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Abstract: 5 

Predicting arbovirus re-emergence remains challenging in regions with limited off-6 

season transmission and intermittent epidemics.  Current mathematical models treat the 7 

depletion and replenishment of susceptible (non-immune) hosts as the principal drivers 8 

of re-emergence, based on established understanding of highly transmissible childhood 9 

diseases with frequent epidemics.  We extend an analytical approach to determine the 10 

number of ‘skip’ years preceding re-emergence for diseases with continuous seasonal 11 

transmission, population growth and under-reporting.  Re-emergence times are shown 12 

to be highly sensitive to small changes in low R0 (secondary cases produced from a 13 

primary infection in a fully susceptible population).  We then fit a stochastic SIR 14 

(Susceptible-Infected-Recovered) model to observed case data for the emergence of 15 

dengue serotype DENV1 in Rio de Janeiro. This aggregated city-level model 16 

substantially over-estimates observed re-emergence times either in terms of skips or 17 

outbreak probability under forward simulation. The inability of susceptible depletion and 18 

replenishment to explain re-emergence under ‘well-mixed’ conditions at a city-wide 19 

scale demonstrates a key limitation of SIR aggregated models including those applied 20 

to other arboviruses. The predictive uncertainty and high skip sensitivity to 21 

epidemiological parameters suggest a need to investigate the relevant spatial scales of 22 

susceptible depletion and the scaling of microscale transmission dynamics to formulate    23 

simpler models  that apply at coarse resolutions.  24 
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Introduction: 25 

Epidemics of arboviruses such as dengue (1), Zika (2, 3), and chikungunya (4) 26 

result in substantial global morbidity. Over the past decade, invasions of several 27 

arboviruses have triggered large outbreaks in the Western Hemisphere. In Brazil, these 28 

invasions include dengue serotype DENV4 in 2012 (5) as well as Zika (2, 6) and 29 

chikungunya (7) between 2014-2016.  Predicting and understanding the re-emergence 30 

of arboviruses after these invasions has important consequences for epidemic 31 

preparedness, particularly in regions where climate factors limit mosquito transmission 32 

in the off-season. These  regions typically exhibit highly intermittent seasonal 33 

epidemics, lasting one to three years with long periods of no, or low, reported cases in 34 

between, and low mean reproductive numbers (the number of secondary cases arising 35 

from each primary case in a completely susceptible population, R0) (5, 8-10). Several 36 

proposed explanations include the depletion of susceptible individuals following initial 37 

epidemics (11) and the time required for their replenishment via population growth (12), 38 

inter-annual variation in climate (13-17), and antigenic interactions between strains of 39 

different serotypes (18-21). These temporal patterns contrast with the recurrent 40 

seasonal outbreaks observed in childhood diseases with high reproductive numbers, 41 

whose extensive study has provided the basis for our theoretical understanding of SIR 42 

(Susceptible-Infected-Recovered) dynamics in infections that confer lifelong or lasting 43 

immune protection (22-29). 44 

Statistical models of dengue transmission that take into account climate 45 

dependencies can be used to make short-term re-emergence forecasts on the order of 46 

4 months (30) or 16 weeks (15). Many epidemiological models that predict the re-47 

emergence of arboviruses such as Zika (11, 31) on longer time-scales of a year (11) or 48 
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several decades (31) rely however on compartmental formulations such as SIR-type 49 

approaches (11) or Ross-McDonald equations that explicitly incorporate vector 50 

transmission (31). Both formulations assume transmission between any two individuals 51 

in the population (‘well-mixed’ conditions), typically at aggregated spatial scales. These 52 

process-based formulations, for example those recently applied to Zika, represent the 53 

acquisition of immunity in the population and its loss via demographic growth and 54 

turnover. These models do take into account seasonality of transmission and spatial 55 

heterogeneity in the intensity of transmission due to climate at coarse resolutions (at 56 

large city, state, or country-level scales). Nevertheless, the replenishment of a well-57 

mixed susceptible population is the principal driver determining when the disease will 58 

re-emerge given a particular seasonal pattern for R0 at a particular location.  59 

Stochasticity can also play an important role in long-term models of re-emergence (31). 60 

Variation in reporting rates of arboviruses between locations (32) can add further 61 

complexity.   62 

 Although childhood diseases with high reproductive numbers display different 63 

dynamics from emergent arboviruses (22-26), their compartmental models share a 64 

basic SIR structure given the acquisition of long-term immunity after infection.  The 65 

resulting depletion and replenishment of the susceptible population is known to clearly 66 

drive inter-annual variability and re-emergence in the former (25, 27, 28). In particular, 67 

recent theory (29) has derived analytical expressions for the number of “skip” years for 68 

a measles-like disease in the pre-vaccine era, where “skips” are defined as seasons 69 

when transmission occurs but does not cause susceptible depletion. In other words, 70 

although the number of infections increases in such seasons, it  is not large enough to 71 

offset the growth in the susceptible population due to demography. The resulting 72 

expressions specifically provide a threshold condition for the number of skips expected 73 
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following an initial invasion as a function of R0. Their derivation did not include under-74 

reporting and assumed a closed-population SIR model with ‘school-term’ seasonality, 75 

alternating two different rates for low and high transmission. 76 

We examine in this work whether replenishment of susceptible individuals under 77 

the typical ‘well-mixed’ assumption explains  dengue (DENV1) re-emergence at the 78 

whole-city aggregated level.  We specifically address the uncertainty inherent in such 79 

predictions at the low reproductive numbers characteristic of arboviruses, not previously 80 

considered in applications of the analytical approach. To this end, we first extend the 81 

threshold derivation to take into account population growth, continuous (sinusoidal) 82 

seasonality, and under-reporting of cases. We then fit a stochastic SIR model to 83 

observed monthly dengue case counts from the DENV1 invasion in Rio de Janeiro, 84 

Brazil from 1986-1988 (8, 10, 33) and numerically predict  expected times to re-85 

emergence. We describe high uncertainty in re-emergence times for these seasonal, 86 

low transmission regions, and show the insufficiency of susceptible replenishment in a 87 

simple SIR model to explain the short periods observed in DENV1 re-emergence. We 88 

discuss possible explanations and the need for model formulations that would scale to 89 

coarse spatial resolutions.  90 

 91 

Results: 92 

We start with the analytical approach for a seasonally forced SIR system with in-93 

termittent outbreaks and population turnover, to consider general features of re-emer-94 

gence at low R0. In such a system, the onset of the off-season can bring an end to an 95 

initial outbreak, and the replenishment of susceptible individuals due to births and popu-96 

lation turnover can be a major determinant of recurrence times.  Let S represent the 97 
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number of susceptible individuals in a population and  s0, the fraction of the population 98 

still susceptible at the end of an initial epidemic, t0,  when a prediction  for the time to 99 

the next  outbreak will be made.  If there are enough susceptible individuals left in the 100 

population (i.e. if s0 is  large), another outbreak will occur in the following year once the 101 

on-season resumes. However, if the initial outbreak was very large, s0 may be too small, 102 

and the outbreak may “skip” one or more years. A skip year is defined as a year in 103 

which the susceptible population does not decrease, whether or not infections increase. 104 

The smaller the fraction of the susceptible population at the time of prediction (s0), the 105 

longer it will take for the susceptible population to replenish, and the larger the number 106 

of skips that will occur.  Previous theory allows prediction of the number of skips that will 107 

occur given s0. Specifically, it demonstrated that s0 must fall below some threshold sc (k) 108 

for k skips to occur. An analytical expression was provided for sc(k) in terms of the re-109 

productive number and population turnover rate for a closed-population SIR model with 110 

school-term seasonality (29). The derivation of the threshold presented in (29) requires 111 

the assumption that the transmission rate or reproductive number of the disease is high 112 

and that the fraction of the population susceptible at the time of prediction (s0) is small.  113 

We extend this approach to take into account population growth and sinusoidal 114 

seasonality (which describes the transmission rate of dengue more accurately than a 115 

discrete high-low representation). Our derivation does not require assuming that the 116 

transmission rate or reproductive number are high or that the fraction of the population 117 

susceptible at the time of prediction is small. We follow the criteria developed in (29) (see 118 

details in (34)), which essentially consider the sign of the logarithm of the ratio between 119 

the respective number of infections at two times, t0 and tn>t0. A positive value indicates 120 

that an outbreak will still occur at tn; conversely a negative value indicates no outbreak at 121 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.02.20074104doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.02.20074104
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

that time. By setting the logarithm of this ratio to zero, the threshold sc is obtained (See 122 

Section 1 of the Supporting Information for details). 123 

The resulting expression for sc(n), the critical fraction of susceptible individuals 124 

required at the time of prediction for n or more skip seasons to occur, is	125 

s!(𝑛) = 1 +
"($%&')(') !

"#
))$*

+,(+,*,.,%)
         (1)	126 

where 𝑓(𝜔, 𝛿, 𝑟, 𝑛) = (1 + 𝑒).
$
%($%&'))𝜔 δ (𝜔$ + 𝑟$)⁄ − (1 − 𝑒).

$
%($%&')) 𝑟1 , R0 is the 127 

annual mean of the reproductive number, d, the amplitude of seasonal transmission (as 128 

infectious contacts per person per day), 𝜔,	the transmission frequency (in  days-1) and r, 129 

the population growth rate (also in  days-1). The full expression for the seasonal 130 

transmission rate  is given by 𝛽(𝑡) = 𝛽/(1 + 𝛿𝑠𝑖𝑛(𝜔𝑡 + 𝜙), where f  corresponds to the 131 

phase (in radians) and  b0, to the mean seasonal transmission rate (infectious contacts 132 

per person per day). The quantity b0  is related to the annual mean reproductive number  133 

R0 via the expression  𝑅/ =	𝛽//𝛾, where g is the recovery rate (in days-1).  134 

Figure 1 illustrates the implications of this formula. As before, t0 corresponds to 135 

the time of prediction, in practice usually after a large initial epidemic or invasion. Like-136 

wise, s0 represents the fraction of the population susceptible at the time of prediction. In-137 

tuitively, the smaller the fraction of the population susceptible at the time of prediction 138 

(s0), the longer it will take for the susceptible population to replenish, and the larger the 139 

number of skips that will occur.  In practice, as we will illustrate below, values of s0 can 140 

be computed from surveillance data provided one has an estimate of the reporting rate. 141 

For n skips to occur, the fraction of the population susceptible at the time of pre-142 

diction (s0) must fall below the  susceptibility threshold sc(n). Figure 1A shows that the 143 

larger the number of skips n one is considering, the smaller the threshold sc(n) that s0 144 
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 7 

must fall below for at least n skips to occur.  Let  nc  denote the critical skip number cor-145 

responding to the number of skips  expected at the time of prediction (t0).  We use the 146 

fraction of the population susceptible at the time of prediction (s0) and identify the maxi-147 

mum value of n for which s0 is smaller than sc(n).   In the example shown in Fig. 1A, this 148 

fraction s0 = 0.7 is smaller than sc(n = 6) and bigger than sc(n = 7), which means nc = 6.  149 

We therefore expect six years of skips followed by re-emergence in the seventh year. 150 

Formally, for a given value of s0 at the end of the transmission season, we define the 151 

critical skip number nc as the value of n for which sc(nc) > s0 > sc(nc + 1).   152 

 153 

 154 

Fig 1. A) Graphical illustration of how the expected number of skips (nc) is 155 
calculated. The black dots represent the threshold fraction of the population susceptible 156 
at the time of prediction required for n skips to occur (sc(n)).   The plot shows (sc(n)) as a 157 
function of n (the number of skips) obtained from Equation 1 with seasonality amplitude  158 
d=0.2 ( contacts per person per day) and reproductive number R0=1.4. In this example, 159 
the red line represents the fraction of the population susceptible at the time of prediction 160 
(s0). If s0 is smaller than sc(n), at least n skips will occur. To find the expected number of 161 
skips (nc), we identify the largest number of skips n such that s0 is smaller than the 162 
susceptibility threshold required for those skips sc(n). In this example, the red line  163 
intersects the sc(n) curve between sc(n=6) and sc(n=7). Therefore, a critical skip number 164 
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of nc=6 is obtained. B) and C) The critical skip value nc as a function of R0 for (B) 165 
different values of the amplitude of seasonal transmission d with s0=0.7 and (C) different 166 
values of the fraction of the population susceptible at the time of prediction (s0) with 167 
d=0.70. In all three panels, the frequency of transmission w, the population turnover rate 168 
µ, and population growth rate r are fixed at respective values w =  (2p/365) day-1  169 
corresponding to an annual periodicity, µ= 1/ (74.46*365)) day-1 corresponding to an 170 
average lifespan of ~75 years, and  r=1.55µ day-1 consistent with the growth of the city of 171 
Rio de Janeiro.  These values were chosen for the purpose of illustration, based on the 172 
inverse of the average life expectancy in Brazil in 2012 according to the 2010 census 173 
(35), and  the interpolation of  population estimates for the resident population of the 174 
municipality of Rio de Janeiro from the 1991 (36) and 2000 (37) censuses assuming 175 
exponential growth.  176 

 177 

With this general approach at hand, we explored the effects of the reproductive 178 

number R0, amplitude of seasonal transmission d and fraction of the population 179 

susceptible at time of prediction s0, on the critical number of skips nc (Figure 1 Panels B 180 

and C). Consideration of both the variation of the reproductive number  R0 and fraction of 181 

the population susceptible at time of prediction s0 is relevant here. Different combinations 182 

of transmission rate (β0) and duration of the infection (1/	γ) can yield the same R0 but 183 

different fractions of the population susceptible at the time of prediction (Supplemental 184 

Figure S16). Importantly, Fig. 1 panels B and C show that the time to re-emergence is 185 

very sensitive to R0. A singularity is observed as R0 approaches 1 where the expected 186 

number of skips goes to infinity. The approach to that singularity can be very steep, 187 

meaning that small changes in R0 can result in large increases in the expected re-188 

emergence time. The obtained values of nc	are not as sensitive to the amplitude of 189 

seasonal transmission  (Fig. 1 Panel B) but are sensitive to the fraction of the population 190 

susceptible at the time of prediction (Fig. 1 Panel C).  The shift of the curve in Fig 1 Panel 191 

C for small values of the fraction of the population susceptible at time of prediction s0 192 

means that, for a given R0, more time is required to replenish the susceptible population 193 

and therefore to observe a re-emergence.  194 
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 9 

 We next apply this approach to the  surveillance data from the 1986 invasion of 195 

DENV1 in Rio de Janeiro (Figure 2). The initial DENV1 invasion in Rio de Janeiro is an 196 

ideal initial test case for this technique given the lack of widespread prior immunity from 197 

to prior dengue epidemics, vaccination campaigns, cross-immunity from other disease 198 

outbreaks. Specifically, the 1986 invasion occurred prior to the development of dengue 199 

vaccines. The outbreak was the first dengue invasion in the area since the initial eradi-200 

cation of the Aedes aegypti mosquito in Brazil in the 1950s (38-41) following a sus-201 

tained intervention program that began in the 1930s and 1940s in Rio de Janeiro and 202 

other cities (39). Cross-immunity from yellow fever vaccination appears to be very lim-203 

ited (42). Given the young age distribution of the population in 1986 (43), most individu-204 

als were not alive during the period when mass yellow fever vaccination or prior dengue 205 

epidemics occurred.  206 

We let our time of prediction t0 be equal to September 1, 1987, corresponding to 207 

the end of the initial DENV1 invasion (see panel A of Figure 2). In panel B of Figure 2, we 208 

evaluate the number of expected skips expected in Rio de Janeiro, nc,  on the basis of a 209 

range of R0 values from 1.18 to 2.02 from the literature (44, 45). The critical susceptibility 210 

threshold for n skips to occur (sc(n)) is calculated using Equation 1 with an annual 211 

seasonality, a population growth rate interpolated from the census (see Materials and 212 

Methods section), and d =0.7 (44). The fraction of the population susceptible at the time 213 

of the prediction (s0) is estimated as the difference between the total population N0 (total 214 

population N at (t0=Sep. 1987)) and the total number of people infected between the start 215 

of the invasion and the time of prediction (September 1, 1987).  The total number of 216 

infected people during the outbreak is computed by summing the ratio between the 217 

observed monthly cases and the reporting rate for DENV1 in the city.  Literature estimates 218 

from serology during the DENV1 invasion in Rio de Janeiro indicate a reporting rate of 219 
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 10 

around 3% (33) which we use and fix for this analysis. For comparison purposes, we also 220 

include  the number of skips expected under a higher reporting rate of 10%. These curves 221 

show that the expected re-emergence could be very sensitive to small variation in R0 and 222 

ρ, two quantities that are difficult to estimate with precision in the absence of serology. In 223 

particular, assuming a reporting rate of 3%, a reproductive number of 1.2 with 20% 224 

uncertainty can yield large changes in the expected re-emergence time. We highlight the 225 

potential sensitivity of the expected number of skips to the reporting rate as well to 226 

illustrate the importance of uncertainty in this parameter in cities or epidemics where its 227 

value is unknown.  228 

	229 

Fig 2. (A) Observed dengue case data. Monthly reported dengue cases in the city of 230 
Rio de Janeiro, Brazil from April 1986-1995. The grey shaded region denotes 231 
observations that were included in the fitting of the stochastic model from May 1, 1986 to 232 
July 1, 1988 inclusive. Serotype DENV1 re-emerged in 1990. DENV2 was first detected 233 
in the state of Rio de Janeiro in 1990 but did not become dominant until 1991 (8, 9). Both 234 
co-circulated afterwards. We focus on the invasion of DENV1 from 1986-1987 and its 235 
initial re-emergence in DENV1 in 1990 using a single serotype transmission model.  This 236 
allows us to evaluate  this  transmission model  in a region where only one serotype was 237 
circulating, where cross-immunity could not easily be invoked to explain the absence or 238 
reduction of dengue in a given year. (B) Deterministic critical number of DENV1 skips 239 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.02.20074104doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.02.20074104
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

nc for Rio de Janeiro from September 1988. Expected number of skips nc with 240 
amplitude of seasonal transmission  d=0.7 and the fraction of the population susceptible 241 
after the first DENV1 invasion as of September 1, 1987 (s0) calculated from the data (A). 242 
We use a reporting rate  r of 3% when calculating s0 , consistent with serological 243 
estimates from the literature (33). For comparison purposes, we also include the expected 244 
number of skips nc assuming a reporting rate of 10%. 245 
 246 

 247 

Replenishment of Susceptible Individuals is Insufficient to Explain Re-Emergence 248 

To obtain more precise bounds for the reporting rate and R0 and to determine if 249 

the depletion and replenishment of susceptible individuals could explain the rapid re-250 

emergence of dengue in Rio de Janeiro, we fit a stochastic aggregate SIR model to 251 

case data from the DENV1 invasion from 1986-1988. The stochastic SIR model 252 

assumes that the underlying deterministic transmission rate varies seasonally as a 253 

sinusoidal function with annual mean b0, seasonal transmission amplitude d, frequency 254 

w (equal to 2p/365), and phase f. The model takes into account demographic 255 

stochasticity, environmental stochasticity in the transmission rate, and measurement 256 

error due to under-reporting and variation in reporting of cases (See Materials and 257 

Methods and the Supporting Information). Panels A,B, and C of Figure 3 show the 258 

likelihood profile of the annual mean transmission rate, b0,  the amplitude of seasonal 259 

transmission  d,  and  the reporting rate r, respectively. In particular, our estimate of the 260 

reporting rate matches that from serology in the literature (Panel C). 261 
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 262 

Fig 3. A-C) Selected parameter profiles for the stochastic model. Profiles of the mean 263 
annual transmission rate b0 (A), seasonal transmission amplitude d (B), and reporting rate 264 
r (C). The red curve is a polynomial fit to the subset of the profile points shown on the 265 
figure.  The single dashed grey horizontal line represents the likelihood value 2 log 266 
likelihood units below the maximum likelihood estimate. This line provides an estimate of 267 
confidence intervals for the given parameter. The grey vertical line denotes the parameter 268 
value of the maximum likelihood estimate. The maximum likelihood estimate for the 269 
reporting rate in panel C is very close to the literature value obtained from serology 270 
(approximately 3 percent).  (33).	271 

 272 

 Overall, the model is able to capture key dynamics of the DENV1 invasion 273 

including the two peaks of incidence in 1986 and 1987 and the subsequent reduction of 274 

transmission in 1988. This is shown by comparing the trajectories for an ensemble of 275 

simulations with the fitted model to the observed values of cases (Fig. 4).  Estimated 276 

values for the transmission rate indicate a low value for R0 (Figure 4 Panel C). Both of 277 

these conclusions generally hold even  if one takes into account uncertainty in 278 

parameter estimates by examining all parameter combinations with log likelihoods 279 

within  2 log likelihood units of the maximum likelihood estimate (the grey region in 280 

Figure 4 Panel C as well as Supplemental Figure S1), although some parameter 281 
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combinations (not the maximum likelihood estimate) have substantial process noise 282 

(Supplemental Figure S1). 283 

 284 

 285 

 286 
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 287 

Fig 4. A-B) Comparison of simulated values with the fitted model and  observed 288 
data on a log (A) and regular (B) scale. Observed monthly cases from April 1986 to 289 
June 1988 are shown in blue. Median values from 100 simulations with  the maximum 290 
likelihood parameter combination are shown in red. The shaded red region denotes the 291 
2.5% and 97.5%th quantile boundaries from those simulations. C) Estimates for R0(t).  292 
The black line denotes the trajectory of R0(t) for the maximum likelihood estimate. The 293 
shaded grey region represents the 2.5% and 97.5%th quantile boundaries for 294 
trajectories from all parameter combinations within 2 log likelihood units of the maximum 295 
likelihood estimate. Each parameter combination has only one seasonal trajectory for 296 
R0(t) since R0(t) is a deterministic quantity. R0(t) for all parameter estimates ranges from 297 
1.79-2.09 in the on season to 0.31-0.52 in the off-season. 298 
 299 

We  now apply the obtained parameter estimates from the fitted model to 300 

address the expected re-emergence time on the basis of, first, the analytical expression 301 

for the skip calculation (Equation 1), and then the stochastic simulations of the fitted 302 

model.  The parameter estimates used here are those for the  reporting rate r, the 303 

reproductive number R0, and the amplitude of seasonal transmission  d from all 304 

combinations within 2 log likelihood units of the MLE. The expected number of skips 305 

following the DENV1 invasion in 1986-1988 is considerably higher than the  observed 2 306 

years. Depending on the parameter combination used, we obtain anywhere from 27 to 307 

100 skips (Panel A of Figure 5). Even the fastest estimated return from the skip analysis 308 

(27 years) is much slower than the observed re-emergence time. 309 

Forward simulation of the stochastic model likewise does not predict the rapid re-310 

emergence of DENV1 (Panel B of Figure 5).  Under a pulse of 20 infected individuals 311 

arriving per day, there was a low probability of re-emergence for parameter 312 

combinations with low process noise (Panel B of Figure 5). Only parameter 313 

combinations with high amounts of process noise (which have limited predictive value) 314 

had a non-zero emergence probability. We consider alternate pulse rates in 315 
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Supplemental Figure S14. Re-emergence probabilities under forward simulation of the 316 

stochastic model thus corroborated the deterministic skip findings. The depletion of 317 

susceptible individuals from 1986-1988 and their replenishment via population growth 318 

from 1989-1990 under an aggregate SIR model was unable to explain the rapid re-319 

emergence of DENV1 in 1990.   320 

 321 

 322 

Fig 5. A) Expected number of skips (nc) calculated using parameters obtained 323 
from the fitted stochastic model.    The open circles show the expected number of 324 
skips nc from Equation 1 using parameters and the fraction of the population susceptible 325 
after the initial DENV1 invasion (s0) estimated from the fitted stochastic model. Each 326 
circle corresponds to one parameter combination, and we included here all parameter 327 
combinations for the fitted model with  a seasonal transmission amplitude (d) of 0.7 ( 328 
contacts per person per day) and a likelihood value  within two log-likelihood units of the 329 
maximum likelihood estimate (MLE).   See Figure S15 for expected skips from 330 
parameter combinations with different values of d, and Figure S10 for parameter  331 
combinations  from the profile of the recovery rate,  g.  For comparison purposes, the 332 
black line shows the expected number of skips for the deterministic skip calculation from 333 
panel B of Figure 2 with the reporting rate r fixed at the literature value of 3%. B) 334 
Probability of epidemic in 1990 under forward stochastic simulation of fitted 335 
model.  The fitted stochastic model was simulated forward in time from 1986-1990 with 336 
population growth. A pulse of 20 infected individuals were assumed to arrive each day 337 
in January 1990. Each parameter combination within 2 log likelihood units of the 338 
maximum likelihood estimate was simulated 100 times. The re-emergence probability 339 
was calculated by determining the number of simulations in which the susceptible 340 
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population decreased in 1990. The plot shows re-emergence probability as a function of 341 
the process noise intensity sP. Each point represents a single parameter combination. 342 
The maximum likelihood estimate parameter combination is circled in red.  343 
 344 

Sensitivity Analysis: 345 

To examine the robustness of our findings to adding an incubation period or 346 

altering the form of seasonality, we conducted a sensitivity analysis by considering both 347 

SIR and  SEIR models with spline seasonality. The results are presented and discussed 348 

in the Supporting Information and show that our conclusions remain unchanged.  (See 349 

the Supporting Information including Supplemental Figures S2-S7 and Supplemental 350 

Tables ST2 and ST3).  351 

Comparison with Vector Model and literature R0 352 

The fitted stochastic SIR model uses a cosine function as a simplification to rep-353 

resent the seasonal forcing that would be created by  climate variation (temperature 354 

(46)) via the changes in infected mosquitos. To evaluate whether this simplification is 355 

realistic, we take two approaches. The first one compares the mean seasonal R0 result-356 

ing from our model to values of this reproductive number directly estimated from time 357 

series data in the literature for DENV1 and DENV4 in Rio de Janeiro from 2010-2016. 358 

There is a close match between these very different ways to estimate R0, and in particu-359 

lar the shape of the seasonality produced by our model is realistic (Supplemental Figure 360 

S18).  361 

The second approach considers a simple temperature-driven vector model. To 362 

this end, we initially show that the seasonal variation in  temperature in Rio de Janeiro 363 

can be approximated via a cosine function (Panel A of Supplemental Figure S19 and 364 

use this approximation to drive a transmission rate that includes the vector explicitly.  	365 
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 To obtain an expression for the seasonal transmission rate we consider an ex-366 

plicit mosquito model with compartments for infectious and susceptible mosquitoes in 367 

which a number of parameters depend on temperature (T) (see Section 4 of the Sup-368 

porting Information).  By assuming fast dynamics  of the mosquito (so that levels of in-369 

fection in the mosquito population quickly equilibrate to the dynamics of infection in the 370 

human population), we derive the following expression for the effective transmission 371 

rate in the mosquito-human model in terms of the biting rate a(T), probability of human 372 

infection given an infectious bite b(T), probability of mosquito infection given biting of an 373 

infectious human pMI(T),  adult mosquito mortality rate µM, carrying capacity K of the 374 

mosquito population, human population size N, and mosquito demographic function 375 

g(T): 376 

𝛽0,, =
𝑎(𝑇)$𝑏(𝑇)(𝑝𝑀𝐼(𝑇))

𝜇1
	
𝐾
𝑁 D1 −	

𝜇1
𝑔(𝑇)F														

(2) 377 

 378 

The function g(T) is the product of the eggs laid per female mosquito per gono-379 

trophic cycle, the mosquito egg-to-adult survival probability, and the mosquito egg-adult 380 

development rate divided by the adult mosquito mortality rate µM.  The temperature-de-381 

pendence of these components was borrowed from the literature (47, 48) (see Support-382 

ing Information Section 4 for details).   383 

Under the fast dynamics assumption, this effective transmission rate beff is an 384 

implicit representation of the force of infection inflicted on humans by the vectors  of the 385 

coupled human-vector model. When re-scaled between 0 and 1, beff corresponds 386 

closely with bMLE,  the transmission rate from the fitted stochastic SIR cosine model 387 

(Panel B of Supplemental Figure S19). This close correspondence indicates that the 388 
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SIR cosine model is able to capture the shape of the seasonality of DENV1 in Rio de 389 

Janeiro.    390 

 391 

Discussion 392 

We developed two lines of evidence regarding the uncertainty and predictability 393 

of the time to re-emergence for diseases with low reproductive numbers, on the basis  of 394 

a seasonally forced SIR model under the ‘well-mixed’ assumption at aggregated, city-395 

wide, scales.  We showed with an analytical approach that the time to re-emergence 396 

(expressed as the number of “skip” years) was highly sensitive to small changes in R0 397 

and the fraction of the population  still  susceptible s0 at the time of prediction (e.g. at 398 

the end of the initial outbreak).  This sensitivity applies to dengue in Rio de Janeiro 399 

where re-emergence times can vary on the order of decades based on literature 400 

parameters. This uncertainty contrasts with previous applications of this analytical 401 

approach to SIR dynamics in childhood diseases such as measles with much higher R0 402 

values where accurate predictions of much shorter skip times have been made (29). We 403 

also showed with a stochastic SIR model with seasonal transmission fit to DENV1 404 

observed case data for Rio de Janeiro from 1986-1988 that susceptible depletion and 405 

replenishment are insufficient to explain dengue re-emergence.  The fitted model failed 406 

to predict by far the re-emergence of DENV1 in 1990 in terms of either the number of 407 

skips expected or the outbreak probability under forward simulation.   408 

Transmission parameters like R0 are generally defined with respect to a particular 409 

model. Given that we aggregated cases at the city level and used a short time series, 410 

care should be taken in interpreting parameter values.  Nevertheless, fitted transmission 411 

parameters correspond well with literature values and exhibit well-defined confidence 412 
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intervals.  Estimates of the reporting rate in particular closely match the 3% value (8) 413 

obtained via a serological study conducted during the 1986 invasion (8, 33). Reporting 414 

rates during the onset of an epidemic may be much lower in regions that have not 415 

recently experienced transmission (33, 49) than in those with re-occurring outbreaks 416 

and an established surveillance network. This may explain why serological studies of 417 

the 1986 invasion (8, 33) and our results, estimate a lower reporting rate for dengue 418 

than studies conducted in later years in Brazil (50).  Even though different combinations 419 

of the transmission rate and duration of infection can yield the same reproductive 420 

number, the parameter estimates that compose R0 across all models considered in the 421 

sensitivity analysis (which take into account those different combinations) are relatively 422 

well-defined. These values are also consistent with the effective reproductive number 423 

estimated for local dengue epidemics from 2012-2016 (44) and 1996-2014 (45) taking 424 

into account differences in serotype circulation and population size during those 425 

periods.  426 

More complex model structures are possible and often used for arboviruses that 427 

include an explicit representation of the vector. We expect our results to hold as this 428 

vector component should largely affect the phase and shape of seasonality in the 429 

transmission between human hosts, which we have  modeled phenomenologically as a 430 

cosine wave. With two typical successive epidemic years from an emergent virus, 431 

parameter inference from such short observation period is unlikely to justify a more 432 

complex model. Nevertheless, to examine transmission seasonality further, we 433 

compared the seasonal R0 resulting from the fitted model to the seasonal R0 directly 434 

estimated from time series of cases in the literature (44). We also considered the 435 

transmission rate experienced by humans in a simple vector-human model forced by 436 

the typical seasonality of temperature in Rio de Janeiro. The  shape and timing of the 437 
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vector-human model’s transmission rate was comparable to that of the cosine 438 

transmission rate we employed. More complex models that do not assume fast 439 

dynamics of infection in the vector relative to epidemic spread would likely exhibit a 440 

difference relative to our transmission rate, especially a delayed phase, whose 441 

consequences should be examined in future work. We posit that this difference would 442 

not influence our results on the predictability and uncertainty of re-emergence, since the 443 

values of other parameters (such as the length of infection in humans) can compensate 444 

for it. 445 

Factors that could explain the observed rapid re-emergence include inter-annual 446 

climate anomalies, antigenic evolution, or micro-scale spatial heterogeneity in 447 

transmission intensity and associated susceptible depletion. Larvae washout following 448 

flooding coupled with temperature-driven seasonality in transmission could have 449 

temporarily halted the invasion in 1988 and delayed the epidemic in 1989.  Widespread 450 

flooding was reported in February 1988 (51). Large amounts of rainfall washed away 451 

mosquito larvae in lab and field studies (52). High rainfall negatively affected dengue 452 

transmission in Singapore (53, 54) and India (55). The impact could be compounded in 453 

Rio de Janeiro if the high rainfall occurs during the transmission season. If the larvae 454 

population has not fully recovered before the start of the off-season, the impact of the 455 

rainfall anomaly could extend to the subsequent season. 456 

The large amount of process noise observed in the aggregate model would be 457 

consistent with this effect, given that the process noise parameter sP represents random 458 

variation in the transmission rate due to environmental factors.  However, the model’s 459 

inherent structure limits its ability to take into account flooding events via sP, since the 460 

magnitude of the process noise does not change between years. Incorporating an inter-461 
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annual climate driver could provide more accurate re-emergence predictions. The 462 

response to rainfall would be nonlinear: positive at low to moderate levels and negative 463 

at higher ones. 464 

Intra-serotype antigenic evolution from 1986-1990 could also facilitate faster re-465 

emergence. Many models focus on inter-serotype variation and assume long-lasting 466 

homosubtypic immunity (18, 19, 21). However, the antigenic variation within and across 467 

dengue serotypes is comparable (56), and antigenic differences between strains of the 468 

same serotype influence overall dengue evolution (57). Sequences associated with 469 

case data were unavailable, making direct analysis challenging. We cannot rule out the 470 

possibility that genetic differences between the circulating strains enabled re-infection. A 471 

future SIRS-type model (Susceptible-Infected-Recovered-Susceptible) could 472 

incorporate this intra-serotype antigenic evolution.   473 

Micro-scale spatial heterogeneity in transmission intensity and the effects of 474 

human movement between neighborhoods could also explain the rapid re-emergence.  475 

Small-scale differences in socioeconomic status and population density between 476 

neighborhoods in a large city can result in different relationships between mosquito and 477 

human population sizes, resulting in widespread heterogeneity in R0 across 478 

neighborhoods (58). Previous studies of mosquito trap data in the city have 479 

demonstrated that neighborhoods with differing socioeconomic characteristics have 480 

different vector population patterns (46).  In fact, schoolchildren from neighborhoods 481 

with divergent socioeconomic characteristics had varying levels of seroconversion 482 

during the 1986 invasion (33).  Human movement between neighborhoods may also 483 

influence transmission within (59) and between (60) those neighborhoods, potentially 484 

resulting in non-uniform depletion of susceptible populations between highly connected 485 
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and isolated areas of a city.  Whether arising through the effects of spatial heterogeneity 486 

in transmission or intra-city movement, non-uniform levels of herd immunity could 487 

enable faster re-emergence.  488 

Our findings reveal the uncertainty of re-emergence predictions with the simplest 489 

SIR models, those that would be most useful at times of emergent public health threats. 490 

Consideration of the above factors in transmission models whose goal is to inform 491 

public health over large regions, and to do so soon after, if not during, an emergent 492 

outbreak, is clearly a challenge. For example, coarse resolutions are typically used 493 

because of the scales at which the observed cases are reported, the scales at which the 494 

climate covariates are available, and the difficulties inherent in incorporating microscale 495 

variation including connectivity. Our results should motivate further research into the 496 

central question of how we can scale microscale heterogeneity to formulate aggregated 497 

models that include it implicitly. It should also motivate the related further understanding 498 

of how such microscale heterogeneity influences susceptible depletion and 499 

replenishment in particular case studies. From such efforts, we should be able to 500 

evaluate whether the increasing availability of high-resolution data makes it feasible to 501 

parameterize transmission models at higher resolutions, or to inform new model 502 

formulations at coarser resolutions.  503 

 The inability of susceptible depletion and replenishment in a simple seasonal SIR 504 

formulation at a large, city-wide scale, to explain DENV1 re-emergence has potential 505 

implications for other  arboviruses. Recent long-term Zika forecasts (31) assume that 506 

susceptible depletion and replenishment brought an end to the 2015-2017 epidemics 507 

and will determine when re-emergence occurs. DENV1 and Zika share the same vector 508 

and invaded a completely susceptible population (not accounting for pre-existing cross-509 
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immunity from dengue). If factors absent from the basic model were key drivers of 510 

DENV1 inter-annual variability, it would not be unreasonable to infer that similar types of 511 

factors could have played a major role in the Zika dynamics observed from 2015-2017. 512 

Zika re-emergence could similarly occur much earlier than expected. 513 

With changing temperature patterns due to climate change, cities in Asia, 514 

Europe, and the western hemisphere that currently do not have recurrent local 515 

transmission may transition in the near future to the kinds of dynamics studied here. Our 516 

results suggest that estimates should be interpreted in the context of this sensitivity to 517 

small changes in the reporting rate and reproductive number. Factors like variation in 518 

reporting rates, micro-scale transmission heterogeneity and inter-annual climate drivers 519 

that are often ignored in long-term forecasts may thus become critical in determining re-520 

emergence times. Overall, the large uncertainty in re-mergence times may be 521 

unavoidable for these regions. Improved models are needed together with richer data 522 

than currently used, to address the question of the relevant spatial scales of susceptible 523 

depletion. 524 

 525 

Materials and methods 526 

The derivation of the expression for the number of skip years (Equation 1) is 527 

included in Section 1 of the Supporting Information. We fitted a stochastic version of the 528 

SIR model to observed monthly case counts in Rio de Janeiro from 1986-1988 to 529 

estimate parameters needed to apply this expression, and also to separately predict in 530 

parallel the time to re-emergence via numerical simulation   Expected re-emergence 531 

times were then compared for the two approaches. 532 
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Data Description 533 

 We used monthly dengue case estimates in the city of Rio de Janeiro, Brazil 534 

from 1986-1990. Cases were reported to the local public health surveillance system (9, 535 

10). The case counts did not contain serotype information, but prior studies indicated 536 

that the dengue serotype DENV1 invaded the city of Rio de Janeiro in 1986 (10) and 537 

was the dominant serotype in circulation in the state of Rio de Janeiro from 1986-1990 538 

(8) prior to the arrival of DENV2 in 1990. DENV2 did not become dominant until 1991 539 

(9). 540 

Basic Model Formulation 541 

Because dengue infection confers full immunity to the same serotype, we 542 

considered an SIR (Susceptible-Infected-Recovered) model.  The deterministic model 543 

for the number of individuals in the Susceptible (S), Infected (I), or Recovered (R) class 544 

is given by the following system of ordinary differential equations: 545 

𝑑𝑆
𝑑𝑡 = 𝑟𝑁	 − 𝜆(𝑡)𝑆 − 𝜇2𝑆

(3)
 546 

𝑑𝐼
𝑑𝑡 = 𝜆(𝑡)𝑆 − 𝛾𝐼 − 𝜇2𝐼

(4)
 547 

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 − 𝜇2𝑅

(4)
 548 

 549 

𝜆(𝑡) = 𝛽(𝑡)(
𝐼
𝑁
)

(5)
 550 

 551 
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 552 

𝛽(𝑡) = 𝛽/(1 + 𝛿𝑠𝑖𝑛(𝜔𝑡 + 𝜙))
(6)  553 

Deaths occur at rate (µH) given by the inverse of the life expectancy of Brazil in 554 

2012 (74.49 years(35)). All individuals are born susceptible. The term r represents 555 

population growth.  The human population growth rate was estimated from census 556 

resident population estimates in 1991 (36) and 2000 (37) assuming exponential growth. 557 

This rate was used to interpolate the estimated population in 1986 (See Supporting 558 

Information Section 2.1.1 for details).  559 

The per capita rate at which susceptible individuals become infected was given 560 

by the force of infection l(t) (Equation 5). Individuals recovered at per-capita rate g 561 

whose inverse is the duration of infection. Estimates of the duration of infection in 562 

dengue vary. One analysis estimated that symptoms of dengue infection last 2-7 days 563 

following an incubation period of 4-10 days (61, 62).  For our analysis, we fixed the 564 

recovery rate 𝛾 to be 1/17, assuming an exponentially distributed duration of infection 565 

with mean of 17 days encapsulating the maximum extent of the combined incubation 566 

and symptomatic period in humans. We take into account the possibility that duration of 567 

infection could vary by profiling over the duration of infection in the sensitivity analysis.  568 

The short duration of the available time series meant that fitting a formal vector model 569 

could prove difficult and could require additional assumptions in terms of which 570 

parameters could be fitted or fixed from existing formulations in the literature. We 571 

therefore used an SIR framework in which the infected stage served as a proxy for the 572 

exposed and infected human and vector compartments in a vector model of dengue 573 

transmission. A duration of infection was thus chosen to also take into account the 574 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.02.20074104doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.02.20074104
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

external incubation period in the mosquito, which can range from 5-33 days at 25°C to 575 

2-15 days at 30°C (63). We profiled over the duration of infection in the sensitivity 576 

analysis to verify that this parameterization is reasonable. 577 

This transmission rate b(t) was represented as a cosine function with mean b0, 578 

(units of contacts per person per day)  and seasonal oscillations of amplitude d (same 579 

units as b0) and frequency w, which was assumed to be annual (w = 2p/365) days-1. The 580 

annual mean R0 was thus given by: 581 

𝑅/ =
𝛽/

𝛾 + 𝜇
(8)

 582 

The observed dengue data in Rio de Janeiro consisted of monthly case counts. 583 

Serological studies of the DENV1 invasion in Rio de Janeiro also indicated substantial 584 

under-reporting (8, 33). Let C represent the true number of monthly cases that would be 585 

obtained by summing the number of individuals entering the infected class (I) over the 586 

course of a month. For the purposes of the skip analysis, we assume that a fixed 587 

fraction r of the true cases C are observed, where r is the reporting rate.  588 

 The stochastic model is an approximation of the deterministic one used for the 589 

skip analysis. For simplicity and given the short time interval, we assumed that there 590 

was no population growth over the two and half years of the DENV1 invasion (r =µH) 591 

and that births and deaths occurred at rate µH = (1/(74.9*365)), which is equal to the 592 

inverse of the average life expectancy in Brazil from the 2010 census (35). However, 593 

population growth is taken into account when simulating forward in time from the fitted 594 

stochastic model. We also assumed that there were no recovered individuals at the start 595 
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of the epidemic, so all other individuals in the population not initially infected were 596 

susceptible. We considered time in units of days and used a time step Dt of 1 day. 597 

The stochastic model is a discrete-time model with fixed time step Dt and a discrete 598 

state space (i.e. the number of people in each compartment S, I, R, and C, at any point 599 

in time must be integers). The number of individuals who moved from one compartment 600 

to another over the course of each day was calculated via Euler simulation from the 601 

deterministic equations (See Supporting Information). Demographic stochasticity was 602 

then incorporated into the Euler approximations to obtain integer state variable values 603 

after each time step. We specifically assumed that the number of individuals making 604 

each state transition was drawn from a binomial distribution with exponentially decaying 605 

probability (See Supporting Information). Environmental noise (variation in the 606 

transmission rate b(t) due to random environmental variation) was captured via 607 

multiplicative gamma white noise in the transmission rate as described by (64, 65).  On 608 

time step size D t, we multiplied the transmission rate by DG / D t,  where DG / D t was 609 

drawn from a Gamma distribution with mean 1 and variance sP2 / D t. 610 

The measurement model assumed that the observed number of monthly dengue 611 

cases (Y(t)) at time t  were drawn from a negative binomial distribution with mean equal 612 

to the true number of monthly cases C multiplied by a reporting rate r, with dispersion 613 

parameter sM. More details of the measurement model can be found in Section 2.4 of 614 

the Supporting Information.  615 

Fitting the stochastic model 616 

We fitted the transmission parameters (b0 and d), reporting rate (r), process 617 

noise parameter (sP), measurement noise parameter (sM), and the number of infected 618 
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individuals at the start of the outbreak in May 1986 (I0). While the first cases of DENV1 619 

were reported in April 1986, we started the model fitting in May 1986 to avoid 620 

complications from changes in the reporting rate as the surveillance system was 621 

established during the start of the DENV1 invasion. We used in an interpolated initial 622 

population size of 528,1842 for Rio de Janeiro in May 1986.The model was fit using the 623 

mif2 method in the R-package pomp. The model fitting method is described further in 624 

the Supporting Information and in (66). 625 

Calculating expected skips using parameter estimates from stochastic model 626 

Following the completion of the Monte Carlo Profiles, final parameter 627 

combinations from all profiles were pooled together to obtain both a maximum likelihood 628 

estimate (MLE) parameter combination as well as all parameter combinations that were 629 

within 2 log likelihood units of the maximum likelihood estimate.  The table of MLE 630 

parameter values is shown in Supplemental Table ST1. The reporting rate (r), b0, and 631 

d value of each parameter combination within 2 log likelihood units of the maximum 632 

likelihood estimate were applied to a finer gridded version of the deterministic skip 633 

calculation described earlier.  A distribution for the number of skips expected in Rio de 634 

Janeiro following the DENV1 invasion from 1986-1988 was obtained. 635 

Stochastic Simulation 636 

We then simulated re-emergence probabilities under the stochastic model. Each 637 

parameter combination within 2 log likelihood units of the MLE estimate from the 638 

stochastic fit was simulated again without any immigration from 1986 until 1990 but with 639 

population growth. During January 1990, “sparks” of infectious individuals were 640 

assumed to have arrived in the city at some fixed rate. We explored rates from 5 to 100 641 

infected individuals per day. This process was repeated 100 times, and the probability 642 
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of an epidemic occurring in 1990 was calculated. An epidemic occurrence in this 643 

situation was defined as a net decrease in the susceptible population over the course of 644 

the year (after taking into account population growth), to best match the definition of an 645 

epidemic used in the skip analysis. 646 

Sensitivity Analysis  647 

 We assessed how parameter estimates of R0 and r may depend on the model 648 

formulation by fitting several more complex SIR-type models to the same data using the 649 

fitting procedure described in the Methods section: an SIR Spline Model and SEIR 650 

Spline Model. As an additional sensitivity analysis, we profiled over the recovery rate for 651 

the SIR Cosine Model (Supplemental Figure S9). For details, see the Supporting 652 

Information. 653 

Comparison with Vector Model and literature R0 654 

 For a full description of the explicit coupled human-mosquito model with 655 

compartments for infectious and susceptible mosquitoes and comparison of 656 

transmission rates between this model and the simpler seasonally forced SIR , see the 657 

Supporting Information.    658 

 659 
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