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Abstract 

Artificial intelligence can be a key tool in the context of assisting in the diagnosis of 

dermatological conditions, particularly when performed by general practitioners with 

limited or no access to high resolution optical equipment. This study evaluates the 

performance of deep convolutional neural networks (DNNs) in the classification of seven 

pigmented skin lesions. Additionally, it assesses the improvement ratio in the 

classification performance when utilized by general practitioners. Open-source skin 

images were downloaded from the ISIC archive. Different DNNs (n=8) were trained 

based on a random dataset constituted by 8,015 images. A test set of 2,003 images has 

been used to assess the classifiers performance at low (300 x 224 RGB) and high (600 

x 450 RGB) image resolution and aggregated clinical data (age, sex and lesion 

localization). We have also organized two different contests to compare the DNNs 

performance to that of general practitioners by means of unassisted image observation. 

Both at low and high image resolution, the DNNs framework being trained differentiated 

dermatological images with appreciable performance. In all cases, accuracy has been 

improved when adding clinical data to the framework. Finally, the lowest accurate DNN 

outperformed general practitioners. Physician’s accuracy was statistically improved 

when allowed to use the output of this algorithmic framework as guidance. DNNS are 

proven to be high performers as skin lesion classifiers. The aim is to include these AI 

tools in the context of general practitioners whilst improving their diagnosis accuracy in 

a routine clinical scenario when or where the use of high-resolution equipment is not 

accessible. 

 

Keywords: artificial intelligence, dermatology, deep learning, skin diseases, melanoma 
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1. Introduction 

    Diagnosis in dermatology is largely based on visual inspection of a lesion on the 

suspicious skin area. Therefore, diagnostic ability and accuracy depends greatly on the 

experience and training of dermatologists or general practitioners, in areas where 

dermatological services are not readily available [1]. When dermatologists get no access 

to additional technical support, they have an approximately 65%-70% accuracy rate in 

melanoma diagnosis [2-4]. If the lesion is suspicious, the visual inspection is 

supplemented with different diagnostic tools (e.g. dermoscopy, confocal microscopy or 

optical coherence tomography) providing the ability to explore the skin in vivo, in depth 

and at a higher resolution [5, 6]. However, access to these instruments remains limited 

due to time, logistical and cost concerns. Even when this technical support is feasible, 

dermatologists rarely achieve average rates greater than 85% [7, 8]. The situation is 

even worse if we consider that there is a shortage of dermatologists whilst diagnostic 

accuracy of non-expert clinicians is sensibly below than what is observed with 

dermatologists, reaching estimate rates between 20 and 40% [9-13]. Thus, new 

diagnostic tools assisting dermatologists or general practitioners to accurately diagnose 

skin lesions should be developed, evaluated and optimized. 

    Artificial intelligence (AI) is a computer science that involves creating sequences of 

data-related instructions that aim to reproduce human cognition [14]. The use of AI to 

assist physicians has been applied to various medical fields. In dermatology, image 

recognition using a set of algorithms called deep neural networks (DNNs) have proven 

to be of significant aid to physicians in the diagnosis of pigmented skin lesions. These 

algorithms achieve accuracies comparable to those of dermatologists [1, 15-18]. In 

addition, Hekler et al. demonstrated that the combination of human and artificial 

intelligence is superior to the individual results of dermatologists or DNNs in isolation 

[19]. Similar results were observed in the case of non-pigmented skin lesions such as 

acne, rosacea, psoriasis, atopic dermatitis or impetigo. Thus, these technologies show 
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tremendous promise to improve skin lesion diagnosis and may extend screening far 

beyond the clinical setting. However, many aspects of their use have yet to be elucidated 

and improved.  

    This study has aimed to compare and improve the precision of different digital image-

based DNNs models to classify seven different types of conditions representing more 

than 90% of the pigmented skin lesions. For this purpose, we (i) compare the accuracy 

of 8 different DNNs in different training conditions such as input of low and high image 

resolution and with or without clinical data; (ii) evaluate DNNs performance on synthetic 

images generated with an infoGAN [20]; (iii) compare DNNs accuracy against non-

dermatologist general practitioners; (iv) assess if these physicians improved their 

classification performance when using the framework as an assisting tool. 

 

2. Material and Methods 

2.1 Pigmented skin image dataset 

    This study used images from the anonymous and annotated HAM10000 dataset 

publicly available through the International Skin Imaging Collaboration (ISIC) archive 

[21]. All downloaded images were selected using a random generator from the set of 

available images in the ISIC archive. We stochastically split the master set of 10,015 

dermoscopic images into training (n=8,313; 83%) and test (N=1,702; 17%) datasets that 

were completely disjoint. Images included a representative collection of all-important 

diagnostic categories acroos the seven different types of pigmented lesions as detailed 

in Tschandl et al [21]. Those included melanocytic nevus, vascular skin lesions (including 

cherry angiomas, angiokeratomas, pyogenic granulomas and hemorrhages), benign 

keratoses (including seborrheic keratoses, solar lentigo and lichen-planus-like kertoses), 

dermatofibroma, intraepithelial carcinoma (including actinic keratoses and Bowen’s 

disease), basal cell carcinoma and melanoma. Examples of images of each lesion type 

are depicted in Figure 1. The final composition of each dataset is shown in Table 1.  
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Figure 1. Examples of images downloaded from the HAM10000 dataset. These 

images are publicly available through the International Skin Imaging Collaboration (ISIC) 

archive and represent more than 95% of all pigmented lesions encountered during 

clinical practice (Tschandl P 2018). (A) Melanocytic nevus; (B) Bening keratosis; (C) 

Vascular lesion; (D) Dermatofibroma; (E) Intraepithelial carcinoma; (F) Basal cell 

carcinoma; (G) Melanoma. Legends inside each image represents clinical data such as 

age, sex and localization associated to the image. F: female; M: male; LE: lower 

extremity; B: back; H: Hand; T: trunk. 

 

2.2 Deep neural networks 

    We have evaluated eight different DNNs each characterized by a specific architecture. 

VGG16 and VGG19 contain 16 and 19 convolutional layers respectively, with very small 

receptive fields, five max-pooling layers of size for carrying out spatial pooling, followed 

by three fully connected layers, with the final layer as the soft-max layer [22]. Rectification 

nonlinearity (ReLu) activation is applied to all hidden layers. The model also uses dropout 

regularization in the fully connected layers. ResNet34 is a 34-layer residual network 

while ResNet50 and ResNet101 are 50- and 101-layers deep, respectively. The 
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architecture of all these DNNs is similar to the one found in VGG consisting mostly of 

3x3 filters but, instead, shortcut connections are inserted resulting into a residual 

network. SEResNet50 architecture is based on ResNet. A squeeze-and-excitation block 

is applied at the end of each non-identity branch of residual block [23]. Differently, and 

instead of increasing its size by adding more or deeper layers, EfficientNetB5 scale up 

the network width, depth and resolution with a set of fixed scaling coefficients [24]. 

Finally, MobileNet uses depth-wise separable convolutions which significantly reduces 

the number of parameters when compared to a network based on standard convolutions 

and the same depth across the structure in the networks. The framework is 54 layers 

deep. 

 

Table 1. Description of the training and test datasets 

Class Training set (n) Test set (n) 

Melanocytic nevi 5,565 1,140 

Bening keratosis1 912 186 

Vascular lesions2 118 24 

Dermatofibroma 96 20 

Intraepithelial carcinoma3 271 56 

Basal cell carcinoma 427 87 

Melanoma 924 189 

Total 8,313 1,702 

1 includes seborrheic keratoses, solar lentigo and lichen-planus like keratoses 

2 includes cherry angiomas, angiokeratomas, pyogenic granulomas and hemorrhage 

3 includes actinic keratoses and intraepithelial carcinoma (Bowen’s disease) 

 

    To assess both the performance of the algorithm and the enhanced training 

techniques as accurately as possible, we have retrained each DNN a total of 5 times 

(folds), and each training run consisted of 90 epochs. Training using the curated image 
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patches took approximately 6 h to complete, 45k iterations on a 4 GeForce GTX 1080 

GPU configuration. Training accuracy for curated patches reached maximum accuracy 

(100%) at around epoch 32, whereas the pretrained model only began to converge 

around epoch 25. All these DNNs were trained and tested with two different image input 

size: 300 x 224 RGB and 600 x 450 RGB. The low-resolution images were obtained by 

cropping, distorting and linear resizing the original high-resolution images. DNNs were 

also trained and tested without or with the clinical features (sex, age and location of the 

lesion) associated to every image in the HAM10000 database.  

 

2.3 Image preprocessing 

    When a deep convolutional neural network overfits, it works extremely well on training 

data but poorly on data it has never seen before. This is especially important in the field 

of dermatology because of the variability that exists in the images that the neural network 

will be analyzing. Two steps were taken to reduce overfitting. First, a dropout layer was 

added and set to 0.5. This results in 50% of the neurons to be randomly turned off during 

the training process and therefore reduce the likelihood of overfitting. The second step 

taken to reduce overfitting was to use data augmentation. In data augmentation, the 

images are modified to account for some of the variability that exists in image taking. To 

account for grid location, size of the dermatological manifestation and the angle of the 

image, the training images fed into the model were altered using rotation, zoom, shear, 

and horizontal and vertical flipping randomly or following optical parameters from the 

different types of phone cameras. The model was run once without data augmentation 

and but with dropout and once with data augmentation including drop out in both 

instances.  

 

2.4 Generation of synthetic pigmented skin lesion images using an infoGAN 

    Generative Adversarial Networks (GANs) are a type of generative model that attempts 

to synthesize novel data that is indistinguishable from the training data [25]. They consist 
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of two neural networks, locked in competition: a generator that captures the data 

distribution and creates synthesized data (e.g. an image), and a discriminator that 

estimates the probability that a sample came from the training data rather than from the 

generator. The two networks are sealed in a zero-sum game, where the success of one 

corresponds to a failure of the other. The training procedure for the generator is to 

maximize the probability of the discriminator making an error [26]. Thus, this framework 

is based on a value function that one model seeks to maximize and the other seeks to 

minimize. Since the two networks are differentiable, the system generates a gradient that 

can be used to steer both networks to the right direction.  

    We have trained an InfoGAN (Information Maximizing Generative Adversarial 

Network) composed of a Generator and a Discriminator, on all high resolution images of 

the HAM10000 dataset [27]. The InfoGAN was adapted to the progressive architecture 

of the model by splitting the structured code to parts and feeding each part to the network 

by conditioning activation in the corresponding block of the Generator (Supplementary 

Figure 1). To avoid detrimental competition between Discriminator and Generator, and 

to achieve convergence in an efficient way, we have followed the recommendations 

detailed on Chen et al. [27]. Briefly, Discriminator and Generator were composed in 

progressive 8 blocks with an input/output of spatial resolution of 4x4 in the initial step up 

to 512 x512 in the step 7. The Batch size have gone dynamically from 128 in step 0 to 2 

in the last step. Both, Generator and Discriminator were optimized using Adam with an 

initial learning rate of 0.0075 and exponential decay of 0.99 and a Wasserstein function 

with gradient penalty. The training has progressed in phases of progressive increased 

resolution. More specifically, the model was capable of generating high resolution 

images with isolated semantic features controlled by a set of real valued variables. 

Colour, age, sex, localization and type of lesion were the most important semantic 

features discovered during training in a completely unsupervised fashion without human 

input. After training, the Generator have produced novel images, similar to those in the 

dataset. 
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2.5 Contests among general practitioners 

    To compare the accuracy of DNNs with non-dermatologist practitioners, we conducted 

two different challenges. The first has been aimed to establish the accuracy of general 

practitioners in classifying images from the HAM10000 dataset without time constraint. 

For this purpose, a group of 22 general practitioners from any given center in Buenos 

Aires (Argentina) were given access to 163 images of the different skin pigmented 

lesions through an anonymous website specifically created for this purpose. Physicians 

could enter and exit the website without limitation. Alongside the image, recorded factors 

such as age, sex and localization of the lesion were shown. All physicians were asked 

to classify every image among onte within the seven different diagnostics. No incentives 

were offered for participation. To ensure fair comparisons between the results 

determined by general practitioners and those determined by the DNNs, the same 162 

images were run with the DNN framework which had the worse accuracy metrics in low-

resolution and without aggregated clinical features of the eight DNNs tested. 

    To determine if physicians could benefit from access to the algorithmic tool during dthe 

own classification task, a second evaluation was conducted. A group of 19 general 

practitioners that voluntarily accepted to participate in the study was first asked to assess 

35 images in a simulated exercise with time constraints (physicians had 45 seconds to 

classify every image). In a second step, physicians had access to the predictions of the 

same algorithmic framework used during the first challenge, the same group having 

classified each image based on both, their criteria and the algorithmic output. For this 

task, a new set of 35 images was shown with the same time constraints. In both contests 

the ethics committee waived ethical approval owing to the use of anonymized 

dermatologic images obtained from the publicly available HAM10000 dataset.  

 

2.5 Statistical analysis  
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    After the model had been trained, a test step was performed in which 1,702 images 

of the seven dermatological manifestations has been used as input and the results were 

statistically analyzed. A confusion matrix was constructed based on comparing the 

frameworks’ prediction with each of the actual labels. All analyses were performed and 

programmed via a Jupyter notebook in Python. Sensitivity, specificity, geometric mean, 

accuracy and error rate were calculated for each dermatological manifestation [28]. 

Sensitivity or true positive rate (TPR) represented the positive and correctly classified 

samples to the total number of positive samples. Specificity or true negative rate (TNR) 

was estimated as the ratio of the correctly classified negative samples to the total number 

of negative samples. Geometric means was calculated by using the product of TPR and 

TNR. Accuracy was defined as the ratio between the correctly classified samples to the 

total number of samples [28]. We have also calculated the error rate as the complement 

of accuracy. All these measures are suitable to evaluate the classification performance 

based on imbalanced data as found in the HAM10000 database. All metric results were 

calculated with respect to the class labels documented in the HAM10000 database 

archive. 

 

3. Results 

3.1 Classification metrics across eight different DNNs  

    The results of global accuracy and error rate for each DNN for the classification of 

seven pigmented skin lesions at low image resolution (300 x 224 RGB) are shown in 

Table 2. The average global accuracy for the 8 DNN reached 76.30%±2.79, ranging from 

74.05% (EfficientNetB5) to 82.47% (MobileNet). As shown in Supplementary Table 1, 

TPR, TNR and geometric mean for each disease subtype varied according to the tested 

DNN. Almost all DNNs showed the highest TPR for melanocytic nevi classification when 

compared to the other pigmented lesions, with observed geometric mean values equal 

or lower than 0.65; interestingly, VGG16, VGG19 and MobileNet also showed high TPR 

for vascular lesion classification (geometric mean values lower than 0.65). In the case of 
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melanoma and benign keratosis classification, all of them showed TPR of approximately 

0.5, with geometric mean values around 0.75. Likewise, basal cell carcinoma 

classification showed TPR of approximately 0.5 and geometric mean values higher than 

0.75 using ResNet50, ResNet101, SEResNet50 and EfficientNetB5. Similar results were 

observed for SEResNet5 and MobileNet and intraepithelial carcinoma classification. 

 

Table 2. Classification metrics of HAM10000 images at two different 

resolutions and without aggregated clinical features using eight different 

DNNs. 

 Low-resolution images1 High-resolution images 

DNN Accuracy2 Error rate Accuracy Error rate 

ResNet34 75.32 24.68 76.73 23.27 

ResNet50 74.56 25.44 75.97 24.03 

ResNet101 75.62 24.38 77.02 22.98 

SEResNet50 77.82 22.22 79.13 20.87 

VGG16 76.85 23.15 78.25 21.75 

VGG19 74.21 25.79 75.62 24.38 

EfficientNetB5 74.05 25.91 75.50 24.5 

MobileNet 82.47 17.53 83.88 16.12 

1 Low-resolution image: 300 x 224 RGB; High-resolution image: 300 x 224  

RGB. 

2 Accuracy and error rate are expressed as percentages. 

 

    Using higher image resolution (600 x 450 RGB) improved the global accuracies across 

all DNNs (Table 2). The global accuracy average for the 8 DNNs tested was 77.76±2.77, 

ranging from 75.50% (EfficientNetB5) to 83.88% (MobileNet). Although higher than the 

mean average observed with low-resolution images, the difference was not statistically 

significant (p=0.07; Mann-Whitney U test). The TPR, TNR and geometric mean values 
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for each disease subtype is detailed in Supplementary Table 2. The highest TPR was 

observed for melanocytic nevi across all DNNs, and in the case of vascular lesions using 

VGG16 and MobileNet. On the contrary, the lowest TPR was observed for 

dermatofibrosis and intraepithelial carcinoma with ResNet34, ResNet50, SEResnet50 

and EfficientNetB5. When compared with the low-resolution images parallel cases, TPR, 

TNR and geometric mean values were quite similar for most of the disease subtypes. 

However, a drastic improvement of TPR was observed for dermatofibrosis using 

ResNet34 (from 0.23 to 0.34), ResNet50 (from 0.29 to 0.55), ResNet101 (from 0.26 to 

0.42), VGG16 (from 0.17 to 0.4), VGG19 (from 0.26 to 0.40) and MobileNet (from 0.39 

to 0.5). Similar TPR improvements were observed for intraepithelial carcinoma 

classification an VGG19(from 0.26 to 0.40). The average cascade framework runtime of 

the high-resolution classification model was 21.46+/-2.3 milliseconds per image, 

whereas the low-resolution model required only 18.6+/-1.22 milliseconds per image. 

Altogether, these results indicate that the tested DNNs can classify seven different types 

of pigmented skin lesions with accuracies higher than 0.7. No major differences on 

runtime were observed between the cascade framework input with low- or high 

resolution. 

 

3.2 Classification metrics of different DNNs aggregating image and clinical features  

    We then investigated if adding clinical features to the analysis could improve the 

classification accuracy of each DNN. As HAM10000 dataset provides sex, age and 

localization of the skin lesion associated to every image, we gathered these clinical 

features and aggregated them with the corresponding image to be used as input for each 

of the tested DNNs. Results are shown in Table 3. For low-resolution images, the 

addition of clinical data improved the global performance of all DNNs but MobileNet. The 

average global accuracy for the 8 DNNs was 78.86%±1.81, ranging from 75.73% 

(EfficientNetB5) to 81.24% (MobileNet). This represented a statistically significant 

increase in comparison to global accuracy of DNNs tested with low-resolution images 
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without aggregated clinical features (p=0.004; Mann-Whitney U test). The highest 

increase was observed for VGG19 raising from 74.21% to 79.43 (5.22%). As shown in 

Supplementary Table 3, classification improvements were observed in almost all 

pigmented skin lesions for all DNNs. The highest marginal increases in accuracy were 

observed for dermatofibrosis where TPR values for ResNet 50, SEResNet50, VGG16, 

EfficientNetB5 and MobileNet raised 15%, 51%, 22%, 28% and 46%, respectively. 

Similarly, in the case of intraepithelial carcinoma condition, TPR values increased 13% 

and 26% for SEResnet50 and VGG19, respectively, and for basal cell carcinoma 

classification, increased 11%, 14% and 12% for ResNet50, VGG19 and EfficientNetB5, 

respectively. For vascular lesions, TPR values increased 34%, 14% and 29% for 

ResNet101, VGG19 and EfficientNetB5, respectively. Finally, adding clinical features to 

skin images also improved melanoma condition accuracy for VGG16 (from 0.47 to 0.61) 

and VGG19 (from 0.44 to 0.58). Of note, a decreased of TPR was observed for 

ResNet101 in classification of dermatofibrosis (from 0.26 to 0.16) and intraepithelial 

carcinoma (from 0.37 to 0.29), and in melanoma for MobileNet (from 0.90 to 0.72). 

    For high-resolution images, the average global accuracy also increased when clinical 

features were added to the model (Table 3). The average global accuracy was 

80.22%±2.30, ranging from 77.14% (EfficientNetB5) to 84.73% (MobileNet). This 

represented a statistically significant increase in comparison to global accuracy of DNNs 

tested with high-resolution images without aggregated clinical features (p=0.02; Mann-

Whitney U test). This was particularly evident in the case of ResNet50 performance with 

an increase of 4.75%. TPR, TNR and geometric mean values are shown in 

Supplementary Table 4. Major TPR improvements were observed for dermatofibrosis 

with ResNet34 (26%), ResNet101 (20%), VGG19 (17%) and EfficientNetB5 (28%). TPR 

increases were also observed for basal cell carcinoma with ResNet50 (12%) and 

EfficientNetB5 (13%), for vascular lesions with ResNet101 (37%) and EfficientNetB5 

(28%), for melanoma with VGG16 (14%), VGG19 (32%) and MobileNet (16%) and 

intraepithelial carcinoma with VGG16 (24%). Interestingly, TPR of ResNet50 and 
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SEResNet50 were reduced for dermatofibrosis from 0.55 to 0.20 and from 0.44 to 0.29, 

respectively. When compared to the DNNs performance with low-resolution images and 

clinical features no major differences were observed (p=0.21; Mann-Whitney U test). Of 

interest, for dermatofibrosis classification, TPR increased for ResNet34 (35%), 

ResNet101 (50%), VGG16 (50%) and VGG19 (24%); the exception was ResNet50 with 

a TPR reduction from 0.44 to 0.2. Altogether, these results indicate that the addition of 

information related to sex, age and localization of the lesion improves the accuracy of 

DNNs. 

 

Table 3. Classification metrics of HAM10000 low- and high-resolution 

images with aggregated clinical data using eight different DNNs. 

 Low-resolution images1 High-resolution images 

DNN Accuracy2 Error rate Accuracy Error rate 

ResNet34 77.43 22.57 78.84 21.16 

ResNet50 79.31 20.69 80.72 19.28 

ResNet101 77.55 22.45 78.96 21.04 

SEResNet50 80.01 19.99 80.72 19.28 

VGG16 80.25 19.75 81.65 18.35 

VGG19 79.43 20.57 79.02 20.98 

EfficientNetB5 75.73 24.27 77.14 22.86 

MobileNet 81.24 18.76 84.73 15.27 

1 Low-resolution image: 300 x 224 RGB; High-resolution image: 300 x 224  

RGB. 

2 Accuracy and error rate are expressed as percentages. 

 

3.4 Performance across synthetic pigmented-skin lesion images  

    We have applied an infoGAN to generate synthetic images from the HAM10000 

dataset. As shown in Figure 2, the synthetic images seemed realistic and diverse. We 
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have then calculated global accuracy for EfficientNetB5 for the classification of seven 

pigmented skin lesions. Of the 40 synthetic images analyzed, the network made a single 

error, so the certainty index was 97.5%; however, this value lacks any relevance since 

the GAN used for pseudo-labelling deliberately increases the definition limit of each 

class, inducing an improvement in the certainty of the classifier. Altogether, these data 

indicate that the synthetic samples are highly realistic and can be used as inputs to train 

DNNs on pigmented skin lesion classification. 

 

 

Figure 2. Examples of synthetic images generated with the infoGAN. (A) 

Melanocytic nevus; (B) Bening keratosis; (C) Vascular lesion; (D) Dermatofibroma; (E) 

Intraepithelial carcinoma; (F) Basal cell carcinoma; (G) Melanoma. Legends inside each 

image represents clinical data such as age, sex and localization associated to the image. 

F: female; M: male; LE: lower extremity; B: back; H: Hand; T: trunk. 

 

3.3 Performance across general practitioners with and without assistance from DNNs 

output 

A CB D

FE G

Figure 2
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    In the first challenge, 22 general practitioners were asked to classify 162 images 

without any time constraint. The mean global accuracy and mean error rate were 27.74% 

and 72.26%, respectively. These results were similar to previously published for non-

dermatologists [9, 10]. The best TPR (0.79) was obtained for the melanocytic nevi while 

the worse metrics were observed for vascular lesions (0.02), dermatofibrosis (0.01) and 

intraepithelial carcinoma (0.07) (Supplementary Table 5). As EfficientNetB5 was slightly 

less accurate than the other tested DNNs, we have decided to use this framework as 

comparator (see Table 1). In the same dataset, this DNN had a mean global accuracy 

of 78.40% and mean error rate 21.60% (Table 4). Compared to physicians, this was a 

relevant and significant difference. As EfficientNetB5 showed higher TPR in all disease 

subtypes (Supplementary Table 5).  

    In the second challenge, 19 general practitioners were asked to classify 35 images 

with a time constraint of 45 seconds per image. The global accuracy for this classification 

was 17.29% (Table 4). In the same dataset, EfficientNetB5 achieved a global accuracy 

of 77.14%, significantly outperforming physicians. 

 

Table 4. Classification metrics of non-

dermatologists, general practitioners with or without 

use of the algorithmic platform and with time 

constraints.  

DNN Accuracy1 Error rate 

EfficientNetB5 77.14 22.86 

GPs2 17.29 82.71 

GPs + AI 42.43 57.57 

1 Accuracy and error rate are expressed as 

percentages 

2 GPs: general practitioners; AI: artificial intelligence 
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    When general practitioners were given the opportunity to access the output of 

EfficientNetB5 per image, global accuracy raised to 42.42%. This represented an 

increase of 25.13%. This result also indicated that, in some cases, physicians did not 

follow the recommendation of the DNN. Of note, access of physicians to DNN prediction 

increased TPR for basal cell carcinoma (from 0.10 to 0.54) and melanoma (from 0.08 to 

0.35) (Supplementary Table 6). In contrast, a small decreased in TPR for benign 

keratosis was observed (see Supplementary Table 6). 

    Altogether, these results show that DNNs have the capability to classify seven 

different pigmented skin lesions with a level of competence higher to that of the general 

practitioners participating in these challenges. The access of DNN output by physicians 

improves their ability to classify pigmented skin lesions, particularly basal cell carcinoma 

and melanoma. 

 

4. Discussion 

    Our results demonstrate that deep learning frameworks trained on large, open-source 

image datasets can help non-dermatologist physicians in improving their accuracy to 

categorize the seven most frequent pigmented skin lesions. Additionally, we show that 

image resolution does not affect the performance of 8 different DNNs. Instead, the 

aggregation of clinical features (age, sex and lesion localization) significantly increase 

DNNs performance in both with low-resolution and with high-resolution image inputs. 

The use of artificial intelligence as a diagnostic aid is a growing trend in dermatology. A 

digital automated skin assistance tool provides an undeniable help for dermatologists 

and general practitioners to reduce the morbidity and mortality linked to dermatological 

diseases by favoring early diagnosis and by the avoidance of unnecessary procedure. 

The advent of deep/machine learning algorithms has made automated classification of 

cutaneous lesions an achievable target milestone [29].  

    Different dermatologic studies have reported early success in the classification of 

pigmented skin lesions from both clinical and dermoscopic images with a level of 
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accuracy comparable to that of dermatologists. Esteva et al were among of the first one 

to describe a DNN that performed as well as dermatologists when identifying images 

with malignant lesions [15]. The authors used a GoogleNet Inception v3 architecture that 

was pre-trained on approximately 1.28 million images. Then, they have used 129,450 

skin images of 2032 different diseases to train and ultimately validated the system using 

two classes (benign/malignant). The model was compared to the performance of 21 

dermatologists using a test set of 135 biopsy-proven lesion clinical and dermoscopic 

images. The performance of this binary classification method was on par with that of all 

of the dermatologists who participated. Haenssle et al. presented a very similar approach 

to Esteva et al [1]. They have compared the diagnostic performance of 58 dermatologists 

with a GoogLeNet Inception v3 model that was adapted for skin lesion classification with 

transfer learning, whereby the weights were fine-tuned in all layers. The analysis was 

limited to dermoscopic images of melanoma vs. benign nevi. In the test dataset of 300 

biopsy-proven images, the accuracy of the DNN compared favorably with the one by 

dermatologists. Likewise, Han et al presented a ResNet152 classifier for 12 different skin 

diseases based on clinical images that performed comparably to the performance of 16 

dermatologists [16]. Fujisawa et al. used a dataset of 4,867 clinical images to train a 

DNN to differentiate 14 different clinical conditions that included both malignant and 

benign conditions [30]. The machine’s performance was then compared against that of 

13 dermatologists and nine dermatology trainees and tested on 1,142 images distinct to 

those used for training. The DNN outperformed the dermatologists across every field. 

Additionally, a set of other recent studies also reached dermatologist-level skin cancer 

classification by using DNNs [31-34]. 

    In contrast to all these previously mentioned publications comparing the performance 

across different DNN configurations to the one by dermatologists, our study was carried 

out with non-dermatologist practitioners. Our results show that the tested frameworks 

classify pigmented skin lesions much better than the general practitioners that 

participated in this study. Our results are similar to those published recently by Tschandl 
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et al [35]. These authors have matched a set of DNNs with human readers for the 

diagnosis of the 7 clinically relevant types of pigmented skin lesions analyzed in our 

study using the HAM10000 dataset. From the 511 human readers involved in their study, 

83 were general practitioners. The authors showed that the top 3 DNNs outperformed 

physicians with respect to most outcome measures. However, human metrics were only 

disclosed for dermatology experts, and thus, we cannot compare our metrics to them. 

Although promising, our results should be analyzed within context as they are derived 

from a set of pre-existing images and not from a real-life patient observation. Indeed, 

general practitioners are not trained to diagnose over an image, particularlly if they have 

just a few seconds to decide. Moreover, in a real-world situation, they would consider 

other clinical features besides a skin image and given complementary data; they would 

be evaluating the patient as a whole, not just a skin lesion. In spite of this, our results 

showing that physician’s access to a DNN output improved their ability to classify 

pigmented skin lesions are encouraging. Moreover, this assistance improved the positive 

classification of basal cell carcinomas, one of the most common of all types of cancer, 

and the most dangerous melanoma. 

    At a more technical level, our results are in agreement with various other publications 

that have also demonstrated the capacity of multiple DNN constructs to classify clinical 

or dermoscopic skin images [17, 36-42]. Some of these classifiers have been translated 

onto online platforms and smartphone applications for use by dermatologists or 

individuals in the community setting (e.g. modelderm, MoleMapper, MoleAnalyzer Pro) 

[43]. Most of these published works use non-public archives [1, 15]. This makes it very 

difficult to reproduce the results and compare the performance of published classifiers 

against each other. Thus, we have decided to compare the performance of 8 different 

DNNs using a unique and public dataset as the HAM10000. Among other things, we 

show that the quality of the input images marginally affects the performance of a 

classification task for a given DNN, as similar has been achieved both with input with 

low- and high-resolution image. According to our results, the higher the resolution of the 
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image, the better the performance of a given DNN is; however, the improvements were 

not so evidently compared to those observed with the addition of a few clinical features 

to the analysis. Indeed, algorithms trained with low-resolution images and aggregated 

clinical features achieve levels of precision similar to those obtained with better 

resolution images without clinical features. This is in line with a recent publication that 

showed that adding clinical information to skin lesion images improves the diagnostic 

accuracy of dermatologists [1]. This result is significant as it implies that adding clinical 

features is more important than the resolution of the input image, being the best situation 

the combination of high-resolution images and clinical features. From a clinical 

perspective, it is important to note that other authors have used other complex 

mathematical techniques to improve algorithm’s performance, such as dropout, data 

augmentation and batch normalization [44-46]. Data augmentation along with a larger 

database including both higher resolution images and clinical data such as symptoms 

and localization of such image could sensibly improve the image with higher probability.  

    In this work, we have used the HAM10000 dataset from the ISIC archive (https://isic-

archive.com/) [21]. As members of the scientific community, we are truly grateful to the 

researchers who have generated this dataset and we acknowledge the enormous effort 

invested on it. Because of permissive licensing, well- structured availability, and large 

size it is currently the standard source for dermoscopic image analysis research. 

Although other open skin lesions datasets containing clinical and dermoscopic images 

are available, these are not as large as the HAM10000, leaving it as the only public one 

that can be used for training and validation of new algorithms [47]. We have set out to 

solve this problem by generating synthetic images using an infoGAN. This framework 

consists of a generator network that try to produce realistically looking images, while a 

discriminator network aims to classify well between samples coming from a real training 

data and fake samples generated by the generator [25, 26]. Our results show that the 

synthetic skin images can be used as input images by DNNs, similar to that observed 

with real images of the HAM10000 dataset. This indicates that this synthetic dataset can 
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be used to train and test different algorithmic frameworks, overcoming the lack of skin 

image databases representing the diversity of skin types observed in the real world. As 

described in Tschandl et al. the HAM10000 dataset presents some flaws [21]. First, it is 

biased towards melanocytic lesions (12,893 of 13,786 images are nevi or melanomas). 

Likewise, although it is an excellent curated image dataset, it is composed mostly of skin 

images of a mostly fair-skinned Caucasian population thus making difficult to extrapolate 

the results to other racial groups. Indeed, it was recently reported that a DNN trained on 

an image dataset composed mainly of Caucasian population skin images (Fitzpatrick 1 

and 2 skin types) could not be extrapolated to African-black skin color patients [48]. In 

that study, the DNN’s accuracy was as low as 17%. Other open skin lesions datasets 

containing clinical and dermoscopic images from non-Caucasian human skin types are 

available, however these are not as large as the HAM10000 or are not publicly available 

[47]. To tackle this problem, and based on the results shown in this work, we are 

generating synthetic images representing the different pigmented lesions of the 

HAM10000 dataset on the six human skin types according to the Fitzpatrick scale using 

an infoGAN [27].  

    In terms of limitations within our study, firstly, the algorithms were bound to only in 

seven different disease classes which does not reflect clinical reality as many more 

options should be taken into account when diagnosing [49]. As a consequence, the use 

of these classification algorithms should be regarded as an assisting tool for 

dermatologists or general practitioners that may improve accuracy within a limited scope 

but not as a replacement for independent diagnoses qualified by a supervising physician. 

Secondly, deep learning models are powerful “black box” models which remain relatively 

uninterpretable compared to the statistical methods used in medical practice [50]. 

Computer vision models combine pixel-based visual information in a highly intricate way, 

making it difficult to link model output back to the visual input. A third limitation is that 

although the test dataset was disjunct from the training dataset, all the images belonged 

to the same database (HAM10000), raising concerns about their ability to generalize on 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.03.20072454doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.03.20072454
http://creativecommons.org/licenses/by-nd/4.0/


 

 

22 

a truly external test set coming from a different image bank. It is known that the efficacy 

of DNNs varies based on the set of images with which they are trained. Each model may 

have different sensitivities and specificities and may be subject to a unique set of biases 

and shortcomings in prediction introduced by the image training set. In a recent study, a 

binary-classification DNN for melanocytic nevus vs. melanoma, trained on ISIC images, 

showed good performance on an ISIC test dataset but performed badly on an external 

test dataset from the PH2 dermoscopic image source [1, 47]. Using just 100 images from 

the external database for fine-tuning the DNN sufficed to completely restore the original 

performance. Another important issue is related to the artifacts observed in clinical or 

dermoscopic images, such as surgical skin markings, dark corners, gel bubbles, 

superimposed color charts, overlayed rulers, and occluding hair that can affect image 

classification by automated algorithms [51]. Various methods have been reported for the 

removal of such artifacts and strategies for preprocessing of images were described to 

improve the classification outcomes of DNNs [51-54]. 

    In conclusion, our findings show that deep learning algorithms can successfully assist 

non-dermatologist physicians in potentiating their classification performance across 

seven different pigmented skin lesions. Moreover, this technology would help primary 

care physicians in the decision-making process on which patients are at highest risk for 

skin cancer, with subsequent referral to dermatology for total body skin examination. 

These models could be easily implemented in a mobile app, on a website, or even 

integrated into an electronic medical record system enabling fast and cheap access skin 

screenings, even outside the hospital. Future research should carefully validate our 

results using other image datasets containing patients across a blend of different ages 

and ethnicities, including additional cutaneous lesions and color skin types. Ultimately, 

automated diagnostic systems based on DNNs will allow clinicians to enhance patient 

care by means of improving their classification skills outside of their field of expertise. 
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