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Summary 

COVID-19 has spread in a matter of months to most countries in the world. Various social and 

economic factors determine the time in which a pandemic reaches a country. This time is essential, 

because it allows countries to prepare their response. This study considered a gravity model that 

expressed time to first case as a function of multiple socio-economic factors. First, Kaplan-Meier 

analysis was performed for each variable in the model by dividing countries into two groups 

according to the median of the respective variable. In order to measure the effect of these variables, 

parameters of the gravity model were estimated using accelerated failure time (AFT) survival 

analysis. In the Kaplan-Meier analysis the differences between high and low value groups were 

significant for every variable except population. The AFT analysis determined that increased 

personal freedom had the largest effect on lowering the survival time, controlling for detection 

capacity. Higher GDP per capita and a larger population also reduced survival time, while a greater 

distance from the outbreak source increased it. Understanding the influence of factors affecting 

time to index case can help us understand disease spread in the early stages of a pandemic. 
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1. Introduction 

COVID-19 is the disease caused by the novel SARS-CoV-2. It has rapidly spread across the world 

and developed into a pandemic. By the 23rd of April, there have been over 2.5 million cases since 

the disease was first reported in Wuhan, China, on the 31st of December (ECDC, 2020b; Rothan 

& Byrareddy, 2020).  

The transmission of an infectious agent depends on various factors. Freedom of movement shapes 

the course of an outbreak, and governments can influence freedom directly by enacting a state of 

emergency (Nay, 2020). Urbanization creates clusters of high population density where respiratory 

pathogens can spread easily (Eisenberg et al., 2007). The increased accessibility of air travel has 

also accelerated disease transmission (Mangili et al., 2015). Increased economic activity facilitates 

human contact, leading to increased transmission (Tatem et al., 2006). Analysis of COVID-19 

spread from one country to another would benefit from accounting for these factors. 

The gravity model is a framework borrowed from transportation theory. It can also be used to 

model the spread of infectious diseases (Kraemer et al., 2019). In 2011, the gravity model was 

validated on data from the 2009 A (H1N1) pandemic (Li et al., 2011). 

In this paper, I propose a heuristic form of the gravity model which considers a number of variables 

potentially associated with country to country spread of COVID-19. The objective of the study is 

to describe the influence of these variables on the amount of time a country has to prepare for the 

arrival of a pandemic, once the pandemic has already started. This effect on time to first case is 

quantified using survival analysis.   
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2. Methods 

2.1. Gravity model 

A gravity model for the intensity of spread can be written as follows (Viboud et al., 2006): 

𝐶𝑖𝑗 = 𝜃
𝑃𝑖

𝜏1𝑃𝑗
𝜏2

𝐷𝑖𝑗
𝜌  

where 𝐶𝑖𝑗 is the intensity of spread between communities i and j of populations 𝑃𝑖 and 𝑃𝑗, and 𝐷𝑖𝑗  

is the distance between communities. The parameters  𝜃, 𝜏1, 𝜏2 and 𝜌 are to be estimated. Greater 

intensity of spread leads to a faster propagation of the disease to neighboring communities (Li et 

al., 2011). This means shorter periods of time until the neighboring communities experience their 

first case. In addition to population size and distance, economic and political factors can also 

influence spread. Thus, I propose the following model: 

𝑇𝑖 = 𝛽0

𝐷𝑖
𝛽1

𝐻𝑖
𝛽2 𝑃𝑖

𝛽3 𝐺𝑖
𝛽4𝑈𝑖

𝛽5𝐴𝑖

𝛽6𝐸𝑖
𝛽7

 

Where 𝑇𝑖 is the number of days until the index case in country i, 𝐷𝑖 is the distance from country i 

to the country where the disease originated (China), 𝐻𝑖 is a measure of human and economic 

freedom in country i, 𝑃𝑖 is the population, 𝐺𝑖 is the GDP per capita, 𝑈𝑖 is the degree of urbanization, 

𝐴𝑖 is the volume of air travel, and  𝐸𝑖 is the epidemiological detection capacity.  𝛽0, 𝛽1, 𝛽2,  𝛽3,

𝛽4,  𝛽5,  𝛽6,   𝛽7 are the model parameters. The model can be rewritten by taking the logarithm of 

both sides: 

        log ( 𝑇𝑖) =  log(𝛽0) + 𝛽1 log(𝐷𝑖) + 𝛽2log(𝐻𝑖) + 𝛽3log(𝑃𝑖) + 𝛽4 log(𝐺𝑖) + 𝛽5log(𝑈𝑖) + 

                             + 𝛽6 log(𝐴𝑖) + 𝛽7 log(𝐸𝑖) + 𝜀  

If we let log(𝛽0) = 𝜇; log(𝐷𝑖) = 𝑋1; log(𝐻𝑖) = 𝑋2 and so on for all variables, we obtain: 

log(𝑇𝑖) =  𝜇 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +𝛽7𝑋7 +  𝜀  
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This equation is the log-linear representation of the accelerated failure time (AFT) model, which 

is a parametric survival model (Wei, 1992). 

 

2.2. Data sources  

Time from the beginning of the outbreak to the first case in each country was gathered from ECDC 

public data on COVID-19 on the 11th of April (ECDC, 2020a). The 2019 Human Freedom Index 

(HFI) was used as a measure for 𝐻𝑖 (Cato Institute, 2019). GDP per capita, urbanization 

percentage, and air transportation (total passengers carried) data were obtained from the latest 

available World Bank datasets (World Bank, n.d.). Measures for detection and reporting capacity 

were extracted from the 2019 Global Health Security Index (Johns Hopkins Center for Health 

Security, 2019). Distances between centroids of countries and China were calculated using the R 

package geosphere (Robert J. Hijmans, 2019).  

 

2.3. Statistical analysis 

A total of 156 countries were considered for the analysis, all of them experiencing their COVID-

19 case by the 11th of April 2020. Five countries without air travel data were treated as missing at 

random and dropped from the analysis. China, as the starting point, was not included. The starting 

date of the analysis was considered the 30th of December 2019. Median, minimum and maximum 

survival times (times to first case) were determined. Each independent variable in the model was 

divided by its median into two groups. The survival probability of each group was then assessed 

using Kaplan-Meier estimates. The survival probabilities of the “low” (below median) and “high” 

(above median) groups were compared using the log-rank test. P-values were considered 

significant below 0.05. The variables (continuous, in log form) were included in the AFT model, 
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to evaluate their individual effect on survival time. The best fitting distribution for the AFT model 

was chosen using Akaike’s Information Criterion (AIC) (Bozdogan, 1987). P-values of model 

coefficients were considered significant below 0.05. A second model was designed, with the HFI 

separated into its constituent parts, personal freedom and economic freedom. Cox proportional 

hazards regression was also performed, and the proportional hazards assumption was tested using 

Schoenfeld’s residuals (Grambsch & Therneau, 1994). Statistical analysis was performed in R. 

 

3. Results 

The first countries affected had either geographical proximity to China or very high economic 

development. Developing countries reported cases later, particularly those at a considerable 

distance from China. Figure 1 depicts survival times across the globe. 

    

Figure 1: Number of days to first case 
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Median time to first case was 68 days. The first affected country (after China) was Thailand, at 14 

days. The last affected was Yemen at 102 days. As Figure 2 shows, the distribution of survival 

 Median time to first case was 68 days. The first affected country (after China) was Thailand, at 

14 days. The last affected was Yemen at 102 days. The distribution of survival times is bimodal, 

with a group of neighboring and developed countries reporting their first cases in the first wave. 

The rest of the world was affected in a larger, second wave. Between 35 and 52 days only two 

countries reported their index case. 

 The survival curve for all countries is shown on the top left of Figure 3. The period in which few 

countries reported index cases is the flat portion of the survival curve. The independent variables 

of the model, each divided into two groups by their median, are depicted in Figure 3. The log-rank 

Figure 2: Distribution of survival times (days) 
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test showed that the observed difference in survival between “low” and “high” groups is 

statistically significant (p < 0.0001) for all variables except population (p = 0.49). Longer distance 

from China was associated with longer time to event. For the other variables, lower values were 

associated with longer time to event.   

 

 

 

 

Figure 3: Kaplan-Meier survival curve for all countries (top-left) and Kaplan-Meier 

curves for the upper half and lower half of values for each variable in the analysis.  
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Variables were then included in the AFT model. Based on the AIC, the best distribution to fit the 

data was the Gompertz distribution. As shown in Table 1, HFI, population, and GDP per capita 

were significantly associated with survival time (p < 0.05). The model is in log-log form, which 

means that a variable coefficient is interpreted as the percentage change in survival time given a 

1% change in the variable, or the elasticity of the survival time with respect to the variable. 

Coefficients were positive for all variables except distance. HFI had the largest effect, with a 

coefficient of 2.46. The weakest effect is that of air transportation volume, with a coefficient of 

0.058.  

Table 1 - AFT model with Human Freedom Index 

Variables  

 

Coefficient † 

 

95 % C.I. P-value 

Human Freedom Index 2.46 (0.91, 4.01) 0.002 

Population 

 

0.348 

 

(0.19, 0.51) < 0.0001 

GDP 0.424 (0.09, 0.76) 0.013 

Urbanization 0.378 (-0.30, 1.05) 

 

0.27 

Distance from source -0.287 (-0.61, 0.03) 0.08 

Air transport 0.058 (-0.05, 0.17) 0.30 

GHS detection score 0.267 (-0.12, 0.66) 0.18 

† The estimated coefficient of a variable in log form in the AFT model is the elasticity of survival 

time with respect to the variable.  
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Another AFT analysis with the HFI replaced by its constituents, personal and economic freedom 

was performed (Table 2). Personal freedom had the largest effect (coefficient = 1.8). Economic 

freedom had a lower effect (coefficient = 0.273) and was not significant (p = 0.71). A model 

including personal freedom instead of the HFI had the lowest AIC of all the models tested. Thus, 

personal freedom is the variable that has the most influence on survival time. Cox proportional 

hazards analysis was also performed. Variable coefficients had similar values. However, the 

proportional hazards assumption was not met. 

 

Table 2 - AFT model with Human Freedom Index decomposed  

Variables  

 

Coefficient† 

 

95 % C.I. P-value 

Personal freedom 1.80 (0.65, 2.94) 0.002 

Economic freedom 0.273 (-1.19, 1.74) 0.71 

Population 

 

0.347 

 

(0.19, 0.51) < 0.0001 

GDP 0.436 (0.11, 0.77) 0.01 

Urbanization 0.378 (-0.34, 1.00) 

 

0.33 

Distance from source -0.330 (-0.65, -0.007) 0.045 

Air transport 0.071 (-0.04, 0.18) 0.22 

GHS detection score 0.224 (-0.17, 0.62) 0.26 
† The estimated coefficient of a variable in log form in the AFT model is the elasticity of survival 

time with respect to the variable.     
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4. Discussion 

This study suggests that some of the factors associated with disease spread in the theoretical 

framework of the proposed gravity model are supported by empirical data from the current 

COVID-19 pandemic. Previous attempts to relate the gravity model to spread in the context of a 

pandemic used generalized linear models rather than survival analysis to model time to index case 

(Li et al., 2011). Past work on the topic also did not include potential confounders such as personal 

freedom, air travel volume and urbanization. Opportunities to conduct an ecological study of this 

type are as rare as major pandemics. Spread of the disease to the entire world allows for a survival 

analysis with more data points and no censoring, which leads to more precise estimates.  

Selection bias is an important issue in ecological studies. Only countries that had experienced their 

index case by the 11th of April were included. This represents the vast majority of countries in the 

world. However, generalizability of the study to the Pacific Island nations and other countries not 

included might be limited. The potential for information bias should also be brought up. Data upon 

which indices like the Global Health Security Index are constructed is self-reported by countries. 

Nonetheless, alternatives of comparable comprehensiveness are not available. 

A key finding of the study is the fact that higher personal freedom is associated with less time until 

a pandemic reaches a country. Potential confounding could be caused by the tendency of countries 

with lower personal freedom to underreport and underdiagnose (Kavanagh, 2020). However, the 

Global Health Security Detection and Reporting score mitigates at least some of the confounding, 

as it accounts for the capacity and willingness of countries to report. This could have implications 

in the policy of the early stages of a pandemic. Most countries have opted for social distancing 

measures which reduce personal freedom, like limiting public gatherings and travel restrictions 

(Lewnard & Lo, 2020). Consensus on the effectiveness of these measures has not been reached. 
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Countries like Sweden are trying to limit social and economic disruption, even though certain 

models predict high mortality associated with this strategy (Gardner et al., 2020).  

Implementing restrictions as soon as a potentially pandemic virus starts spreading could delay its 

arrival to a country. If countries had more time to prepare their response, there would be a lower 

probability of straining health systems and thus fewer deaths. This type of analysis could be used 

to guide risk assessment and identify countries that are likely to be affected sooner in the course 

of a pandemic. These high-risk countries that have less time to spare would benefit from even more 

attention to pandemic preparedness. The results merit further investigation into the application of 

the model at the district and regional level, to assess whether it can be used at a smaller scale. 

In conclusion, the gravity model-based survival analysis managed to measure the influence of 

important socio-economic variables on the time from the beginning of a pandemic to the first case 

in a country. Ecological survival analysis at the country level can aid in identifying patterns of 

spatial and temporal spread and potentially provide insight into the influence of social and 

economic factors on the global transmission of viral diseases. 

 

 

Data availability  

The data that support the findings of this study are available on figshare at 

https://doi.org/10.6084/m9.figshare.12205265.v1 . These data were derived from the public 

domain sources listed as references in the link and manuscript. 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.01.20087569doi: medRxiv preprint 

https://doi.org/10.6084/m9.figshare.12205265.v1
https://doi.org/10.1101/2020.05.01.20087569
http://creativecommons.org/licenses/by/4.0/


12 

 

References 

Bozdogan, H. (1987). Model selection and Akaike’s Information Criterion (AIC): The general 

theory and its analytical extensions. Psychometrika, 52(3), 345–370. 

https://doi.org/10.1007/BF02294361 

[dataset] Cato Institute. (2019). The Human Freedom Index 2019. 

https://www.cato.org/sites/cato.org/files/human-freedom-index-files/cato-human-

freedom-index-update-3.pdf 

[dataset] ECDC. (2020a, April 11). COVID-19 Coronavirus data. 

https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data 

[dataset] ECDC. (2020b, April 23). Situation update worldwide. 

https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases 

Eisenberg, J. N. S., Desai, M. A., Levy, K., Bates, S. J., Liang, S., Naumoff, K., & Scott, J. C. 

(2007). Environmental Determinants of Infectious Disease: A Framework for Tracking 

Causal Links and Guiding Public Health Research. Environmental Health Perspectives, 

115(8), 1216–1223. https://doi.org/10.1289/ehp.9806 

Gardner, J. M., Willem, L., van der Wijngaart, W., Kamerlin, S. C. L., Brusselaers, N., & 

Kasson, P. (2020). Intervention strategies against COVID-19 and their estimated impact 

on Swedish healthcare capacity [Preprint]. Epidemiology. 

https://doi.org/10.1101/2020.04.11.20062133 

Grambsch, P. M., & Therneau, T. M. (1994). Proportional hazards tests and diagnostics based on 

weighted residuals. Biometrika, 81(3), 515–526. https://doi.org/10.1093/biomet/81.3.515 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.01.20087569doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20087569
http://creativecommons.org/licenses/by/4.0/


13 

 

[dataset] Johns Hopkins Center for Health Security, N. T. I. (2019). Global Health Security 

Index. https://www.ghsindex.org/wp-content/uploads/2020/04/2019-Global-Health-

Security-Index.pdf 

Kavanagh, M. M. (2020). Authoritarianism, outbreaks, and information politics. The Lancet 

Public Health, 5(3), e135–e136. https://doi.org/10.1016/S2468-2667(20)30030-X 

Kraemer, M. U. G., Golding, N., Bisanzio, D., Bhatt, S., Pigott, D. M., Ray, S. E., Brady, O. J., 

Brownstein, J. S., Faria, N. R., Cummings, D. A. T., Pybus, O. G., Smith, D. L., Tatem, 

A. J., Hay, S. I., & Reiner, R. C. (2019). Utilizing general human movement models to 

predict the spread of emerging infectious diseases in resource poor settings. Scientific 

Reports, 9(1), 5151. https://doi.org/10.1038/s41598-019-41192-3 

Lewnard, J. A., & Lo, N. C. (2020). Scientific and ethical basis for social-distancing 

interventions against COVID-19. The Lancet Infectious Diseases, S1473309920301900. 

https://doi.org/10.1016/S1473-3099(20)30190-0 

Li, X., Tian, H., Lai, D., & Zhang, Z. (2011). Validation of the Gravity Model in Predicting the 

Global Spread of Influenza. International Journal of Environmental Research and Public 

Health, 8(8), 3134–3143. https://doi.org/10.3390/ijerph8083134 

Mangili, A., Vindenes, T., & Gendreau, M. (2015). Infectious Risks of Air Travel. Microbiology 

Spectrum, 3(5). https://doi.org/10.1128/microbiolspec.IOL5-0009-2015 

Nay, O. (2020). Can a virus undermine human rights? The Lancet Public Health, 

S246826672030092X. https://doi.org/10.1016/S2468-2667(20)30092-X 

Robert J. Hijmans. (2019). Package ‘geosphere’. https://cran.r-

project.org/web/packages/geosphere/geosphere.pdf 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.01.20087569doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20087569
http://creativecommons.org/licenses/by/4.0/


14 

 

Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus 

disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433. 

https://doi.org/10.1016/j.jaut.2020.102433 

Tatem, A. J., Rogers, D. J., & Hay, S. I. (2006). Global Transport Networks and Infectious 

Disease Spread. In Advances in Parasitology (Vol. 62, pp. 293–343). Elsevier. 

https://doi.org/10.1016/S0065-308X(05)62009-X 

Viboud, C., Bjornstad, O. N., Smith, D. L., Simonsen, L., Miller, M. A., & Grenfell, B. T. 

(2006). Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza. Science, 

312(5772), 447–451. https://doi.org/10.1126/science.1125237 

Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the cox regression 

model in survival analysis. Statistics in Medicine, 11(14–15), 1871–1879. 

https://doi.org/10.1002/sim.4780111409 

[dataset] World Bank. (n.d.). World Bank Open Data. https://data.worldbank.org/ 

  

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.01.20087569doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20087569
http://creativecommons.org/licenses/by/4.0/

