TITLE

Risk Factors of the Severity of COVID-19: a Meta-Analysis

FIRST AUTHOR

Name: Abdur Rahman

Affiliation: Statistics Discipline, Khulna University, Khulna-9208, Bangladesh.

Mobile: +8801777160684

Email: akashrahman32@gmail.com

CO-AUTHOR

Name: Nusrat Jahan Sathi

Affiliation: Statistics Discipline, Khulna University, Khulna-9208, Bangladesh.

Mobile: +8801903109684

Email: sathinoboni@gmail.com

CORRESPONDING AUTHOR

Name: Abdur Rahman

Affiliation: Statistics Discipline, Khulna University, Khulna-9208, Bangladesh.

Mobile: +8801777160684

Email: akashrahman32@gmail.com

ABSTRACT

BACKGROUND: Although the infection rate of COVID-19 is very high, all the patients getting infected don't always die or go through brutal states. This indicates there may be some factors that possibly boost the severity of COVID-19.

OBJECTIVE: We intend to identify some probable risk factors that are responsible for the severity of COVID-19 using a meta-analysis.

METHODS: The literature exploration lasted up to 18 April 2020 and through PubMed, Google Scholar, EMBASE, and Cochrane Library we have identified 10 pertinent publications. To paraphrase the outcomes of autonomous researches, we have performed a random-effect meta-analysis.

RESULTS: A total of 2272 patients' information was extracted from the selected literature. We have found sex (male) (Risk ratio [RR] =1.29 [1.07; 1.54]), hypertension (RR=1.79 [1.57; 2.04]), diabetes (RR=1.57 [1.25; 1.98]), fatigue or myalgia (RR=1.17 [1.02; 1.35]), and smoking history (RR=1.71 [1.25; 2.35]) are potential risk factors for the severity of COVID-19. We found fever (RR=1.21 [0.66; 2.22]), cough (1.13 [0.98; 1.30]), and diarrhea (RR=1.14 [0.93; 1.40]) as insignificant risk factors for COVID-19 severity.

CONCLUSION: The findings of this research may be beneficial to identify patients with higher risks to provide additional medical attention from the very beginning of the treatment.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) originated from Wuhan (Hubei state, China), carrying similar DNA structure to SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) has spread throughout the world and creating massive panic to the human life^{1,2}. The disease has the worst feature to transmit from person to person³, considering this feature and its lofty infection rate on January 30, 2020, the World Health Organization (WHO) declared COVID-19 as a global emergency.

To date, it has infected more than 3 million people and over 2 lakh have died. The outbreak has hit the USA, Italy, and Spain very badly. This three-country together holds over 1.3 million total identified cases and over 50% of the total death because of COVID-19⁴. As no proven treatment/medicine or vaccine is available to date⁵ the harm of COVID-19 has already overtaken SARS and MARS⁶.

Although the infection rate is very high, all the patients getting infected by this disease don't always die. The global recovery rate is about 28.6% and the death rate is about 7% until April 28, 2020⁴. This information suggests that there may be some factors that influence the risk of death or critical medical states of the patients. That's why it is important to identify and estimate such risk factors to predict the severe complication of the patients for avoiding or to minimize the severity⁷.

Researchers are trying to identify risk factors that deteriorate the health state of the COVID-19 patients mostly by using meta-analysis and systematic review. Some earlier investigations reported males are more likely to die or to go through the critical states of COVID-19^{8,9}. There is an ongoing debate on whether smoking is a risk factor for COVID-19 severity. Although some regard it as a risk factor^{9,27}, others found no significant alliance between smoking and the

severity of COVID-19^{8,10}. Other clinical traits termed as risk factors in the publications are hypertension^{11,12}, diabetes^{12,13}, and fever⁸.

In this study, we endeavor to identify some demographic and clinical characteristics which can be appraised as risk factors for the severity of COVID-19 by summarizing findings of the published literature.

METHODS

LITERATURE SEARCH

The literature search lasted from April 2, 2020, to April 18, 2020. Both of the authors searched through PubMed, Google Scholar, EMBASE, and Cochrane Library using keywords: "COVID-19", "Novel Coronavirus", "COVID-19 characteristics", "COVID-19 patient", and "China coronavirus". We initially identified all the studies conformed to the keywords without any further investigations.

INCLUSION CRITERIA

Based on the following criteria, we have included literature in the current study: a) bivariate data available for the severity (death/ICU (Intensive Care Unit)/severe state/others) of COVID-19 patients, b) multiple factors available for the severity of the disease, c) full-text access to the article, d) information presented in English language, e) peer-reviewed accepted/published articles, and f) literature published in and after December 2019 (after the first patient identified). We illustrate the systematic selection procedure of literature in Figure 1.

OUTCOMES AND COVARIATES

The authors extracted the number of patients that have undergone the severity of COVID-19 and are stable/recovered under various factors like sex, smoking history, fatigue or myalgia,

cough, fever, diarrhea, hypertension, and diabetes. The term severity in this study represents death/ICU/severe state or any other critical medical state. We also extracted the authors' names, publication year, study design, sample size, country, and other related information from the finally selected studies.

STATISTICAL ANALYSIS

Considering the primary goal of the study we performed random effect meta-analysis where the effect sizes were computed from the raw information dragged from individual studies. We considered the effect size for the study to be a Risk Ratio [RR] and reported with a 95% confidence interval. I² statistic reported in the forest plot reflects relative between studies heterogeneity and P value (two tail with level 0.05) determines the significance of the heterogeneity test. Microsoft Excel 2013 was used to create metadata, get their univariate characteristics, and export to other software for further analysis. Random effect meta-analysis and relevant forest plots were generated using statistical software R version 3.5.1.

RESULTS

We have extracted 2272 patients' information from 10 autonomous studies¹⁴⁻²³ and incorporated them into this research. The highest sample size for the isolated study was 1099, and 34 was the smallest sample size, other study characteristics are summarized in Table 1.

Table 2 demonstrates that the bulk of the COVID-19 patients included in the study through a methodical scheme are male (60%). The clinical characteristics of the patients comprise diabetes (11.2%), hypertension (21.3%), fever (90.2%), cough (65%), fatigue or myalgia (41.0%), and diarrhea (9.2%). Only 11.3% of the patients smoke cigarettes (current or past smoker).

Forest plot in (Figure 2) illustrates that only six studies were entailed for the meta-analysis for characteristic smoking history where all ten studies availed information about the sex of the patients. From the random-effect meta-analysis, we see that patients with smoking history have a higher risk to experience a severe state of COVID-19 (RR =1.71; 95% CI, 1.25 to 2.35) or 71% higher risk pertained to a non-smoker patient. The pooled risk ratio for the male suggests higher risk compared to female patients (RR=1.29; 95% CI, 1.07 to 1.54). In both cases between-study heterogeneity is low and the test of heterogeneity is insignificant (I²=38%, P=0.15; and I²=33%, P=0.15, respectively).

Figure 3 displays individual and pooled risk ratios for patients with diabetes and hypertension. Although six isolated studies data implies that diabetes is an insignificant risk factor but the overall effect is significant and indicates a higher risk to undergo brutal state for a patient with diabetes (RR =1.57; 95% CI, 1.25 to 1.98). The heterogeneity is moderate (I²=54%) and the test for heterogeneity is significant (χ^2 =19.59, P=0.02). Also, patients with hypertension have a higher risk (RR=1.79; 95% CI, 1.57 to 2.04) compared to patient those are not suffering from hypertension with insignificant heterogeneity, I²=0% (P=0.50).

Respectively eight and nine studies were involved in the analysis for factors diarrhea and fatigue or myalgia of patients (Figure 4). In both cases the heterogeneity is very low and is insignificant (I^2 =8%, P=0.37) and (I^2 =0%, P=0.86), respectively). The pooled random effect infers diarrhea have an insignificant impact on the severity of COVID-19 (RR=1.14; 95% CI, 0.93 to 1.40). But the overall RR=1.17 (95% CI, 1.02 to 1.35) suggests that patients with fatigue or myalgia have a 17% higher risk to go through a severe state of COVID-19.

From (Figure 5), we glimpse that cough and fever have no considerable relation with the severity of COVID-19. The pooled effect reflects patient with cough symptom has RR=1.13 (95% CI, 0.98 to 1.30) and patient with fever has RR=1.21 (95% CI, 0.66 to 2.22). Although

for cough symptom the between-study heterogeneity is nil and insignificant ($I^2=0\%$, P=0.48), it is very big and also significant for fever ($I^2=85\%$, P<0.01).

DISCUSSION

This study through an organized way incorporated 10 publications and performed a randomeffect meta-analysis to identify some risk factors that are probably accountable for the severity of COVID-19. Although none of the articles incorporated in the current research reports any effect size, we computed the effect size (risk ratio) from the published data. The pooled effect size with confidence interval deemed to avouch a factor as a significant risk factor.

We found male patients have a reasonably higher risk to undergo the severity of COVID-19 compared to female patients echoing with some previous studies^{8,9}. An explanation of this can be, the male has weaker immunity because of genetic and hormonal factors and has shown higher mortality in several infectious diseases^{24,25}.

Although some aforementioned studies^{8,10} found smoking as an insignificant factor to worsen the state of COVID-19 patients, we have found smoking as a significant factor. Smoking is associated with lower or impoverished immunity of smokers²⁶, which can explain why smokers might have elevated risks. Some previous studies^{9,27} supports our finding, they documented smoking as a significant risk factor, and smokers have a higher risk to undergo a severe state of COVID-19. In a previous study²⁸, smoking was also reported as a risk factor for the critical illness of MERS (Middle East Respiratory Syndrome) too.

We incorporated some clinical traits of the patients like cough, fever, fatigue or myalgia, diarrhea, diabetes, and hypertension in this study. Among those, we have found fatigue or myalgia, hypertension, and diabetes are significant risk factors that might lead to a critical state of COVID-19 patients. Some previous studies^{8,12,13} also reported both diabetes and

hypertension are significant risk factors of COVID-19 progression. These two comorbidities negatively affected MERS-CoV patients' too²⁹.

From the random-effect meta-analysis, we conclude fever, cough, and diarrhea are insignificant risk factors for the severity of COVID-19. But a previous meta-analysis⁸ published fever as a significant risk factor for the severity of COVID-19.

CONCLUSIONS

In conclusion, we consider sex (male), smoking history, diabetes, hypertension, and fatigue or myalgia are significant risk factors for the severity of COVID-19. It may require additional medical attention for patients with higher risk from the very beginning of the treatment. We also hope the findings of this study may assist experts in vaccine development programs.

ACKNOWLEDGEMENT

FUNDING: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CONFLICT OF INTEREST: None declared.

References

1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Yu T. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020 Feb 15;395(10223):507-13. (https://doi.org/10.1016/S0140-6736(20)30211-7)

2. Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Weekly. 2020;2(8):113-22.

Grabinskinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020
Feb;12(2):135.

4. Worldometers.info, Dover, Delaware, U.S.A [Cited 28 April 2020] (http://www.worldometers.info/coronavirus/#countries)

5. Heymann DL, Shindo N. COVID-19: what is next for public health?. The Lancet. 2020 Feb 22;395(10224):542-5. (https://doi.org/10.1016/S0140-6736(20)30374-3)

6. Lu H, Stratton CW, Tang YW. Outbreak of Pneumonia of Unknown Etiology in Wuhan China: the Mystery and the Miracle. J Med Virol 2020. (https://doi.org/ 10.1002/jmv.25678)

7. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. The Lancet. 2015 Sep 5;386(9997):995-1007.

8. Xu L, Chen G. Risk factors for severe corona virus disease 2019 (COVID-19) patients: a systematic review and meta analysis. medRxiv. 2020 Jan 1.

9. Zhao X, Zhang B, Li P, Ma C, Gu J, Hou P, Guo Z, Wu H, Bai Y. Incidence, clinical characteristics and prognostic factor of patients with COVID-19: a systematic review and metaanalysis. medRxiv. 2020 Jan 1.

10. Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). European journal of internal medicine. 2020 Mar 16.

11. Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y. and Zhou, Y., 2020. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. International Journal of Infectious Diseases.

12. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, Bi Z, Zhao Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology.

2020 Mar 11:1-8.

13. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, Qin R, Wang H, Shen Y, Du K, Zhao L. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/Metabolism Research and Reviews. 2020 Mar 31.

14. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, Wang T. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Bmj. 2020 Mar 26;368.

15. Deng Y, Liu W, Liu K, Fang YY, Shang J, Wang K, Leng F, Wei S, Chen L, Liu HG. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chinese Medical Journal. 2020 Mar 27.

16. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS, DuB. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine. 2020 Feb 28.

17. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet.2020 Feb 15;395(10223):497-506.

18. Lei S, Jiang F, Su W, Chen C, Chen J, Mei W, Zhan LY, Jia Y, Zhang L, Liu D, Xia ZY. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. 2020 Apr 5:100331.

19. Liu W, Tao ZW, Wang L, Yuan ML, Liu K, Zhou L, Wei S, Deng Y, Liu J, Liu HG, Ming Y. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chinese medical journal. 2020 Feb 28.

20. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020 Mar 17;323(11):1061-9.

21. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine. 2020 Feb 24.

22. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020 Feb 23. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020 Mar 11.

24. Klein SL, Flanagan KL. Sex differences in immune responses. Nature Reviews Immunology. 2016 Oct;16(10):626.

25. Giefing-Kröll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging cell. 2015 Jun;14(3):309-21.

26. World Health Organization. Tuberculosis and HIV: some questions and answers. In Tuberculosis and HIV: some questions and answers 1999.

27. Zhao Q, Meng M, Kumar R, Wu Y, Huang J, Lian N, Deng Y, Lin S. The impact of COPD and smoking history on the severity of Covid-19: A systemic review and meta-analysis. Journal of medical virology. 2020 Apr 15.

28. Alraddadi BM, Watson JT, Almarashi A, Abedi GR, Turkistani A, Sadran M, et al. Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014. Emerging infectious diseases 2016; 22: 49-55.

29. Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. International Journal of Infectious Diseases. 2016 Aug 1;49:129-33.

Table 1: Characteristics of the selected literatures

Author	Population with Placing	Size	Study Design	Time Period	Outcome	Factors included in the study
Chen et al ¹⁴	Covid-19 positive patient from Tongji Hospital in Wuhan, China	274	Retrospective study	Jan 13, 2020 to Feb 12, 2020	Death	Sex, smoke, diabetes, hypertension, fever, cough, fatigue or myalgia, and diarrhea
Deng et al ¹⁵	Patients from two tertiary hospitals in Wuhan, China	225	Retrospective study	Jan 1, 2020 to Feb 21, 2020	Death	Sex, diabetes, hypertension, fever, cough, fatigue, and diarrhea
Guan et al1 ¹⁶	Confirmed patients from 552 hospitals in 30 provinces, China	1099	Retrospective study	Dec 11, 2019 to Jan 29, 2020	Severe	Sex, smoking history, diabetes, hypertension, fever, cough, fatigue or myalgia, and diarrhea
Huang et al ¹⁷	All Covid-19 patients from a designed hospital in Wuhan, China	41	Retrospective study	Dec 16, 2019 to Jan 2, 2020	ICU	Sex, smoking history, diabetes, hypertension, fever, cough, fatigue or myalgia, and diarrhea
Lei et al ¹⁸	Clinical data from Renmin, Zhongnan, Tongji and Central Hospital, China	34	Retrospective study	Jan 1, 2020 to Feb 5, 2020	ICU	Sex, diabetes, hypertension, fever, cough, fatigue or myalgia, and diarrhea
Liu et al ¹⁹	Patients from three tertiary hospitals in Wuhan, China	78	Retrospective study	Dec 30, 2019 to Jan 15, 2020	Progressi on	Sex, smoking history, hypertension, diabetes, and cough

Table 1: Characteristics of the selected literatures (Continue)

Author	Population with Placing	Size	Study Design	Time Period	Outcome	Factors included in the study
Wang et al ²⁰	Consecutive hospitalized patient at Zhongnan Hospital in Wuhan, China	138	Retrospective study	Jan 1, 2020 to Jan 28, 2020	ICU	Sex, diabetes, hypertension, fever, cough, fatigue or myalgia, and diarrhea
Yang et al ²¹	Adult patients in Wuhan Jin Yin-tan hospital, China	52	Retrospective study	Dec 2019 to Jan 26, 2020	Non- survivor	Sex, smoking history, diabetes, fatigue or myalgia, hypertension, and cough
Zhang et al ²²	All hospitalized patients from Wuhan hospital, China	140	Retrospective study	Jan 5, 2020 to Jan 24, 2020	Severe	Sex, smoking history, diabetes, hypertension, fever, cough, fatigue or myalgia, and diarrhea
Zhou et al ²³	Adult (>=18 years) patients from Jinyintan Hospital and Wuhan Pulmonary Hospital, China	191	Retrospective multi-center cohort study	Dec 29, 2019 to Jan 31, 2020	Non- survivor	Sex, smoking history, diabetes, hypertension, fever, cough, fatigue or myalgia, and diarrhea

	Chen	Deng	Guan	Huang	Lei et	Liu et	Wang	Yang	Zhang	Zhou	
Characteristics	ot a114	ot a115	ot a116	ot a117	a ¹¹⁸	a ¹¹⁹	at a120	ot a121	ot a122	ot a123	Overall
	et ai	et al	et al	et al	ai	ai	et al	et al	et al	et al	
	171	124	637	30	14	39	75	35	71	119	1315
Male											
	(62.4)	(55.1)	(58.1)	(73.2)	(41.2)	(50.0)	(54.3)	(67.3)	(50.7)	(62.6)	(60.0)
Smoking	19		158	3		5			9	11	205
Smoking		-			-		-	-			
history	(6.9)		(14.6)	(7.3)		(6.4)			(6.4)	(5.8)	(11.3)
	(0.5)		(1.10)	(7.0)		(0.1)				(0.0)	(110)
	47	26	0.1	0	0	5	14		17	26	251
	47	20	81	8	8	5	14	9	17	- 30	251
Diabetes											
	(17.2)	(11.6)	(7.4)	(19.5)	(23.5)	(6.4)	(10.1)	(17.3)	(12.1)	(22.6)	(11.2)
	93	58	165	6	13	8	43		42	58	468
Hypertension				Ű				-			
	(33.9)	(25.8)	(15.0)	(14.6)	(38.2)	(10.3)	(31.2)		(30.0)	(30.4)	(21.3)
	249	189	975	40	31		136	51	110	180	1961
Four	219	105	715	40	51		150	51	110	100	1901
revel	(00.0)	(04.0)	(00.7)	(07.6)	(01.0)	-	(00.6)	(00.1)	(01.7)	(0.4.2)	(00.0)
	(90.9)	(84.0)	(88.7)	(97.6)	(91.2)		(98.6)	(98.1)	(91./)	(94.2)	(90.2)
	185	85	745	31	18	34	82	40	90	151	1461
Cough											
	(67.5)	(37.8)	(67.8)	(75.6)	(52.9)	(43.6)	(59.4)	(76.9)	(75.0)	(79.1)	(65.0)
Estimate an	137	57	419	18	25		96	6	90	44	892
Fatigue or						-					
myalgia	(50.0)	(25.3)	(38.1)	(43.9)	(73.5)		(69.6)	(11.5)	(75.0)	(23.0)	(41.0)
	(30.0)	(23.3)	(30.1)	(43.7)	(75.5)		(0).0)	(11.5)	(75.0)	(25.0)	(41.0)
		22	12				14		10	0	10.6
	11	33	42	1	2		14		18	9	196
Diarrhea						-		-			
	(28.1)	(14.7)	(3.8)	(2.6)	(5.9)		(10.1)		(12.9)	(4.7)	(9.2)

Table 2: Baseline characteristics of COVID-19 patients for different studies

Note: Data are presented as n, and (n/N *100%); where n is the number of patients with certain characteristics and N is the total number of available patients observed in the study under that certain characteristics.

Figure 1: Flow chart showing the study selection procedure

Figure 2: Forest plot for factors smoking history and sex (male) illustrating the distribution of the risk ratio of COVID-19 severity

Figure 3: Forest plot for factors diabetes and hypertension illustrating the distribution of the

risk ratio of COVID-19 severity

Figure 4: Forest plot for factors diarrhea and fatigue or myalgia illustrating the distribution of the risk ratio of COVID-19 severity

Figure 5: Forest plot for factors cough and fever illustrating the distribution of the risk ratio of

COVID-19 severity