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ESSENTIALS 

 Mechanisms contributing to frequent thrombosis in COVID-19 remain unknown 

 NETs and neutrophil activation were measured in patients with COVID-19 -associated 

thrombosis 

 Thrombosis in COVID-19 was associated with higher levels of circulating NETs and 

calprotectin 

 Contributions of neutrophils and NETs to thrombosis in COVID-19 warrant urgent 

investigation 
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ABSTRACT 

Background: Early studies of patients with COVID-19 have demonstrated markedly 

dysregulated coagulation and a high risk of morbid arterial and venous thrombotic events. While 

elevated levels of blood neutrophils and neutrophil extracellular traps (NETs) have been 

described in patients with COVID-19, their potential role in COVID-19-associated thrombosis 

remains unknown. 

 

Objectives: To elucidate the potential role of hyperactive neutrophils and NET release in 

COVID-19-associated thrombosis.  

 

Patients/Methods: This is a retrospective, case-control study of patients hospitalized with 

COVID-19 who developed thrombosis (n=11), as compared with gender- and age-matched 

COVID-19 patients without clinical thrombosis (n=33). In addition to capturing clinical data, we 

measured remnants of NETs (cell-free DNA, myeloperoxidase-DNA complexes, and citrullinated 

histone H3) and neutrophil-derived S100A8/A9 (calprotectin) in patient sera. 

 

Results: The majority of patients (9/11) were receiving at least prophylactic doses of 

heparinoids at the time thrombosis was diagnosed. As compared with controls, patients with 

COVID-19-associated thrombosis had significantly higher blood levels of markers of NETs (cell-

free DNA, myeloperoxidase-DNA complexes, citrullinated histone H3) and neutrophil activation 

(calprotectin). The thrombosis group also had higher levels of D-dimer, CRP, ferritin, and 

platelets, but not troponin or neutrophils. Finally, there were strong associations between 

markers of hyperactive neutrophils (calprotectin and cell-free DNA) and D-dimer. 

 

Conclusion: Elevated levels of neutrophil activation and NET formation in patients hospitalized 

with COVID-19 are associated with higher risk of morbid thrombotic complications. These 

observations underscore the need for urgent investigation into the potential relationship 

between NETs and unrelenting thrombosis in COVID-19. 
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INTRODUCTION 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the disease known as 

coronavirus disease 2019 (COVID-19). It most commonly presents with influenza-like illness 

and viral pneumonia, but in its most severe manifestation progresses to acute respiratory 

distress syndrome (ARDS) and multi-organ failure [1]. To date the viral pandemic has resulted 

in millions of infections worldwide (https://coronavirus.jhu.edu/map.html). 

 

In COVID-19, elevated levels of blood neutrophils predict severe respiratory disease and 

unfavorable outcomes [2, 3]. Neutrophil-derived neutrophil extracellular traps (NETs) play a 

pathogenic role in many thrombo-inflammatory states including sepsis [4, 5], thrombosis [6-8], 

and respiratory failure [9, 10]. NETs are extracellular webs of chromatin and microbicidal 

proteins that are an evolutionarily conserved aspect of innate immune host-defense [11]; 

however, NETs also have potential to initiate and propagate inflammation and thrombosis.  

NETs deliver a variety of oxidant enzymes to the extracellular space, including 

myeloperoxidase, NADPH oxidase, and nitric oxide synthase, while also serving as a source of 

extracellular histones that carry significant cytotoxic potential. NETs drive cardiovascular 

disease by propagating inflammation in vessel walls [12]. Furthermore, when formed 

intravascularly, NETs can occlude arteries [13], veins [14], and microscopic vessels [15]. Early 

studies of COVID-19 suggest a high risk of morbid arterial events [16], and the risk of venous 

thromboembolism (VTE) is increasingly revealing itself as more data become available [17]. 

 

Descriptive and mechanistic studies to date that examine COVID-19 pathophysiology have 

focused on monocytes and lymphocytes more so than neutrophils and their effector products. 

Our group recently reported high levels of NETs in 50 patients hospitalized with COVID-19 as 

compared with healthy controls [18]. Here, we describe 11 cases of thrombosis in patients 

hospitalized with COVID-19 and demonstrate an association with neutrophil hyperactivity and 

NET release. 
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METHODS 

Human samples for NETs analysis. All 44 patients studied here had a confirmed COVID-19 

diagnosis based on FDA-approved DiaSorin Molecular Simplexa COVID-19 Direct real-time RT-

PCR assay. Blood was collected into serum separator tubes by a trained hospital phlebotomist. 

After completion of biochemical testing ordered by the clinician, the remaining serum was stored 

at 4°C for 4 to 48 hours before it was deemed “discarded” and released to the research 

laboratory. Serum samples were immediately divided into small aliquots and stored at -80°C 

until the time of testing. This study complied with all relevant ethical regulations, and was 

approved by the University of Michigan Institutional Review Board (HUM00179409), which 

waived the requirement for informed consent given the discarded nature of the samples. 

 

Quantification of S100A8/A9 (calprotectin). Calprotectin levels were measured with the 

Human S100A8/S100A9 Heterodimer DuoSet ELISA (DY8226-05, R&D Systems) according to 

the manufacturer’s instructions. 

 

Quantification of cell-free DNA. Cell-free DNA was quantified in sera using the Quant-iT 

PicoGreen dsDNA Assay Kit (Invitrogen, P11496) according to the manufacturer’s instructions. 

 

Quantification of myeloperoxidase-DNA complexes. Myeloperoxidase-DNA complexes were 

quantified similarly to what has been previously described [19]. This protocol used several 

reagents from the Cell Death Detection ELISA kit (Roche). First, a high-binding EIA/RIA 96-well 

plate (Costar) was coated overnight at 4ºC with anti-human myeloperoxidase antibody (Bio-Rad 

0400-0002), diluted to a concentration of 1 µg/ml in coating buffer (Cell Death kit). The plate 

was washed two times with wash buffer (0.05% Tween 20 in PBS), and then blocked with 4% 

bovine serum albumin in PBS (supplemented with 0.05% Tween 20) for 2 hours at room 

temperature. The plate was again washed five times, before incubating for 90 minutes at room 

temperature with 10% serum or plasma in the aforementioned blocking buffer (without Tween 

20). The plate was washed five times, and then incubated for 90 minutes at room temperature 

with 10x anti-DNA antibody (HRP-conjugated; from the Cell Death kit) diluted 1:100 in blocking 

buffer. After five more washes, the plate was developed with 3,3',5,5'-Tetramethylbenzidine 

(TMB) substrate (Invitrogen) followed by a 2N sulfuric acid stop solution. Absorbance was 

measured at a wavelength of 450 nm using a Cytation 5 Cell Imaging Multi-Mode Reader 

(BioTek). Data were normalized to in vitro-prepared NET standards included on every plate, 

which were quantified based on their DNA content. 
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Quantification of citrullinated-histone H3. Citrullinated-histone H3 was quantified in sera 

using the Citrullinated Histone H3 (Clone 11D3) ELISA Kit (Cayman, 501620) according to the 

manufacturer’s instructions. 

 

Statistical analysis. When two groups were present, data were analyzed by Mann-Whitney 

test. Correlations were tested by Pearson’s correlation coefficient.  Data analysis was with 

GraphPad Prism software version 8. Statistical significance was defined as p<0.05. 
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RESULTS 

We identified 11 patients who developed a thrombotic event while admitted for treatment of 

COVID-19 at a large academic medical center (Table 1). The events consisted of three strokes 

and nine VTE events (Table 2). Nine were receiving at least prophylactic doses of heparinoids 

at the time the event was diagnosed. The other two patients were found to have pulmonary 

emboli on the day of admission (Table 2). Nine of the patients were receiving respiratory 

support by mechanical ventilation at the time of the event. To date, eight have been discharged 

from the hospital, two have died, and one remains hospitalized. 

 

To better understand the extent to which patients diagnosed with thrombotic events differed 

from other patients hospitalized with COVID-19, we identified a matched cohort of 33 patients 

hospitalized with COVID-19 over the same month (Table 1). The control cohort was identical for 

age and sex. The cohort was similar in terms of comorbidities and ultimate outcome (18% died 

in the thrombosis group and 21% in the control group). For all 44 patients, we were able to 

access a blood sample collected during their hospitalization. As it relates to diagnosis of the first 

thrombotic event for each patient, six blood samples were banked within three days of event 

diagnosis. Three were banked earlier (5, 7, and 12 days prior to event diagnosis) and two later 

(both at 6 days). As compared with the control group, patients with a thrombotic event 

demonstrated significantly higher levels of calprotectin, a marker of neutrophil activation (Figure 

1A). Similarly, three different markers of NETs (cell-free DNA, myeloperoxidase-DNA 

complexes, and citrullinated histone H3) were also markedly elevated in the thrombosis group 

as compared with the matched controls (Figure 1B-D). 

 

We then turned our attention to other clinical biomarkers that might associate with a thrombotic 

event. The thrombosis group had higher levels of peak D-dimer (Figure 2A), but not troponin 

(Figure 2B). Peak CRP and ferritin were also modestly higher in the thrombosis group (Figure 

2C-2D). Interestingly, peak neutrophil levels did not differ between groups, but platelets were 

significantly higher in patients who developed thrombosis (Figure 2E-F). Finally, we asked 

whether there was an association between blood markers of neutrophil activation (such as 

calprotectin and cell-free DNA) and D-dimer within this cohort of COVID-19 patients (n=44). 

Despite the small number of patients, there were strong correlations between peak D-dimer and 

both calprotectin and cell free DNA (Figure 3A-B). 
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DISCUSSION  

Hyperactivity of the coagulation system is a common finding of severe COVID-19 [20]. Indeed, 

many patients have a profile to suggest a prothrombotic diathesis including high levels of fibrin 

degradation products (D-dimer), elevated fibrinogen levels, and low antithrombin levels [20, 21]. 

We recently characterized the blood of 50 patients hospitalized with COVID-19 and found 

significantly elevated levels of NETs as compared with healthy controls [18]. Here, we extend 

that analysis by demonstrating particularly high levels of NETs in a subgroup of COVID-19 

patients diagnosed with a thrombotic event. Given the known link between NETs and 

thrombosis in many inflammatory conditions, these data suggest that the role of NETs in 

COVID-19-associated thrombophilia warrants systematic investigation. 

 

Intravascular NET release is responsible for initiation and accretion of thrombotic events in 

arteries, veins, and microvessels, where thrombotic disease can drive end-organ damage in 

lungs, heart, kidneys, and other organs[22, 23]. Mechanistically, DNA in NETs may directly 

activate the extrinsic pathway of coagulation[24], while NETs also present tissue factor to initiate 

the intrinsic pathway[25]. Serine proteases in NETs such as neutrophil elastase release brakes 

on coagulation by proteolyzing various tissue factor pathway inhibitors [26]. Bidirectional 

interplay between NETs and platelets might also be critical for COVID-19-associated thrombosis 

as has been characterized in a variety of disease models [23, 24]. 

 

Approaches to combatting NETs [27-29] include the dismantling of NETs with 

deoxyribonucleases and strategies that prevent initiation of NET release such as neutrophil 

elastase inhibitors and peptidylarginine deiminase 4 inhibitors. As we await definitive antiviral 

and immunologic solutions to the current pandemic, we posit that anti-neutrophil therapies may 

be part of a personalized strategy for some individuals affected by COVID-19. Furthermore, 

those patients with hyperactive neutrophils may be at particularly high risk for thrombotic events 

and might therefore benefit from more aggressive anticoagulation while hospitalized. 
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Table 1:  COVID-19 patient characteristics 

 Thrombosis (n=11) Matched (n=33) 

Demographics 

Age (years)*  56 ± 12 (38-77) 57 ± 12 (33-82) 

Female 2 (18.1%) 6 (18.2%) 

White/Caucasian 3 (27.2%) 14 (42.4%) 

Black/African-American 5 (45.5%) 15 (45.5%) 

Unknown 2 (18.2%) 4 (12.1%) 

Thrombosis 

Arterial 2 (18.1%) 0 (0%) 

Venous 8 (72.7%) 0 (0%) 

Both 1 (9%) 0 (0%) 

Comorbidities 

Ischemic heart disease 5 (45.5%) 8 (24.2%) 

History of stroke 1 (9%) 4 (12.1%) 

Hypertension 6 (54.5%) 22 (66.7%) 

Obesity 6 (54.5%) 22 (66.7%) 

History of smoking 4 (36.4%) 8 (24.2%) 

Diabetes 4 (36.4%) 15 (45.5%) 

Renal disease 4 (36.4%) 10 (30.3%) 

Lung disease 1 (9%) 6 (18.2%) 

Cancer 1 (9%) 6 (18.2%) 

Autoimmune disease 1 (9%) 0 (0%) 

Immune deficiency 0  4 (12.1%) 

Outcome 

Discharged 8 (72.7%) 23 (69.5%) 

Death 2 (18.1%) 7 (21.2%) 

Remains hospitalized 1 (9%) 3 (9%) 

* Mean ± standard deviation 
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Table 2: Thrombosis details in patients with COVID-19 

Patient Age Sex Day Ventilation Event Prophylaxis Outcome 

1 70s F 3 Mechanical Acute PE SQ Heparin 5000 U TID Discharge 

2 60s M 

9 Mechanical Ischemic stroke (left middle cerebral artery) SQ Heparin 5000 U TID 

Discharge 

19 Mechanical 
LE DVT (right femoral vein, iliac vein, and 

popliteal vein) 
SQ Heparin 7500 U TID 

3 50s M 16 Mechanical Ischemic stroke (left posterior cerebral artery) SQ Heparin 5000 U TID Death 

4 50s M 27 Mechanical 
Ischemic stroke (both supra- and infra-tentorial 

foci, suggesting an embolic source) 
SQ Heparin 7500 U TID 

Remains in 
hospital 

5 30s M 2 Mechanical 
Bilateral LE DVT (right popliteal vein, left 

gastrocnemius vein) 
Enoxaparin 40 mg daily Discharge 

6 40s M 2 Mechanical 
Bilateral LE DVT (bilateral common femoral 

veins and popliteal veins) 
SQ Heparin 5000 U TID Discharge 

7 40s M 36 Mechanical Acute PE (segmental and subsegmental) Heparin gtt 1400 U/hour Death 

8 40s F 1 
Nasal 

cannula 
Acute PE (segmental and subsegmental) None Discharge 

9 50s M 1 Room air Acute PE (segmental and subsegmental) None Discharge 

10 60s M 5 Mechanical UE DVT (right UE DVT) Enoxaparin 40 mg daily Discharge 

11 70s M 9 Mechanical Acute PE (segmental) Heparin gtt 850 U/hour Discharge 

F=female; M=male; SQ=subcutaneous; gtt=continuous IV heparin; LE=lower extremity; UE=upper extremity; DVT=deep vein 
thrombosis; PE=pulmonary embolism; u=units; TID=three times daily 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.04.30.20086736doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20086736


14 
 

 

Figure 1: Elevated levels of NETs in the blood of COVID-19 patients diagnosed with a 

thrombotic event, as compared with matched controls. Serum was tested for calprotectin 

(A), cell-free DNA (B), myeloperoxidase-DNA complexes (C), and citrullinated histone H3 (D). 

N=33 for the control group and n=11 for the thrombosis group. Comparisons were by Mann-

Whitney test; *p<0.05, **p<0.01, and ***p<0.001. 
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Figure 2: Association between peak levels of clinical biomarkers and diagnosis of a 

thrombotic event. Clinical testing is reported for D-dimer (A), troponin (B), C-reactive protein 

(C), ferritin (D), absolute neutrophil count (E), and absolute platelet count (F). N=33 for the 

control group and n=11 for the thrombosis group. Comparisons were by Mann-Whitney test; 

*p<0.05 and **p<0.01. Comparisons for peak troponin and peak neutrophil count were not 

statistically significant. 
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Figure 3: Correlation between neutrophil activation markers and D-dimer. Calprotectin (A) 

and cell-free DNA (B) were compared to peak D-dimer levels. Data were analyzed by Pearson’s 

method. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.04.30.20086736doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20086736

