30) 96 (30) 96 (30) 193 (30) 201 (31)  
Mixed 451 (23) 66 (21) 74 (23) 142 (22) 169 (26)  
Other 26 (1) 7 (2) 3 (1) 9 (1) 7 (1)  
Country site      0.986 
China 22(1) 6 (2) 2 (1) 5 (1) 9 (1)  
India 372 (19) 58 (18) 61 (19) 126 (20) 127 (19)  
Kenya 136 (7) 26 (8) 18 (6) 43 (7) 49 (7)  
Mexico 22 (1) 7 (2) 2 (1) 8 (1) 5 (1)  
Malaysia 69 (4) 10 (3) 13 (4) 20 (3) 26 (4)  
Thailand 119 (6) 21 (7) 19 (6) 41 (6) 38 (6)  
Tanzania 211 (11) 37 (12) 37 (12) 73 (12) 64 (10)  
South Africa 908 (47) 142 (45) 156 (49) 297 (47) 313 (48)  
Zambia 65 (3) 11 (3) 11 (3) 20 (3) 23 (4)  
       
Sputum TTP in days 
(SD) at start of therapy 

5.16 (1.21) 5.26 (1.16) 5.13 (1.26) 5.15 (1.20) 5.13 (1.21) 0.420  . 
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therapy, as shown in Figure 1. All patients in the derivation dataset were randomized to 

six-months therapy duration. The validation datasets comprised of (i) 319 patients on 

standard therapy for six-months duration, and (ii) 1,287 patients randomized to the 

experimental arms [isoniazid or ethambutol] that had a four-months therapy duration. 

Table 1 shows that the demographic and clinical characteristics were similar between the 

derivation data set and all validation data sets, which means that the data-partitioning step 

was executed successfully. 

 

Time-to-extinction versus clinical trial-based outcome definitions   

We then used the derivation dataset to determine if the time-to-extinction of the total Mtb 

sputum population for each patient have clinical relevance, especially given that TTP 

versus CFU/mL relationship could change with time during treatment. The number of 

patients deemed cured at different time intervals in the course of treatment obtained by 

counting the number of negative cultures/TTP as defined in the REMoxTB protocol 

versus those identified using our time-to-extinction model definitions [derived from 

CFUs calculated from TTPs] had a Spearman rank correlation of 1.0 [p=0.017]. 

Moreover, when we used Cohen’s kappa [κ] to assess agreement between individual 

pairs of either time-to-extinction versus standard clinical definitions, they were highly 

concordant [κ=0.65, p<0.001]. Furthermore, the Spearman rank correlation between γf  

(fast slope) and 14-day extended-EBA [derived using linear regression] was 0.68 [p 

<0.001], which suggests that the extended-EBA mainly reflects the effect of treatment on 

Mtb in logarithmic-growth phase and not semidormant/NRP bacilli, as was assumed in 

the past [8].  
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Predictors of outcome in derivation dataset   

Classification and regression trees [CART] were used, to identify predictors of  target 

outcome, defined as sputum microbial outcomes [cure at end of therapy, therapy failure 

or relapse], using potential predictors that included ALL the clinical and laboratory 

features, including ODE-model derived γ-slopes, for the tasks of classification and 

regression as input/independent variable. CART identified the γs [semi-dormant/NRP 

kill] slope as the primary predictor [which had a variable importance score of 100%], 

followed by initial bacterial burden just prior to therapy commencement [which we 

termed B (0)], which had a variable importance score of 91.7%. This means that the 

initial TTP [B(0)] improved the primary predictor by an extra 91.7%. Notably, γf  was not 

ranked as a predictor using this agnostic machine learning method. CART performs its 

own cross-validation within the derivation dataset, in this case by randomly splitting the 

derivation dataset five times. With the cross-validation, the post-test validation area under 

the curve [AUC] in the same derivation set was >85%, demonstrating that γs plus initial 

TTP [B(0)] will likely perform as good predictors in future datasets.  

 

Clustering-based approaches to identify biomarkers in derivation dataset  

Clustering identified four distinct outcome groups based on individual trajectories versus 

time-to-extinction analysis in the 238 patients in the derivation dataset, as shown in 

Figure 3. These were, [1] a cure cluster of 80 (33.61%) patients, [2] a slow-cure cluster 

of 100 (42.02%), [3] a relapse cluster of 34 (14.28%) patients, and [5] a treatment failure 

cluster of 24 (10.08%) patients. The slow cure cluster identified by this unsupervised 

machine learning method denoted those patients who had delayed attainment of 
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Figure 3. Clusters of treatment outcomes. Clusters of CFU/TTP trajectories of each individual 

patient are shown side by side with median log10 CFU/mL plus interquartile range, for the follow 

up periods of 6 to 18, months. (A) Cured patients’ trajectories and (B) summary of trajectories 

during follow-up. (C) Slow cure trajectories and (D) box-plots of CFUs after therapy completion. 

Relapse patterns (E) and the corresponding patterns during follow up (F). Failed treatment cluster 

(G) and follow-up period summarizing boxplots (H).  
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microbiologic cure at the end of six months therapy [failed therapy at the end of six 

months] but achieved relapse-free cure when standard therapy was continued beyond six 

months duration. These four clusters represented 238/318 [74.84%] of patients with less 

than 2 or more missing observations during follow up. The model explained these data 

well, as is shown in online Figure S2, Figure S3, and Table S1, while the corresponding 

summary statistics for each cluster are shown in Table S2.  

 

We used this clustering step to identify the minimum duration of data gathering that 

would give a γ-slope that could accurately predict cure or therapy failure or relapse. 

Figure 4 shows the distribution of model derived γs and γf values, when these slopes were 

derived based on 8-weeks-derived TTP data [2-months], 4-months-derived TTP data, and 

6-months-derived TTP data. The 8-week-, 4-months-, and 6-months-derivedγs and γf 

values [shown in Table S1] versus outcomes were examined in pairwise comparisons 

using the Mann-Whitney-Wilcoxon test. Figure 4 shows that the γf values did not 

discriminate failures from cures, consistent with CART findings. However, γs=0.15 or 

<0.1 log10 CFU/mL/day [modeling semi-dormant/NRP Mtb] were better at discriminating 

these outcomes. The slopes derived with 8-week-vs-4 months data differed in the 

misclassification of patients’ outcomes, the former misclassifying more relapses as cures 

and the latter misclassifying more cures as relapses. Nevertheless, as demonstrated by the 

statistical comparisons in Figure 4I, the 8-week derived TTP data γs adequately 

diagnosed relapse versus other outcomes. In other words, γs calculated using eight-week-

derived TTP data is a good predictor of sterilizing effect up to 18-months after therapy 

cessation, and this eight-week data-derived slope thus measures sterilizing activity rate.  
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Figure 4. Distributions of model estimated kill rates/biomarkers.  Distributions of γs - and γf -slopes based on

months, 4-months and 6-months accrued TTP data. (A) γs -slopes based on 2 months TTP data,  (B) γs -slopes ba

months TTP data, and (C) γs -slopes based on 6 months TTP data. (D) The magnitude of γf -slopes at 2 months, (

months, and (F) at the end of 6 months. (H) Pairwise analysis using the Mann-Whitney test for distributions of s

based on 2, 4 and 6 months data versus each cluster (cure, slow-cure, relapse and failure) for the γs-slopes shows

in each cell that were significant even with 2-months of data, except with cure  versus slow cure group. (I). Pairw

statistical difference analysis for γf, found that few p-values were significant, and even those had an inconsistent 

 on 2-

 based on 4 

s, (E) at 4 

f slopes 

ws p-values 

irwise 

nt pattern.  
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Subsequently, all γs discussed herein were those identified using the first eight-weeks-

derived data.  

 

Monte Carlo Simulations to identify biomarker thresholds in indeterminate 

outcome zones  

Given the misclassification of relapses as cures by the eight-week TTP-derived γs, and γs 

thresholds in the indeterminate outcomes region [i.e, overlap of relapse versus slow 

cures], we utilized Monte Carlo Simulations [MCS] of time-to-extinction in tandem with 

CART to further discriminate γs cut-off values in indeterminate outcome zones, with 

results shown in Table S3, Figure S4 and Figure S5. Cure was clearly delineated by γs 

>0.15, therapy failure by γs<0.1 plus initial bacterial burden B(0)>5.6 log10 CFU/mL 

[TTP=5.49 days], and relapse delineated from cure by γs<0.13. Figure S4C-D shows the 

CART-derived biomarker thresholds based on the simulation for predicting treatment 

outcomes after either 4-months or 6-months therapy duration. Patients with initial 

bacteria burden B(0)>4.5 log10 CFU/mL [TTP=8.11 days], and γs-slopes between 0.1 and 

0.15 had  >55% chance of failing treatment at 6 months [Fig. S4C]. However, for a four-

month therapy duration regimen, patients with B(0)>5.4 log10 CFU/mL [TTP=5.93] and 

γs between 0.09 and 0.14 had a >65% chance of failing treatment. Figure S4 also shows 

that in order to achieve cure/bacillary population extinction within 2 months of treatment, 

then γs ≥0.15 [-3.90 TTP per day] would be required, while patients with γs ≤ 0.1 [-2.60 

TTP per day] would fail. Patients on standard therapy with B(0)>5.6 log10 CFU/mL 

[TTP=5.49] with γs <0.13 would relapse.  
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Creation of γs-based rule to predict relapse for different therapy durations from 

derivation dataset 

In the final derivation step, we established a diagnostic rule for the relationship between 

γs -slopes and the outcomes, using Latin hypercube sampling for sensitivity analyses, with 

results shown in Figure 5. Figure 5A-D shows that increasing or reducing the γs  
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[i.e., speed of kill of slow-replicating bacteria] changes the time-to-extinction and 

therefore the required minimum duration of therapy. As an example, the six-months 

therapy duration would need to be extended to eight-months duration [i.e., slow-cure] in 

patients with high bacterial burden when γs is reduced from 0.148 to 0.131 and extended 

to 9-months when its reduced to 0.125 [Figure. 5B]. However, for patients in the medium 

and low CFU load categories, lower slopes can still achieve cure within 6 months 

[Figure. 5C-D]. On the other hand, to reduce treatment duration to four-months γs should 

increase to 0.183, and in order to reduce therapy duration to two-months γs should 

increase to 0.286 [Figure. 5B]. The relationship betweenγs and initial TTP versus 

minimum duration of therapy is shown in Figure. 5E-F, and is non-linear function. From 

this, we calculated the target γs to achieve cure [extinction of bacterial population] with 

one-month therapy duration, shown in Figure. 5E-F. This establishes a diagnostic rule 

betweenγs versus minimum treatment duration for relapse-free cure for different initial 

Figure 5. Sensitivity analyses and rule-making of  slopes versus time-to-cure. (A) Shown are  

slopes required to achieve cure within 6 months for patients with high bacterial burden compared to 

those with medium and lower bacterial burdens. (B-D) The  slopes required to achieve cure at 2, 4 and 

6 months duration or for delayed cure of an additional 1 to 3 months beyond month 6 [i.e, 6 months +1, 

or +2, or +3 months], are shown for patient starting with high (B), medium (C), and low (D) Mtb 

burdens. (E). Magnitudes of slopes for therapy duration of only 1 and 3 months (for high, medium and 

low Mtb burden) could be extrapolated and interpolated in log 10 CFU/mL/day as (0.42, 0.36, and 0.30) 

and (0.22, 0.20, and 0.17), respectively, based on the relationships between slope and duration of 

therapy (r2>0.999). (F) Magnitudes of slopes for therapy duration of 1 and 3 months are extrapolated 

and interpolated TTP-slope as (12.08, 10.08 and 8.49) and (5.67, 5.06 and 4.48), respectively, based on 

the relationships between TTP-derived slope and duration of therapy (r2>0.999). 
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Mtb burdens. After this step, the derivation work was completed, and the derivation 

dataset patients excluded from subsequent validation studies.  

 

Performance of γs-based rules in forecasting outcomes for 6 months therapy 

duration  

Next, we calculated the accuracy of how well our diagnostic rule performed in the six 

months therapy duration validation datasets, using the clinical and microbial treatment 

outcomes defined by the REMoxTB trial protocol. Treatment outcome calls could be 

made in 218 of the 319 patients who also had more than 4 data points within eight-weeks 

to give statistically robust estimates of the bacteria kill slopes: 169/218 (74.31%) 

achieved relapse-free cure, 137/218 (16.97%) had therapy failure at the end of treatment, 

and 19/218 (8.72%) relapsed after initially looking like cure at the end of therapy. The 

accuracy of the �s-based rules are compared to the extended-EBA and two months 

sputum conversion in Table 2, together with the relative risk [RR] of failure when each 

biomarker was positive versus not-positive [numbers in each cell shown in Table S4]. 

Table 2 shows that the extended-EBA had a sensitivity of 14% and specificity of 92% in 

identifying failure from cure without relapse and the RR 95% confidence interval crossed 

1 [p=0.205]; the number needed to diagnose [NND] failure/relapse was 15.27. Similarly, 

two-months sputum conversion had a sensitivity of 33% and specificity of 71%, RR was 

statistically 1, and NND was 21.41. On the other hand, the eight-weeks-data derived γs  

combined with the initial TTP at treatment commencement had a sensitivity of 92% and 

specificity of 86% in identifying failure from relapse-free cure, the RR of failure when  
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Table 2. Biomarker threshold values, sensitivity and specificity scores, and risk of failure, with 95% confidence intervals  

Biomarker using log10 CFU/mL Sensitivity Specificity Accuracy Relative risk of failure with positive 
biomarker 

Six-months therapy duration     
Extended EBA: Failure vs Cure 0.14 (0.05-0.30) 0.92 (0.87-0.96) 0.79 (0.73-0.84) 1.71 (0.73-3.48) 
2 months smears/culture: Failure vs Cure 0.33 (0.17-0.53) 0.71 (0.64-0.78) 0.65 (0.58-0.72) 1.20 (0.60-2.34) 

γs
1 slope (<0.1): Failure vs Cure 0.57 (0.39-0.73) 0.95 (0.91-0.98) 0.89 (0.84-0.93)  

γs
2 slope (>0.15):  Failure vs Cure 0.91 (0.78-0.98) 0.86 (0.79-0.90) 0.87 (0.81-0.91)  

Slow slope plus B(0): Failure vs Cure 

 γs,
1γs

2, B(0) 
 

0.76 (0.59-0.88) 0.89 (0.83-0.93) 0.87 (0.81-0.91) 29.84 (10.20-89.07) 

Slow slope plus B(0): Failure-vs-Relapse 

γs,
1γs

2, B(0) 
 

0.92 (0.78-0.98) 0.89 (0.67-0.99) 0.91 (0.80-0.97) 20.40(7.17-58.08) 

Four months therapy duration     
Isoniazid arm     
Extended EBA: Failure vs Cure 0.10(0.04-0.21) 0.95(.93-0.98) 0.84(0.80,0.87) 2.14 (0.99-3.99) 

γs,
1γs

2, B(0): Failure vs Cure  0.81 (0.70-0.90) 0.87 (0.83-0.90) 0.86 (0.83-0.89) 14.51 (8.33-25.41)  

γs,
1γs

2, B (0): Failure vs Relapse 0.75(0.58-0.87) 0.60(0.51-0.69) 0.64(0.56-0.71) 3.15(1.65-6.01) 

Ethambutol arm     
Extended EBA: Failure vs Cure 0.10(0.05-0.19) 0.94(0.92-0.96) 0.79(0.76-0.83) 1.66 (0.89-2.81) 

 γs,
1γs

2, B (0): Failure vs Cure 0.70 (0.60-0.79) 0.71 (0.67-0.75) 0.71 (0.67-0.75) 4.10 (2.78-6.08) 

γs,
1γs

2, B (0): Failure vs Relapse 0.70(0.59-0.79) 0.65(0.55-0.74) 0.68(0.60-0.74) 2.07(1.50-2.87) 

 
 

 

 

 

 

TTP (0) is the corresponding TTP in days for B (0):  A dash means no cut-off value evaluated. The thresholds for predicting relapses-vs-cure 

are multiple steps however, are with the 0.1 to 0.15 indeterminate regions of the slow slope cut-offs for screening cures and failures. 
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this biomarker was positive versus not positive was 28 [Table 2 and Table S4], while 

NND was 1.29. Failures either arise as therapy failure or relapse; Table 2 shows the 

sensitivities for these different biomarkers in predicting relapses from treatment failures. 

The slope decision rule based on γs>0.15 has a sensitivity of 92% and a specificity of 

89% in predicting relapses from failures. Thus, the biomarkers we derived were highly 

specific at identifying relapse-free cure, therapy failure, and relapse. 

 

Performance of γs-based rules in forecasting 4-months therapy duration outcomes  

Next, we tested the accuracy of the diagnostic rule for four-months therapy duration in 

the validation datasets comprised of the REMoxTB trial experimental arm patients. In the 

arm in which isoniazid was replaced by moxifloxacin and therapy administered for four-

months (n=655), 530 patients had enough TTP data in the first 8 weeks to calculate 

slopes. In this dataset, 369/530 (69.62%) patients achieved cure, 40 (7.55%) patients had 

therapy failure at the end of 4 months of therapy, and 121 patients (22.83%) relapsed. 

Table 2 shows that the γs>0.15 had a sensitivity of 81% and specificity of 89% for 

relapse-free cure versus failure, and among the failures had a sensitivity of 75% and 

specificity of 60% for separating relapse from therapy failure. The relative risk of failure 

in patients with positive slope-based biomarker versus negative biomarker was 

approximately 15 [Table 2 and Table S4]; the NND was 1.47. The 2-month sputum 

conversion was not designed for 4 months therapy duration regimens, and is not shown, 

while the extended-EBA which is used to triage shorter duration regimens is shown; the 

NND was 16.69.  
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In the arm in which ethambutol was replaced by moxifloxacin (n=633), 533 patients had 

enough data to calculate 8-week slopes. In this dataset 385 (72.23%) of patients achieved 

cure, 46 (8.63%) had therapy failure, while 102 relapse (19.4%). The sensitivity of the 

extended EBA was only 10%, and the NND was 18.73. The sensitivity of γs-based slopes 

was 70% and the specificity 71% for cure versus therapy failure, while the sensitivity was 

70% and specificity 65% for picking relapse versus therapy failure. The NND was 1.89. 

 

In order to summate, we calculated an overall value of the relative risk of failure when 

our B(0) and γs-based slope predicted poor outcome for a specified duration of therapy 

[using 6-months and 4-month duration data combined]. Among patients with positive 

biomarker for specified therapy duration, 159/205 [78%] failed therapy compared to 

218/1072 [20%] in whom the biomarker was negative. The RR of failure with the rule 

was 8.25 [95% CI: 6.09-11.20]; p<0.0001. In terms of cure only 4% of entire validation 

dataset cohort of patients achieved relapse-free cure when our rule was positive while 

67% achieved cure when it was negative.  

 

DISCUSSION 

First, we found that the γs  [slow replicating] slope is a good surrogate of sterilizing 

activity, based on ability to predict relapse. Conversely, the extended EBA had a 

sensitivity of 14% for predicting outcomes at 6 months and beyond, and a poor accuracy. 

The extended EBA is effectively two-weeks accrued data; the poor sensitivity means that 

the total time for which the bacterial kill data is collected is too short to accurately 

capture sterilizing activity slopes. Indeed, the poor sensitivity of γf –slope-based metric 
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means that most regimens with good sterilizing effect could be thrown away [too many 

false negatives for sterilizing activity] in regimen selection for sterilizing activity. 

Similarly, the 2-month sputum conversion had a sensitivity of 33% and specificity of 

71%. These commonly used clinical indices gave us an opportunity to externally validate 

our modeling approach. In this case, the last major meta-analyses on 2-month cultures as 

a predictor of long-term outcome in TB performed by Horne et al in 2010 identified a 

sensitivity of 40% [95% CI, 25-56%] and specificity of 85% [95% CI, 77%-91%], which 

was confirmed in subsequent studies [14, 41, 42]. Thus, our modeling findings are 

consistent with results of these major meta-analyses. This means that our 8-weeks-

derived γs slope plus initial bacterial burden, which had a sensitivity of 92% and 

specificity of 86% for 6 months therapy duration regimens, would perform better than the 

2-month sputum conversion. In addition, our γs slope can predict outcomes at shorter 

therapy durations than 6 months such as 4-months duration; the relative risk of therapy 

failure  among patients with positive biomarker for specified therapy duration was >8.0 

Thus the γs-slope based on the first 8-weeks TTP data is a good response biomarker for 

sterilizing activity, even for therapy duration less than standard short course 

chemotherapy.  

 

The γs-slope, which we will henceforth term the “sterilizing activity rate”, fulfills the 

BEST criteria and definition of a monitoring biomarker in the category of a 

pharmacodynamic/response biomarker, in a similar fashion to HIV and hepatitis C viral 

load biomarker, and could play the same role in TB therapeutics and clinical trials [23, 

43-45]. According to BEST criteria, a pharmacodynamic/response biomarker provides 
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early evidence [in this case 8-weeks] that a treatment might have an effect on a later 

pharmacologic clinical endpoint [in this case relapse at 2 years]. In the case of HIV 

treatment trials, identification of viral load as a surrogate of efficacy in 1995 dramatically 

cut the duration and costs of clinical trials, while avoiding use of potentially catastrophic 

clinical endpoints such as therapy failure and death [43]. For TB, we propose 

identification and ranking of regimens using preclinical models that can accurately 

translate the sterilizing activity rate to patients [24, 46]. The regimens so derived, 

including optimal doses, and the translated sterilizing activity rate will provide good 

priors for the design of 8-week clinical trials for novel regimens versus standard therapy, 

with weekly TTP as the main output and drug pharmacokinetics as a secondary outcome. 

The sterilizing effect rate [γs-slope], initial TTP, and trajectories can then be used to 

estimate therapy duration for the novel regimens and determine if indeed the new 

regimens can shorten TB treatment prior to performance of phase III studies. The 8-

weeks TTP-data derived slopes can be used to compute a lower and more accurate patient 

sample sizes required to power the phase III trials, given the good accuracy in forecasting 

relapse. As an example, the number needed to diagnose [NND] failure and relapse of  <2, 

when compared to ~20 for extended EBA and 5-6 for 2-months therapy, gives a more 

straightforward insight into the relative number of patients tested in each arm by different 

biomarkers. Moreover, since the predictive value of the sterilizing activity rates on 

relapse or cure or therapy failure is independent of the regimen the slopes can be used in 

clinical trials of MDR-TB and for “pan-susceptible” TB regimens, indeed for any TB 

regimen.  
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As regards to clinical practice, our findings add to the recent discovery that initial Mtb 

burden can be used to determine patients who can benefit from 4-month duration therapy 

[47]. Here, we found that the sterilizing activity rate was ranked higher than initial 

bacterial burden. To put this is context, the risk of development of AIDS and death in 

patients whose HIV viral load did not reach undetectable within first 12 months was 

2.40-fold compared to those who had, and a <75% reduction in viral load had a RR of 

2.27-fold for poor outcomes [48-50]. Patients in whom the γs-slope-based rule was 

positive for different durations of therapy had a an 8.25-fold higher risk of failure, which 

is better performance than this commonly used HIV test used to individualize therapy. 

Thus, our findings could also be used to individualize therapy, in place of two-month 

smears/cultures currently recommended in routine care in TB programs worldwide. First, 

if these patients with potentially higher rates of therapy failure and relapse were 

identified during the first eight weeks of therapy, then interventions such as dose 

increases or switching therapy regimens could be made [37]. Second, the sterilizing effect 

rate [γs slopes] could also be used by TB programs to identify patients who could be 

cured with specific shorter therapy durations of either 2, 3 or 4 months, on any regimen. 

Alternatively, they could be used to identify how long therapy duration should be 

extended beyond 6 months, thereby individualizing therapy duration, in patients with 

sputum γs slopes that predict the slow cure clusters. Since many TB programs across the 

world already employ liquid culture systems that generate TTP, it means that the 

biomarker we propose would come at no extra cost to those TB programs. Computation 

of the slope could easily be implemented on a computer [or on a phone with specifically 

designed app]. 
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Our study has some limitations. First, it could be argued that our findings are specific to 

the dataset we analyzed. However, the machine-learning cross-validation procedures we 

used are scored on how well predictors will perform on an entirely independent dataset in 

the future. Nevertheless, the accuracy of the biomarkers will still need to be further 

confirmed in other large datasets in a range of clinical contexts and with different 

regimens. Further, this approach can be adapted for other non-tuberculosis bacterial 

infections.  Second, calculation of slopes is relatively complex. However, software can 

easily be written to automate this, as we have attempted elsewhere. Finally, not all 

patients who do not reach bacterial population extinction will fail therapy or relapse. This 

means that our approach may lead to over treating of these patients who would otherwise 

be cured. Examination of our proposed biomarkers with other tests such as radiological 

findings and therapeutic drug monitoring could reduce the number of over treated 

patients and are subject to ongoing analyses. However, even with these limitations, the 

early TTP-based biomarkers that we identified as predicting long-term clinical outcomes 

such as relapse for different therapy durations, have sensitivities and specificities that are 

higher than currently employed methods. 
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Table S1: Estimated kill rates and initial bacterial load by cluster versus period of data derivation. 

Period in which data 
was derived 

Cluster log10 ���0� f γf γs 

 
First 8-weeks  

Cure 5.18 (4.91-5.45) 0.66 (0.61-0.73) 0.80 (0.62-0.98) 0.17 (0.16-0.19) 
Slow cure 5.10 (4.78-5.37) 0.71 (0.64-0.79) 0.75 (0.54-0.97) 0.17 (0.15-0.19) 
Relapse 5.02 (4.57-5.50) 0.81 (0.66-0.89) 0.75 (0.36-0.99) 0.15 (0.11-0.18) 
Failure 5.35 (4.78-5.86) 0.65 (0.60-0.81) 0.60 (0.41-0.93) 0.12 (0.09-0.15) 

 
First 4-months 

Cure 4.87 (4.59-5.15) 0.61 (0.60-0.63) 0.60 (0.48-0.80) 0.13 (0.12-0.15) 
Slow cure 4.79 (4.52-5.10) 0.61 (0.60-0.64) 0.45 (0·40-0·66) 0.12 (0.11-0.13) 
Relapse 4.87 (4.43-5.43) 0.67 (0.60-0.80) 0.39 (0.30-0.91) 0.11 (0.10-0.13) 
Failure 5.30 (4.71-5.81) 0.64 (0.60-0.75) 0.57 (0.40-0.90) 0.11 (0.10-0.12) 

 
6 Months 

Cure 4.57 (4.33-4.84) 0.60 (0.60-0.62) 0.50 (0.42-0.65) 0.12 (0.11-0.13) 
Slow cure 4.46 (4.25-4.68) 0.60 (0.60-0.62) 0.41 (0.36-0.49) 0.11 (0.10-0.11) 
Relapse 4.78 (4.39-5.27) 0.63 (0.60-0.73) 0.36 (0.30-0.72) 0.10 (0.10-0.11) 
Failure 5.10 (4.56-5.56) 0.62 (0.60-0.70) 0.51 (0.36-0.80) 0.09 (0.09-0.10) 

 

Estimates for kill rate are given as median values obtained from the model to data fitting of the different patient treatment outcome 
clusters. The uncertainties in the estimates are given by 95% credible intervals. ���0� in the initial log phase bacterial load and the 
semi-dormant bacteria, ���0�, is estimated as � � ���0�, where f estimates the fraction of ���0� with respect to ���0�. The kill rates 
were estimated with the 2, 4 and 6 months-derived data sets.  . 
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Table S2. Cluster summary for bacterial burden 

Cluster 6-Months 9-Months 12-Months 15-Months 18-Months 
Cure 0.24 0.24 0.24 0.24 0.24 
Slow cure 0.24 (0.24-0.40) 0.24 (0.24-0.43) 0.24 (0.24-0.40) 0.24 (0.24-0.39) 0.24 (0.24-0.48) 
Relapse 0.24 (0.24-1.11) 2.20 (0.31-4.40) 1.65 (0.24-4.43) 2.10 (0.24-3.88) 0.24 (0.24-1.00) 
Failure 3.19 (1.42-4·46) 0.66 (0.24-1.00) 0.73 (0.24-2.53) 0.64 (0.24-1.84) 2.61 (1.06-4.50) 

Summary estimates for different clusters during follow up period. Median estimates are given and the 1st and 3rd quartile values are 
given in brackets. The value 0.24 log10 CFU represent the limit of detection that corresponds to 42 days for TTP MGIT readouts. 
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Table S3. Two month-derived  magnitude cut-off values and initial bacteria burden  

 

 
Conditional cure regions γs cut-off [log10 CFU/mL/day] γs cut-off [TTP day] Initial bacterial [TTP/day] 
6 months outcomes  0.1<γs<0.15 -3.9<γs<-2.6  -<8.11 
4 months outcomes 0.09<γs<0.14 -2.86<γs<-2.34 -<5.93 
Failure regions 
6 months outcomes <0.1 < -2.60 - 
4 months outcomes <0.1 < -2.60 - 
High chance of relapse regions  
4 months and 6 months outcomes  0.1<γs<0.15 -3.9<γs<-2.6 <-5.49 

 
 

 

 

 

 

 

 

 

 

 

 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 5, 2020. 
; 

https://doi.org/10.1101/2020.05.03.20086579
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2020.05.03.20086579
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S4. Contingency tables of outcomes versus different biomarkers 

 8week-Biomarker Extended EBA 2 month smears 
 Positive Negative Positive Negative Positive Negative 
6 months therapy duration       
Cure 3 155 30 155 20 117 
Failure 34 26 5 13 10 47 

       
4 months therapy duration- isoniazid arm       
Cure 13 361 53 344 36 299 
Failure 56 55 6 15 20 47 
       
4 months therapy duration- ethambutol arm       
Cure 30 338 77 378 61 334 
Failure 69 137 9 23 25 76 
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Figure S1. Converting TTP to CFU and vise-versa. Illustrating conversion of serial 

TTP values from patients to corresponding CFU values. Panels A showing model 

function correlating TTP to CFU, here the model has two parameters to the estimated, in 

B the model with three parameters has wider uncertainty. While conversion for bacteria 

in log phase is shown in A and B, conversion for slow (non replicating) replicating 

bacteria is shown in C and D, then in panels E and F, combined subpopulations are 

shown. Panel G shows TTP patient clinical data and the corresponding converted CFU 

are shown in H at start of therapy [Day 0] and every 7 days till day 56.  
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Figure S2. Model fitting to accrued data at 8-weeks, 4-months and 6-months time 

points.  Shown are model fitting to the accrued cure data cluster at 8-weeks/2M (A), 4M 

(B) and 6M (C), respectively. Model fitting to the slow successful cure cluster data are 

shown in D (at 2M), E (at 4M) and F (at 6M). Relapsing disease data patterns are given 

in G, H, and I and while treatment failure are shown in J, K and L at 2M, 4M and 6M, 
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respectively. The gold dots represent the observations, the solid lines are the model 

predictions and the shaded regions represent the 95% credible intervals.
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Figure S2Evolution of treatment outcome biomarkers. (A) The evolution of 

biomarkers patterns that identifies cured patients at 2M, 4M and 6M, respectively. 

Summary trajectories for patients in the slow successful treatment cluster (B), relapsing 

cases (C) and treatment failure cluster (D) demonstrate how these patterns diverge. 

Further comparisons of all biomarkers for each cluster and their respective 95% credible 

intervals at 2M (E), at 4M (F) and at 6M (G) end points are shown.
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Figure S4. Biomarker characterization in indeterminate data zones. Thresholds for 

the biomarkers that enable treatment outcome predictions at 2, 4 and 6-months are 

shown. (A) Simulation-based derivation of the biomarker thresholds and how they vary 

with initial patient bacteria burden, ��0�. (B) A combination of �
�
-slopes and ��0� in 

classifying outcomes classification regression trees (CART). In C and D, shown are the 

biomarker breakpoints predicted with CART using 6M and 4M treatment outcomes, 

respectively. In C), failures at 6 months are predicted with a �
�
-slope that is less than 0.1. 

In D), the 4-month failure threshold is predicted to be 0.1(0.097), while 0.14 predicts 

cures. Both in C and D, the zone between �
�
-slope of 0.1 and 0.15 has high 

misclassification. The mixed regions in A and B demonstrate conditional outcomes 

dependent on initial bacterial burden and �
�
 rates (Figure S4). 
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Figure S5. Thresholds for regions with mixed outcomes.  

 

Figure S5. Thresholds for regions with mixed outcomes.   values greater than 0.125 

cure patients with initial bacteria burden between 4-6 log 10CFU/mL and values below 

0.125 will result in failure using simulations. (B) illustrates the overlap between the 

initial bacteria and the slopes for the 4-month outcomes. In A and B regions of failure are 

shaded orange and the cure region has the grey shading). (C) CART derived cut-off 

values for 6 months outcomes. (D) CART derived predictor (initial burden and -slope) 

cut-off to delineate relapses from cure.  
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