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Abstract

Deterministic mathematical models (called Compartmental models) of disease propa-
gation such as the SIR model and its variants (MSIR, Carrier state, SEIR, SEIS, MSEIR,
MSEIRS models) are used to study the propagation of COVID19 in a large population
with specific reference to India.
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1 Introduction
The SIR model is one of the simplest compartmental models employed to mathematically model infectious diseases.
This model comprises of three compartments: susceptible (S), infectious (I) and recovered (R).

The first two compartments - Susceptible and Infectious - have self-explanatory names. “Recovered” can, however,
be looked at from a broader perspective. More generally, we can say that R consist of all the immune individuals.
An immune individual can either be recovered or deceased, because neither of them can catch nor transmit the
concerned disease. Each of these quantities is time-dependent, owing to the progressive nature of the
disease.

Assuming a deterministic system, we model the epidemic using ordinary differential equations. By deterministic,
we mean the state of each compartment at any instant in time is completely determined by the initial conditions (of
the system) along with the differential equations. In simple models vital dynamics like the birth rate and death rate
are omitted, while in more general models, they too are taken into account. We will look into both types of models
in this paper.

2 SIR Model (omitting vital dynamics)
S−→ I −→ R

The ODEs used to model in a simple SIR model without using vital dynamics are as follows:

dS
dt

=−αSI
N

(eq. 2.01) dI
dt

=
αSI
N
−β I (eq. 2.02) dR

dt
= β I (eq. 2.03)

The growth rate of the disease is defined as the product of number of susceptible and infectious individuals. Here,
α is the disease transmission rate and β is the recovery rate.

The nonlinear term in the above equations may be understood as follows. The rate at which the number of infected
people increases with time is related to the size of the event which corresponds to infected individuals and
susceptible individuals coming into close proximity with one another. The size of this event is clearly proportional
to the product of the number of susceptible individuals (S) and the number of infected individuals (I). Conversely,
the number of susceptible individuals falls at the same rate as they cease to be susceptible and become
infected.

Equation 2.01 suggests that the number of susceptible individuals decreases with the growth rate of the disease.
Since growth rate is never negative, it implies that the function S(t) is a decreasing function. Equation 2.02
suggests that the rate of increase in infectious individuals increases with the growth rate (obviously) and decreases
with more individuals getting infectious. Finally, equation 2.03 suggests the recovery (immunity) rate is directly
proportional to the number of infectious individuals. This implies that R(t) is an increasing function.

Since the total population must remain constant, we have an additional equation S(t)+ I(t)+R(t) = N (constant).
Our objective is to develop a model for any country irrespective of their total population count. So, it makes sense
to divide the above equations by their total population. This way S, I and R are rendered fractional values. To build
up more on this idea, we will introduce some terminologies:

• Basic Reproduction Ratio: R0 =
α
β
. This ratio helps determine the expected number of secondary infections

given a primary set (of initial conditions).

• Resolution Time: T =
1
β
. This gives a measure of the average time taken to determine the fate of an

individual after contracting the disease (recovery or death).
A solution to the SIR model over the course of two weeks is shown in Figure 1.
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Figure 1: α = 2.18, N = 1000, β = 0.5, S(0) = 999, I(0) = 1, R(0) = 0

Using the parameters mentioned, it was observed that it took roughly 4.77 days for the epidemic to reach its peak
value. At this time, 430 individuals were infected. It was also observed that only a meagre 14 individuals were
never infected throughout the entire epidemic.

3 Solutions to the SIR model

3.1 Exact analytic solution
Until recently, only numerical methods were used to solve the SIR model. But in 2014, Harko and his coauthors
derived an analytical solution.

Let us differentiate Eq. 2.01 with respect to time t. We get -
dI
dt

=−N
α

[
S′′

S
−
(

S′

S

)′]

Now, eq. 2.02 transforms to,

S′′

S
=

(
S′

S

)2

−β
S′

S
+

α
N

S′

Now, eliminating I, from eq. 2.03,
dR
dt

=−Nβ
α

(
S′

S

)
−→ (eq.3.01)
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This is a simple 1st order ODE, which gives -

S = S0exp
(
− α

βN
R
)

where S0 is a positive integration constant. Now, differentiating the above eq. we get -

S′ =−S0α
βN

R′ exp
(
− α

βN
R
)

Now, if we differentiate eq 3.01 and Substitute the values of S, we get -
d2R
dt2 =

S0α
N

dR
dt

(
− α

βN
R
)
−β

dR
dt

We make the following further substitutions. Set,

exp
(
− α

βN
R(t)

)
≡ u(t)

This yields,

u′(t)
(

β − αS0u(t)
N

)
+u′′(t) =

u′(t)2

u(t)

We make the following final substitution,

ϕ(t) =
1

u′(t)
;

d
dt

u
′
(t) =− ϕ ′(u)

ϕ(u)3

This leads to a Bernoulli type differential equation,

ϕ ′(u) = ϕ(u)
(

ϕ(u)
(

β − αS0u
N

)
− 1

u

)

whose general solution is,
dt
du

= ϕ(u)→ N
u(c1N−βN log(u)+αS0u)

This means,

t(u)− t0 =
∫ u

0

N
s(Nc1 +S0αs−Nβ log(s))

ds

From this we may infer the time dependencies of the SIR model. However, this method is only of academic interest
as modern computers obviate the need for such methods that are not easily generalizable.

3.2 Numerical methods
3.2.1 Differential Transformation Method

Practically, it makes more sense to treat time as discrete since data is recorded not more frequently than once a day
or more usually, once every few days. When this is done the following difference (as opposed to differential)
equations are obtained.
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A discrete version of eq. 2.01, 2.02 and 2.03 would be-

S(k+1) =
1

k+1

[
−α

N

k

∑
n=0

S(k)I(k−n)

]
−→ (eq. 3.02)

I(k+1) =
1

k+1

[
α
N

k

∑
n=0

S(k)I(k−n)−β I(k)

]
−→ (eq. 3.03)

R(k+1) =
1

k+1
[β I(k)] −→ (eq. 3.04)

Now,

S(t) =
∞

∑
k=0

S(k)tk

Similarly, we get analogous expressions for R and I. These difference equations may then be easily iterated on a
modern computer to yield the final results.

3.2.2 Variational Iteration Method

In 1999, J.H. He introduced a new method of solving coupled nonlinear ODEs called the variational iteration
method (VIM). The idea behind this method is as follows.
Imagine we are called upon to solve a (likely nonlinear) ODE:

x′(t) = f (t,x(t)) ; x(t0) = x0; t0 < t < t f

The idea is to come up with a sequence of functions un(t) such that lim
n→∞

un(t)≡ x(t). The sequence of these
functions is postulated to be

un+1(t) = un(t)+
∫ t

t0
λn(s)

(
u′n(s)− f (s,un(s))

)
ds −→ (eq. 3.05)

The idea is to adjust λ (s), which is called a Lagrange multiplier, in such a way that lim
n→∞

un(t)≡ x(t) is guaranteed.
Define δun(t)≡ un(t)− x(t). Assuming un(t) is close to x(t), we want to see how to make sure that un+1(t) is even
closer to x(t). Ignoring the higher powers of δun(t) we get,

δun+1(t)≈ (1+λn(t))δun(t)−
∫ t

t0

(
λ ′n(s)+ fx(s,x(s)) λn(s)

)
δun(t) ds

The way to make sure that un+1(t) is even closer to x(t) is to ensure that δun+1(t)≈ 0. This is achieved by the
following identifications.

(1+λn(t)) = 0
λ ′n(s)+ fx(s,x(s))λn(s) = 0

This means,

λn(s, t) =−exp
(∫ t

s
fx (τ,un(τ))dτ

)
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With the Lagrange multiplier fixed, we may iterate Eq. 3.04 on a computer until the desired accuracy is achieved.
Before the advent of fast computers, analytical/semi-analytical methods such as these were very useful. But now
we have many more options to choose from.

Applying the variational iteration method in eq. 2.01, 2.02 and 2.03; we derive the correctional functional as
follows:

sn+1(t) = sn(t)+
t∫

0

λ1

[
s′n(w)+

α
n

xn(w)yn(w)
]

dw −→ (eq. 3.06)

Similarly, in+1(t) = in(t)+
t∫

0

λ2

[
i′n(w)−

α
n

xn(w)yn(w)+βyn(w)
]

dw −→ (eq. 3.07)

rn+1(t) = rn(t)+
t∫

0

λ3
[
r′n(w)−βyn(w)

]
dw −→ (eq. 3.08)

where, λ1, λ2 and λ3 are ’Lagrange Multipliers’ and, xn, yn and zn are obtained as discussed above and the equations
may be iterated to achieve the desired accuracy.
In this work however, we prefer to use standard numerical solvers of commercial packages such as MATLAB and
Mathematica.

4 Adding/modifying compartments to the basic SIR model

4.1 SIS model
It was observed that some diseases, including common cold, did not grant any long-lasting immunity. To model
such infections, the recovered (R) compartment had to be taken out from the SIR model.

S←→ I

So, the only change from the ODEs describing basic SIR would be to club Equation 2.01 and 2.03.

dS
dt

=−αSI
N

+β I (eq. 4.01) dI
dt

=
αSI
N
−β I (eq. 4.02)

A solution to the SIS model over a course of 14 days is depicted in figure 2.
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Figure 2: α = 2.18, N = 1000, β = 0.5, S(0) = 999, I(0) = 1

Using the parameters given above, it was observed that it took roughly 6 days for the epidemic to reach its peak
value. At this time, 820 individuals were infected. It was also observed that 180 individuals were never infected
throughout the entire epidemic.

4.2 The MSIR Model
M −→ S−→ I −→ R

In many infections, newborns were found to be disproportionately less affected. Measles is one such infection
where the babies were found to be less susceptible. This is due to a passive immunity they possess from maternal
antibodies which are passed to them across the placenta.

So we require a new compartment called “Maternally-derived immunity” (M) to the model. Now, on loosing this
passive immunity individuals in M compartment would transit to the S compartment. Gradually, a non-negative
number of these individuals would further move to the I compartment.

However, not every new-born has this passive immunity. Only a part of them may have it (depending on whether
the mothers possessed the antibodies before their birth or not). So, we assume that only a fraction q, of these
newborns possess passive immunity and the rest do not, implies that 1−q fraction of births is into the S
compartment.

Consequently, the ODEs that are used in this model are as follows:

dM
dt

= qΩ− γM−δM (eq. 4.04) dS
dt

= (1−q)Ω− αSI
N

+ γM−δS (eq. 4.05)

dI
dt

=
αSI
N
−β I−δ I (eq. 4.06) dR

dt
= β I−δR (eq. 4.07)
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Here Ω is the birth rate and δ is the death rate. Since the very essence of this model is passive immunity observed
in newborns, modelling without making use of vital dynamics would not have made sense. Consequently the birth
rate was added to Equation 4.04 and a fraction δ is subtracted from all the compartments to take care of the death
rate.

A simulation of a compartmental model including vital dynamics would give an idea of how extinction of the
population is real possibility. An MSIR model is simulated in Fig. 3.

(a) (b)

Figure 3: MSIR Model

Here N = 1000, α = 2.18, β = 0.05, Ω = 0.3, δ = 0.1, q = γ = 1. Observe that the population vanishes
in roughly 70 days.

4.3 Carrier State

S I R

C

In some diseases, like tuberculosis, some individuals may never fully recover and continue to carry the infection. In
due course of time, they may either fall sick again or would infect other susceptible individuals or both.

To model this infection, again a new compartment of “Carriers” (C) that toggle with I is introduced. Note that, all
those cases in which the carriers both fall sick themselves and also infect other individuals is taken care of in two
steps - C→ I and S→ I.

4.4 The SEIR model
S−→ E −→ I −→ R

In many infectious diseases, there is an “exposed period” after the transmission of infection to susceptible
individuals when they can potentially transmit the infection. This period comes before these people develop
symptoms and transmit infection. So, a new compartment of “Exposed” (E) individuals is set up.

If the average incubation period of the infection is taken to be an exponential distribution µ , to incorporate this
exposed period, the ODEs that have to be used are as follows:

9
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dS
dt

= Ω− αSI
N
−δS (eq. 4.08) dE

dt
=

αSI
N
−δE−µE (eq. 4.09)

dI
dt

= µE−β I−δ I (eq. 4.10) dR
dt

= β I−δR (eq. 4.11)

4.5 The SEIS model
S−→ E −→ I −→ S

Some infections show characteristics of both the SIS and SEIR model. That is to say, they do not confer any
long-lasting immunity, nor are the events of contracting the infection and becoming infectious simultaneous. Just
like the SIS model, the ODEs for the SEIS model is obtained by clubbing Equation 4.08 and Equation 4.11.

dS
dt

= Ω− αSI
N
−δS+β I (eq. 4.12) dE

dt
=

αSI
N
−δE−µE (eq. 4.13) dI

dt
= µE−β I−δ I (eq. 4.14)

4.6 The MSEIR model
M −→ S−→ E −→ I −→ R

Infections showing characteristics of both the MSIR and SEIR models are modelled using an amalgamated MSEIR
model. The ODEs are as follows:

dM
dt

= qΩ− γM−δM (eq. 4.15) dS
dt

= (1−q)Ω+ γM− αSI
N
−δS (eq. 4.16) dE

dt
=

αSI
N
−δE−µE (eq. 4.17)

dI
dt

= µE−β I−δ I (eq. 4.18) dR
dt

= β I−δR (eq. 4.19)

4.7 The MSEIRS model
M −→ S−→ E −→ I −→ R−→ S

MSEIRS model is similar to the MSEIR model, except for the fact that the immunity derived by the R compartment
is temporary and they would move back to the S compartment, once the immunity is lost.

5 Data Mining, pre-processing and modelling of COVID-19 pandemic
with specific reference to India.

5.1 Brief Overview
The crucial prerequisite for this project is the availability of data of various states in ample amount, the more the
details, the better. Most often, we do not encounter clean data i.e. we usually are not able to avail data-sets in the
format we desire. To be able to work with this data, it is crucial to pre-process them, which in itself is a significantly
time-consuming task. The next step is to model the pandemic with simple ordinary differential equations (ODEs)
using compartmental models like SIR and SIS. Various parameters will be involved in these equations. Prudent
values have to be assigned to these parameters to solve the differential equations. Clues for deciding them can be
obtained from the data we pre-processed. Once this is done, the evolution of all compartments with time have to be
plotted to understand the nature of the pandemic and to hunt methods to ‘flatten the curve’.

The classical approach to model epidemics involves creating a set of coupled linear differential equations with
multiple variables. These equations may be solved to obtain analytical solutions or can also be solved numerically
using initial values and estimates(for example, using Euler’s method). Parallel computing involves solving lengthy
problems by dividing them into smaller sub-problems which are solved simultaneously to obtain the complete
answer to the larger problem. It is very efficient in overcoming physical constraints that prevent frequency
modulation.

10
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For simulations involving small populations of people, an efficient method is to represent each individual in the
population as a string or vector of characteristic data and simulate the epidemic using computational means. This
type of model is referred to as MBI (Models Based on Individuals). It can be used to include a large number of
characteristics for each individual(such as age, sex, pre-existing health conditions, external factors). This method,
however, is computation heavy and uses quite a lot of memory and processing time if the population being
modelled is very large. For MBI, parallel processing has been used to significantly reduce computation time for
models such as SIR. Simulations can be run parallely on clusters of computers making use of data from previous
outbreaks. This was, in fact, used by RTI and University of Pennsylvania to model the spreading of epidemics. They
used MATLAB codes and the Parallel Computing Toolbox to make models. Again, this significantly reduced
processing time.

5.2 Data preprocessing
There are various datasets available open source for researchers to study the COVID-19 pandemic. For this project,
we have chosen to work with some datasets which we feel are authentic and exhaustive. The John Hopskins CSSE +
fixes data set, the official figures given by the Government of India and the open source database given in
www.covid19.org are some of the datasets used for collecting data on India for compiling this project. Often the
datasets files are quite large and cannot be preprocessed manually. So, we have made use of technologies like
MATLAB (MATrix LABoratory) to achieve this. One important dataset which we have pre-processed is the daily
increase of the total confirmed cases in all indian states since the first patient was detected. The plot obtain is
depicted in Figure 4.

Figure 4
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5.3 Modelling ODEs:
5.3.1 Compartments used

S E Is Q Q’ Rwd

D

RdC

Ias

Generally speaking, we have modelled the pandemic outbreak in India using the following models:
• Susceptible (S): It includes all those individuals who are not infected but are susceptible to contract the
disease.

• Exposed (E): It includes all those individuals who are exposed to infection, but are not yet infectious. With
time, some of them might fall ill, some of them may not. This compartment was included keeping in mind
that the incubation period of the COVID-19 pandemic was approximated to be a significant 5-6 days by
WHO.

• Symptomatic Infected (Is): It includes all the individuals who were symptomatic and infectious. They have
approached some health-care facility, but have not yet been quarantined. This compartment was brought
into the picture considering concerning news from worst-affected counties like Italy and the U.S. of the
hospitals and health-care centers getting filled up very fast during this pandemic. A significant portion of the
infected individuals may not be quarantined in case of the health-care system collapses.

• Asymptomatic Infected (Ias): It includes all those individuals who are affected but are asymptomatic before
they either recover or die or get permanently disabled. This compartment was formalised keeping after
reports of various authentic studies claiming that around 30-40 percent of the infected individuals remain
asymptomatic.

• Quarantined (Q): It includes all those individuals who are currently kept under quarantine in a health-care
facility.

• ICU (Q′): It includes the quarantined patients who had to be moved to Intensive Care Unit after their
condition worsened.

• Carrier (C): This compartment includes those individuals who have left quarantine after being tested
negative, but actually have not fully healed. So, they possess the ability to infect other susceptible
individuals. They eventually either fall sick again or recover from the disease. This compartment was
introduced after multiple cases of re-infection being reported from countries like South Korea, China and
Japan. While we fully do not understand the reason for these reports yet, it is safe to assume that one of the
following happened:

1. Due to medical inefficiency (inaccurate result)
2. Due to loss of immunity after recovery and subsequent re-infection.

To account for the first possibility, we have introduced the carrier compartment. To account for the second
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possibility, we have kept the transition from the recovered (R) compartment to susceptible (S) compartment
a possibility, while writing the ODEs.

• Recovered without disability (Rwd): In this compartment, we have kept all those individuals who have
recovered from the infection without any disability and can no longer infect any other individual.

• Deceased (D): This compartment includes all the individuals who have fell victims to the pandemic.
• Recovered with disability (Rd): In this compartment, we have kept all those individuals who have recovered
from the infection, can no longer infect anyone else, but have been permanently disabled post recovery.

5.3.2 Differential equations formulated

dS
dt

=−α
S(Is + Ias +C)

N
+gRwd −→ (eq. 5.01)

where α is the disease transmission rate and g is the rate at which a fraction of recovered individuals lose their
immunity.

dE
dt

= α
S(Is + Ias +C)

N
−µE −→ (eq. 5.02)

if the average incubation period is taken to be an exponential distribution µ .

dIs

dt
= rµE− εIs + fC−ζ1Is−η1Is −→ (eq. 5.03)

where f is rate at which a fraction of carriers gets re-infected. Here 0≤ r ≤ 1 is a number which gives a measure
of how many individuals in the exposed compartment moves of Is compartment, rather than the Ias one. Here ε , ζ1
and η1 are the rates at which infected individuals get quarantined, deceased and disabled respectively.

dIas

dt
= (1− r)µE−β3Ias−ζ3Ias−η3Ias −→ (eq. 5.04)

where β3, ζ3 and η3 are the recovery rate, death rate and disability rate of asymptomatic individuals,
respectively.

dQ
dt

= εIs−β1Q−νQ−ρQ−ζ2Q−η2Q−→ (eq. 5.05)

where ν , ρ , ζ2 and η2 are the rates at which the quarantined individuals go to carrier state, ICU, deceased and
disabled compartments respectively. β1 is the recovery rate for quarantined individuals.

dQ′

dt
= ρQ−β4Q′−ζ5Q′−η5Q′ −→ (eq. 5.06)

where β4, ζ5 and η5 are the rate with which individuals in ICU recover, die and get disabled, respectively.

dC
dt

= νQ− fC−β2C−ζ4C−η4C −→ (eq. 5.07)

where β2, ζ4 and η4 are the rate with which carrier individuals recover, die and get disabled silently,
respectively.

dRwd

dt
= β1Q+β3Ias +β2C−gRwd −→ (eq. 5.08)

dD
dt

= ζ1Is +ζ2Q+ζ3Ias +ζ4C+ζ5Q′ −→ (eq. 5.09)

dRd

dt
= η1Is +η2Q+η3Ias +η4C+η5Q′ −→ (eq. 5.10)
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5.3.3 Choice of parametric values

The parameters have been set to the following values in per unit days to simulate a typical outbreak on an epidemic
using the model that has been discussed above. The choice of some of the parameters is on basis of the study
INDSCI-SIM (described in a later section).

Values of parameters
Parameter Value Parameter Value
N 1 α 0.42
β1 0.5 ζ1 0.25
β2 0.1458 ζ2 0.2
β3 0.1458 ζ3 0.1
β4 0.05 ζ4 0.05
µ 0.5 ζ5 0.2
ν 0.05 η1 0.1
ε 0.5 η2 0.1
r 0.3 η3 0.05
g 0.0001 η4 0.01
f 0.2 η5 0.1
ρ 0.01

5.3.4 Result obtained

After solving the highly-coupled differential equations given in section 5.3.2, the plot for the various compartments
that was obtained is depicted in Figure 5.

Figure 5: Initial conditions: S(0) = 1−1×10−5, E(0) = 1×10−5, others = 0
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5.4 Effect of lock down
In this section, we study how imposing lock downs will affect the plot in figure 5. α denotes the number of
interactions per-capita. So a decrease in alpha would mean a lower rate of contact between infected and susceptible
individuals, as would be the case in a lock down. So, to simulate lock downs, we have decreased the value of the
parameter α to 0.14, for the overall period of lock down. The simulations of no lock down, lock down for days
60-90 and lock down for days 150-200 on the total active and deceased cases are depicted in Fig. 6 and 7.

Figure 6: Effect on net active cases: Is + Ias +Q+Q′+C

Figure 7: Effect on D compartment
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It turns out that just locking down, will only delay the peak of the epidemic. It seems like a periodic lock down is
actually allowing the pandemic to infect individuals in installments. Fig. 8, which is a simulation of when lock
downs are imposed for both days 150-200 and days 500-550, may make this idea more clear. The total cases remain
the same.

Figure 8: lock down for both days 150-200 and 500-550

Assumptions made:

• The entire system under consideration is locked down simultaneously at the point of enforcement.
• At least one individual remains infectious after the lock down is relaxed.
• No violations of lock down occur during the entire period of lock down.
• No migration from other cities/systems occurs to the system under consideration.

Recommendations for public policy:

Understanding how lock downs affect the epidemic, the government can make use of this vulnerability in the
spread of the pandemic by imposing lock downs at specific times, to slow the spread of the disease. Subsequently,
effective policies should be enacted to get the situation under control and set up medical facilities, to prepare for
the surge in infections that is to follow the lifting of lock down. The effect of setting up medical facilities is studied
in a later subsection.

Now, these lock downs can be executed in various fashions. One model is that of continuous lock down, like the
ones depicted above. But as proved above, they just delay the onset of the disease. To completely eradicate the
disease, the economy (nation) would have to lock down theoretically for an impractically long time (see later). This
is not possible due to the fragile nature of the Indian economy.
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5.4.1 Periodic lock down

In this strategy, the economy is shut down and re-opened at regular intervals to allow the economy to recover,
though minimally, in the time window allotted. One strategy is the 7+5 strategy, wherein lock down is imposed
(after a threshold time) for 7 days at length. Once this duration is over, it is reopened for 5 days, before going to the
next lock down for 7 days again. And this process is repeated. The simulation for the 7+5 strategy on our
compartmental model after the first 150 days is depicted in Fig.9.

Figure 9: 7+5 lock down from 150 days to eternity

From the Fig. 9, it seems that periodic lock down will in the long run, eradicate the disease. This is true, only if the
lock down is continued to eternity, which again is impractical. In real world scenarios, the economy would have to
be re-opened after some time. Fig. 10 shows what happens when you relax the periodic lock down measures after
250 days.
As evident from the Fig.10, once the periodic lock down is relaxed, the second wave of the epidemic returns,
thereby making this model too unfit for use alone.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20086306doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20086306
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 10: 7+5 lock down for 150-250 days

5.4.2 Light-switch lock down

Another strategy that can be employed is to lock the economy down when the number of reported cases cross a
certain threshold. Since in our model, the only cases that the government can document is of those displaying
symptoms or those currently admitted in a medical facility, we have simulated scenarios in which light-switch lock
down has been employed when the the net values of Is +Q+Q′ cross a pre-determined threshold value.The
simulations for the active cases at different threshold levels are depicted in Fig. 11.
From the plots given in Fig. 11, it is evident that light-switch lock down tends to stretch out the period of the
epidemic. Lower the threshold, longer the duration. The number of cases in this model too is constant. But unlike
the periodic or continuous lock down models, this gives an advantage to the system. The longer duration of the
epidemic implies that region’s medical system receives sufficient time to recover from the extra load it had to face,
during the onset of the epidemic. Thereafter, since the number of cases never increases beyond a certain value, by
controlling the threshold, we can ensure that most patients get adequate health care.
Assumptions made:

• The entire system under consideration is locked down simultaneously at the point of enforcement and the
lock down is relaxed at every region of the system simultaneously, when done so.

• At least one individual remains infectious after the lock down is relaxed.
• No violations of lock down occur during the entire period the lock down is imposed.
• No migration from other cities/systems occurs to the system under consideration.

Recommendations for public policy:

The manner in which the lock downs should be imposed by the government should be based on basic game theory
rules. Locking down the economy would yield a decrease in the spread. But keeping the economy shut for too long
can lead to economic depressions and increased filings for bankruptcies and unemployment which has to be
seriously considered before deciding the extent of the lock down. So, the fashion in which the lock down policies

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20086306doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20086306
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 11: Effect of light-switch lock down on active cases

would be implemented should be such, that the utility gained during the entire time period of the epidemic by
keeping the economy is optimized, while not allowing the epidemic to go out of control.

5.4.3 Violation of lock down

As depicted in several of our previous simulations, locking down can lead to a delay in the peak of the epidemic,
which can prove favourable for the government to set up crucial facilities needed for fighting the epidemic.
However, a point we did not elaborate on, is what if lock down is not followed religiously. In a real sense, it is very
much probable for a section of individuals to violate lock down due to personal reasons. To take this into account,
instead of defining α to a definite value at the time of lock down (0.14 in our previous simulations), we may define
it as a periodic function oscillating between a definitive maximum and minimum values with the period referring
to the time scale with which lock down is violated periodically. For the purposes of our simulation, we have
used

α(t) = 0.14+0.28sinv
(

2πt
τv

)
, where v = 2n,n ∈ Z+ governs the spread of the violation cycle (higher the value, more condensed the spread) and
τv gives the time scale of period of the cycle. The coefficients 0.14 and 0.28, indicate that the oscillation of α(t) is
within 0.14 and 0.42 (our original post-lock down and pre-lock down values). As will be apparent soon, it is the
spread that is a major deciding factor in how the dynamics of the epidemic and even a minimal violation of lock
down will cause the delay time (caused by lock down) to be reduced significantly. Fig. 12 depicts the simulations if
lock down is imposed for days 150-200 for varying values of τv with v fixed at v = 2.
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Figure 12: Effect on the total active cases: Is + Ias +Q+C for v = 2

Figure 13: A zoomed picture of the above plot for t<250

From the above figures, it is evident that events of violation of lock down will diminish the delay time (between
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first wave and second wave) that could have otherwise proved vital for helping the medical system recover. As
mentioned earlier, it is the spread that is the major factor that affects the dynamics of the epidemic and not the time
period of the cycle. Fixing τv = 10, Fig. 14 is the simulation for varying values of v, if lock down is imposed for
days 150-200.

Figure 14: Effect on the total active cases: Is + Ias +Q+Q′+C for τv = 10

As seen in the above plot, a more condensed violation (higher value of v) would help the delay go on for a longer
time. The no violation case, in fact corresponds to the limiting case, when v tends to infinity.

Assumptions made:

• The entire system under consideration is locked down simultaneously at the point of enforcement and the
lock down is relaxed at every region of the system simultaneously, when done so.

• At least one individual remains infectious after the lock down is relaxed.
• The violations of lock down occur in a periodic fashion.
• No migration from other cities/systems occurs to the system under consideration.

Recommendations for public policy:

From the above results, it may be possible that a periodic lock down works better. Since the guarantee of the lock
down being lifted in the near future, may decrease violations (thus condensing the spread), so that the delay time is
not diminished significantly.

5.5 Setting up quarantine and health-care facilities
In our model, the parameter ε determines the rate with which symptomatic infected individuals who have
approached a medical health-care facility requesting treatment are being quarantined. As mentioned in section 3.1,
this was introduced to account for the possibility of a collapse in medical infrastructure in case of an uncontrollable
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surge in the number of confirmed cases. For the simulations done by far, we have assumed it to be constant at
ε = 0.5. But, if the government takes appropriate measures to begin construction of medical facilities to curb the
epidemic, the story will be totally different. In this subsection, we will analyse what happens if instead of a
constant, ε is an increasing function of time (t). For this purpose, we have used the function:

ε(t) = 1−0.5e−t/τm

where τm corresponds to the time-scale of increase in the value of ε . Observe that at ε(0) = 0.5, which is the value
we used in our previous simulations, and limt→∞ ε(t) = 1. The simulations for various values of τm are depicted in
Fig.15 and 16.

Figure 15: Effect on the total active cases: Is + Ias +Q+Q′+C

Figure 16: Effect of total deceased cases: D
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Assumptions made:

• The health-care systems are set up in equal proportions at every region of the system.
• There is no discrepancy of accessing health-care facilities at two different locations in the system under
consideration.

• No lock down is imposed.
• No migration from other cities/systems occurs to the system under consideration.

Recommendations for public policy:

As observed in the above plots, the spread of the infection is dramatically reduced as τm decreases. So, the
government should take systematic and stringent measures to set up health-care and quarantine facilities around
the country, since this would decrease the number of cases of infection significantly

5.6 Strategical quarantining and testing
In all of the simulations done by far, it is only symptomatic individuals who are quarantined and thereby given the
appropriate treatment in a medical facility. Asymptomatic individuals are never identified. Thus it seems that the
bulk of the infections are spread by the Ias compartment. This issue can only be solved if strategic testing and
quarantining is done on mass populations so as to identify such silent carriers and quarantine them. To incorporate
this feature in our model, the equations for the two concerned compartments Ias and Q have to be slightly
modified. The modified equations are as follows:

dIas

dt
= (1− r)µE−β3Ias−ζ3Ias−η3Ias−λ (t)Ias

dQ
dt

= εIs−β1Q−νQ−ρQ−ζ2Q−η2Q+λ (t)Ias

where λ (t) is the identification rate of asymptomatic individuals. Now, before applying this testing strategy, it is
important for the ruling body (government) to first set up sufficient medical/quarantining facilities and ensure that
the symptomatic individuals, who have approached the hospital are all accommodated in some health-care facility.
Else, enacting policies to test asymptomatic individuals before ensuring the treatment of the cases at hand does not
make sense. Hence, this idea has to be used along with the model described in the section 5.5. From now, we set
ε(t) = 1−0.5e−t/τm with τm = 100 and

λ (t) = 0.7
(

1− e−t/τq
)

H (t− tq)

where τq determines the time-scale with which the efficiency of detection of asymptomatic cases increases and
H (t) is the Heaviside step function. This has been included to take care of the delay of implementation of this
testing and quarantining strategy. tq is the parameter which takes care of this delay time. In Fig.17 are the
simulations for various values of τq keeping tq = 200.
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Figure 17: Effect on the total active cases: Is + Ias +Q+C for tq = 200

Figure 18: A zoomed picture of the above plot for t<250

From the above figures, it is evident that a serious employment of the testing and quarantining strategy can
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decrease the number of active cases manifold. Longer it takes for the government to employ this strategy, the more
it can cost in terms of the number of people under its care. The simulations in Fig.19 will make this point clear,
where we have simulated the effect on active cases for varying values of tq keeping τq = 250.

Figure 19: Effect on the total active cases: Is + Ias +Q+C for τq = 250

As seen in the above plot, the sooner is this strategy employed (lesser tq), the faster will this epidemic get
over.
Assumptions made:

• The health-care systems are set up in equal proportions at every region of the system.
• There is no discrepancy of accessing health-care facilities at two different locations in the system under
consideration.

• Testing is not done as age/travel history specific.
• No lock down is imposed.
• No migration from other cities/systems occurs to the system under consideration.

Recommendations for public policy:

From the above result, it is clear that testing and quarantining of asymptomatic individuals is a crucial step that the
government should take to decrease the number of cases. Taking into account the highly contagious nature of
COVID-19, implementing this soon will not be easy, since the number of reported cases itself may overwhelm the
medical infrastructure. So, it is advised that as soon as the threat of the pandemic is detected, immediate steps
should be taken to set up more hospitals and quarantine facilities. Thereafter, mass testing and quarantining of
detected positive cases should be done substantially.
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5.7 Effect of migration
In this subsection, we will look at the effect of immigration on the economy and try to visualize how the infection
spreads to different regions over time. For now, we will only consider the migration due to compartments S, Ias and
E . This is based on the assumption that the other compartments comprise of those who have contracted the virus
and are aware of it, hence would ideally, avoid travel.
The modified differential equations are as follows:

dSi

dt
=−α

Si(Isi + Iasi +Ci)

Ni
+gRwdi +

n

∑
j=1 j ̸=i

Mi jS j −→ (eq. 5.11)

dEi

dt
= α

Si(Isi + Iasi +Ci)

Ni
−µEi +

n

∑
j=1 j ̸=i

Mi jE j −→ (eq. 5.12)

dIsi

dt
= rµEi− εIsi + fCi−ζ1Isi−η1Isi −→ (eq. 5.13)

dIasi

dt
= (1− r)µEi−β3Iasi−ζ3Iasi−η3Iasi +

n

∑
j=1 j ̸=i

Mi jIas j −→ (eq. 5.14)

dQi

dt
= εIsi−β1Qi−νQi−ρQi−ζ2Qi−η2Qi −→ (eq. 5.15)

dQ′i
dt

= ρQi−β4Q′i−ζ5Q′i−η5Q′i −→ (eq. 5.16)

dCi

dt
= νQi− fCi−β2Ci−ζ4Ci−η4Ci −→ (eq. 5.17)

dRwdi

dt
= β1Qi +β3Iasi +β2Ci−gRwdi −→ (eq. 5.18)

dDi

dt
= ζ1Isi +ζ2Qi +ζ3Iasi +ζ4Ci +ζ5Q′i −→ (eq. 5.19)

dRd i

dt
= η1Isi +η2Qi +η3Iasi +η4Ci +η5Q′i −→ (eq. 5.20)

where 1≤ i, j ≤ n corresponds to the variables for the n locations being considered. Here i corresponds to the
target location (to where immigration happens) and j corresponds to the source location (from where emigration
occurs). For simplicity we assume that the rate-coefficients do not depend the geographical region index.

5.7.1 Deciding Mi j

The migration coefficient should have the following properties:
1. In the earlier days of the epidemic, when reports of infections begin to float on media, it is natural for people

to panic, thereby resulting in an initial surge in the number of migrations because of speculations of an

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20086306doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20086306
http://creativecommons.org/licenses/by-nc-nd/4.0/


imminent lock down. Thereafter, this number will decline, on general awareness to avoid travel at times of
emergency.

2. It should be a characteristic function of the existing economic conditions of i and j.
From property 1, it is evident that we cannot define Mi j as a constant, instead it will be a function of time. Keeping
both properties in mind, the form of Mi j can be displayed as f (t)×πi, j where f (t) corresponds to the functional
form taking care of property 1. A good choice for f (t is:

f (t) =
(

t
τ1

)l

e−t/τ2

where τ1 determines the peak value of the migration rate and τ2 and l determines the time scale with which the
migration numbers reaches its maxima ad subsequently dies out. l also determines the rate of the surge in
migration.

Now, at any instant, the total number of individuals in each of the compartments S, Ias and E due to migration is
conserved i.e.

∑
i

∑
j ̸=i

Mi jE j = 0 =⇒ ∑
i

∑
j ̸=i

πi jE j = 0 =⇒ πi j =−π ji

5.7.2 Simulating effect of migration on our model

The anti-symmetric matrix [π]i j chosen for this simulation is given below:

City 1 City 2 City 3 City 4
City 1 0 -5 -10 -15
City 2 5 0 7 -10
City 3 10 -7 0 -5
City 4 15 10 5 0

Taking τ1 = 10, τ2 = 3 and l = 4, the simulation for a system of 4 cities is done in Fig. 20, when the first patient
(patient zero) belongs to city 1.

The higher number of cases in City 4 as seen from Fig. 20 is no coincidence. Observe that πi j is positive for
i = 4 ∀ j ∈ {1,2,3,4}. This indicates that maximum people migrated to City 4, hence the relatively higher number
of cases. Similarly, maximum people migrated from City 1, hence it is the least hit location. Also, it seems that the
first location to become free of the pandemic is the one where patient zero was located (City 1). Note that in these
simulations we have considered the population of each of the compartments to be equal. More interesting
behaviours will be observed if adding more details to this migration model.
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(a) (b)

(c) (d)

Figure 20: Patient zero belongs to City1

6 Comparing simulations with real documented data
In this section, we will compare some simulations with the actual data of active cases of India, obtained from
authentic sources such as John Hopskins CSSE + fixes data set and www.covid19.org

As observed in all of our previous plots, just imposing a lock down is sufficient to decease the number of cases to
near zero. But the actual trend of active cases does not follow this pattern. The plot of the active cases in India from
January 30, 2020 (the day patient zero was identified) to April 26, 2020 is given in Figure 21.
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Figure 21: Active Cases timeline of India

This anomaly may have occurred because of a number of reasons. Three major discrepancies we identified are as
follows:

1. In our model we have used the Is compartment to accommodate all those individuals who developed
symptoms and subsequently visited a medical facility to acquire treatment. But in doing so, we have assumed
that all the individuals who develop symptoms in the economy will seek treatment without haste. But in real
world, this may not necessarily be true. It is highly likely that some individuals opt to remain silent on the
issue to avoid social distancing, quarantine and other measures that may be against his personal interests.

2. In our model, we have defined the parameter ε as the rate with which symptomatic individuals are
quarantined. In addition to assuming the simultaneity in contracting the infection and reporting it to the
hospital for the individual in Is compartment, we also assumed that the test results are hundred percent
accurate. However, this is not necessarily true. Researchers from the UK’s University of Bristol claim that as
high as 30 percent of false negatives are generated in the current test of COVID-19. So, it is a real possibility
that some symptomatic individuals are not able to avail quarantine because they were wrongly tested
negative, and hence are unwillingly infecting other susceptible individuals they come in contact with.

3. In our previous simulations, we assumed that the act of imposing a lock down would immediately be
followed by a decrease in the value of the parameter α . But this is not necessarily true. On speculations of a
lock down, some days prior to it, there will be a rush among the public to get back to their residences before
the lock down begins. This increases the interaction rate between people. The hike will continue for a few
days after the lock down is imposed and thereafter α will decrease and attain a minimal value.

4. As mentioned in section 5.3.3, some of the parametric values were borrowed from the INDSCI-SIM study. It
turns out that their model is quite different from ours not only in terms of the equations, but also in terms of
the compartments used. So, the same parametric values might not necessarily hold in our model.

To account for the point 1 in the list of discrepancies, we have come up with a small change in our compartmental
model. We’ve introduced a new compartment called reluctant symptomatic (I′s) to accommodate those
symptomatic individuals who have ignored their symptoms and have thus not approached a health-care facility
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yet. Note that eventually, these symptomatic individuals are going to wilfully go to the hospitals when then
condition worsens. This is why the I′s compartment is not same as the Ias compartment, where the individuals
would never go to quarantine (Q) unless explicitly tested by the testing and quarantining strategy discussed in
section 5.6. Our modified compartmental model looks like the following:

S E I′s Is Q Q’ Rwd

D

RdC

Ias

All the equations stated in equations 5.01 - 5.10 is unchanged except that for dIs

dt
. Also a new equation for dI′s

dt
has

to be introduced. The modified differential equations for these compartments are as follows:

dI′s
dt

= r(1− s)µE−h(t)I′s −→ (eq. 5.21)

dIs

dt
= rsµE− εIs + fC−ζ1Is−η1Is +h(t)I′s −→ (eq. 5.22)

where s is a ratio which measures how much proportion of the individuals developing symptoms do not
immediately visit the hospital. h(t) is a time-dependent function which determines the time-delay the individuals
in I′s compartment exhibits before visiting a health-care facility and thereby get quarantined.

Intuitively d2h(t)
dt2 will be positive for some t < τw. Thereafter, it will be negative. The following choice for the

functional form of h(t) can been made:

h(t) =
1
π

arctan(d (t− τw))+0.5

τw determines the initial value of h(t). It also gives a measure of the time delayed by individuals in I′s on an average
before visiting the hospital. d gives a measure of the distribution of h(t). This parameter is defined to take into
account the asynchronism of time delay between different individuals in I′s.

As mentioned in point 2, in the list of discrepancies, the parameter ε needs to be taken care of to accommodate for
false negatives. To solve this issue, we have changed the definition of some of our parameters and compartments a
bit. Initially in section 5.5, we had attributed ε to the simply the rate with which more medical facilities are build
across the nation. But, ε should also account for the medical efficiency (accuracy of the tests). Now, taking into
account the early stringent lock down measures that the Government of India has taken, the accuracy factor seems
to be a far more dominant factor of the two. So, we redefine ε(t) as the rate which which the accuracy in
COVID-19 test is increased, thereby giving lesser false negatives with time. Subsequently we redefine τm (used in
section 5.5) to the measure of the time-scale with which this is achieved.
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ε(t) = 1−0.5e−t/τm

Note that we have not changed the coefficients 1 and 0.5, because coincidentally it gives a good estimate of the
initial testing accuracy (0.5) and the testing accuracy which we wish to achieve after a long time (1.0).

Since we have changed the definition of ε(t), now, there would be some symptomatic individuals who approached
the medical facility and were tested negative. But, they are still able to infect others. Now, numerous possibilities
arise for such individuals :

1. They fall sick at a later time, approach the hospital are tested positive and are thereby quarantined.
2. They fall sick later, approach the hospital, but are again negative negative (wrongly) and are again left. This

process can be repeated many times unless the individual is either quarantined or the loop is terminated (the
individual never visits a hospital after certain iterations).

3. They never approach a hospital again.

Our initial model cannot explain such transitions. So, we have decided to change the definition of our Ias and Is
compartments. We define the compartment I′ as all those individuals who are infected, but gets quarantined
(unless explicitly made to if caught by the testing and quarantining strategy) before either recovering or dying or
recovering with permanent disability. The individuals in this compartment may be symptomatic (but tested
negative) or asymptomatic. We define another compartment I as all those individuals who would are infected and
would necessarily eventually get quarantined wilfully (not by being found positive in the testing and quarantining
strategy). Now Ias in our previous model will be replaced with I′ and Is will be replaced with I. Note that the
difference between I′ and I′s (the new compartment that was added to take care of individuals who are delaying to
report their symptoms to the hospital) is that individuals in I would report their symptoms immediately, while
those in I′s would not. Both these compartments contain individuals who will necessarily be quarantined eventually
by their own will. Our modified compartmental model looks like the following:

S E I′s I Q Q’ Rwd

D

RdC

I′

Another change which we mentioned was necessary was the nature of the variation in the parameter α just before
and immediately after lock down is imposed. It will substantially increase some days prior to lock down and will
begin to decrease some days after lock down. Keeping this nature in mind, the following functional form has been
set for α .

α(t) = α1H ((τl− tr)− t)+
(
(((t− (τl− tr))

p +(α1−α2)))× e−(t−(τl−tr))/τr +α2

)
H (t− (τl− tr))

where τl is the time after which lock down is imposed. tr is the measure of the time before lock down when the
individuals in the system begin to rush back to their residence. τr is the time scale with which α(t) dies down after
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lock down. α1 is the value of lock down before t = τl− tr i.e. before the rush occurs and α2 is the minimum value
of α(t) that is reached some time after lock down is imposed. H(t) is the Heaviside step function.
Since April 2, 2020, the government started strategic testing and quarantining of asymptomatic individuals. Hence,
to get an effective simulation we would have to use the results obtained in section 5.6 as well.
The set of differential equations being used to run our simulation now looks as follows:

dS
dt

=−α(t)
S(I + I′+C)

N
+gRwd −→ (eq. 5.23)

dE
dt

= α(t)
S(I + I′+C)

N
−µE −→ (eq. 5.24)

dI′s
dt

= r(1− s)µE−h(t)I′s −→ (eq. 5.25)

dI
dt

= rsµE− ε(t)I + fC−ζ1I−η1I +h(t)I′s −→ (eq. 5.26)

dI′

dt
= (1− r)µE−β3I′−ζ3I′−η3I′−λ (t)I′ −→ (eq. 5.27)

dQ
dt

= ε(t)I−β1Q−νQ−ρQ−ζ2Q−η2Q+λ (t)I′ −→ (eq. 5.28)

dQ′

dt
= ρQ−β4Q′−ζ5Q′−η5Q′ −→ (eq. 5.29)

dC
dt

= νQ− fC−β2C−ζ4C−η4C −→ (eq. 5.30)

dRwd

dt
= β1Q+β3I′+β2C−gRwd −→ (eq. 5.31)

dD
dt

= ζ1I +ζ2Q+ζ3I′+ζ4C+ζ5Q′ −→ (eq. 5.32)

dRd

dt
= η1I +η2Q+η3I′+η4C+η5Q′ −→ (eq. 5.33)

where the functional forms of the time dependent parameters are as follows:
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α(t) = α1H ((τl− tr)− t)+
(
(((t− (τl− tr))

p +(α1−α2)))× e−(t−(τl−tr))/τr +α2

)
H (t− (τl− tr))

ε(t) = 1−0.5e−t/τm

h(t) =
1
π

arctan(d (t− τw))+0.5

λ (t) = 0.7
(

1− e−t/τq
)

H (t− tq)

As mentioned earlier, the values of parameters we have used in our previous simulations do not give expected
results. So the next simulation has been done after setting the parameters studying the literature survey of
COVID-19 pandemic and estimating good values that fit to the definition of parameters used for India. The table of
parameters used are as follows:

Values of parameters
Parameter Value Parameter Value
N 1,400,000,000 α1 0.5
α2 0.4 s 0.5
d 0.5 τw 55
β1 0.5 ζ1 0.25
β2 0.1458 ζ2 0.2
β3 0.1458 ζ3 0.1
β4 0.05 ζ4 0.05
µ 0.5 ζ5 0.2
ν 0.05 η1 0.1
ε 0.5 η2 0.1
r 0.3 η3 0.05
g 0.0001 η4 0.01
f 0.2 η5 0.1
ρ 0.01 τm 100
tq 62 τq 5000
τl 58 tr 5
p 0.53 τr 6

The simulation obtained by our model is compared with the actual documented data below:
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Figure 22: Comparison with actual data. N(0) = 1399999964, E(0) = 25, I′s(0) = 2, Is(0) = 0; Ias(0) = 2, Q(0) = 2, rest = 0

7 Highlights

1. Excluding all other external effects, will imposing a lock down lead to a decrease in number of
cases?

A — No. If we exclude key factors like strategic testing, setting up of medical facilities, etc., imposing a lock
down will not decrease the number of cases. It will simply delay the onset of the pandemic. The total number
of cases would still remain the same.

2. Why should the lock down be imposed in the first place if it does not decrease infections?

A — Imposing a lock down will give a temporary relief by decreasing the number of cases. This delay time can
be utilized to do important things like setting up medical infrastructure, increase the rate of testing and
quarantining, etc., so that the next wave that will follow would not be as lethal as it would be if no steps are
taken.

3. Will the number of infections remain low if the lock down is lifted in near future?

A — Any brief lock downs will only delay the onset of the peak of the pandemic. If regular testing and
quarantining is done, the number of infections will decrease if the lock down period is suitably long.

4. What will happen if lock down is lifted on 6 July, 2020 (100 days after lock down was imposed)?

A — Upon lifting lock down on this date, the pandemic could spin out of control - unless rigorous testing and
quarantining of infected individuals is done before lifting the lock down. Our model estimates that 14.6 crores
of individuals could die and 41.33 crores individuals (more than two-fifths of the population) could be
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affected.

5. What will happen if lock down is lifted on day 22 January, 2021 (300 days after lock down was
imposed)?

A — In this case, the pandemic could still lead to devastating results. Our model estimates that 7.03 crores
individuals could die and 19.79 crores individuals (almost one-seventh of the population) could be affected
(unless testing and quarantining of infected individuals is done more rigorously before lifting the lock
down).

6. How should the lock down be imposed to minimise the death count?

A — Imposing lock down until the disease disappears would be the most optimal solution. In our model, the
number of individuals in each compartment can take fractional values like 0.6, 1.3, etc. In reality, such values
represent the integers closest to them, since all calculations should be in natural numbers. So, if the number of
infections is less than unity, it would mean that there are no active cases. So imposing lock down till number
of infections becomes less than unity will amount to the least number of deaths.

7. Will the number of infections become zero if 1 year of lock down is imposed?

A — No, even though one year of lock down may seem excessive, it is still not sufficient to clear away all the
infections from India (unless testing and quarantining of infected individuals is done more rigorously before
lifting the lock down).

8. How long should the lock down be imposed in India for the number of infections to become
zero?

A — Assuming no significant violations of lock down occur, India would have to remain locked down till day
732 (lock down was imposed on day 58) to get rid of all infections (assuming the testing and quarantining
procedures are done at the current rate), thus ending the pandemic.

9. How many total deaths would occur if lock down is imposed till day 732? What will be the peak value
of active cases in a day? How many of these will be detected? How many individuals will be affected
during the pandemic?

A — Assuming that the virus does not mutate and no vaccine is found, and we largely forgo testing and
quarantining procedures, 38.8 lakh deaths would occur due to COVID-19 in India. The peak value of active
cases in a day would be 1.53 lakh. Of these 0.29 lakh would be detected. The pandemic would affect a total of
1.08 crore individuals.

10. Why are cases in India still increasing after lock down is imposed?

A — There can be multiple reasons for this. Even though lock down has been imposed, it is not strictly
followed. There are several places where proper care is not being taken. Violation of lock down means that
temporary curbing of the pandemic does not occur. So the number of cases will continue to rise. Also testing
and quarantining of the infected remains very poor in India.

11. How can we decrease the number of cases?

A — The most effective solution is to increase the rate of conducting tests. Asymptomatic individuals have to
be identified as quickly as possible to curb the pandemic.
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12. What happens if disease transmission rate (α) is negative?

A — If this is the case, then the number of infections quickly die out and the pandemic would be over soon.
With the initial conditions considered for the result obtained in section 5.3.4, the number of infections died
out in roughly 25 days for α =−0.01. This result agrees qualitatively with the findings in the paper
COVID-19 in India: State-wise Analysis and Prediction, authored by Palash Ghosh, Rik Ghosh and Bibhas
Chakraborty.

Note: The above results are what our deterministic model predicts which is subject to the simplifying assumptions
made while deriving them. Actual numbers may be different in case stochasticity is important, which the present
study ignores. Future deleterious mutations of COVID-19 may exacerbate the situation whereas development of an
effective vaccine may mitigate the problem.

8 Conclusions
This project proposal includes substantial new developments including the derivation of Compartment Models that
are specific to COVID-19 which includes rates of death, disability and quarantine numbers which the simpler
models do not include. In the model, we also distinguish between asymptomatic/symptomatic infections. These
newly derived models have been solved and results displayed. Further developments will involve using machine
learning and other tools to find a scientific way of pinning down adjustable constants in the models. A more
thorough study of the effects of inter-state migration on the epidemic is still pending. Lastly, effects of stochasticity
have to be thoroughly studied.
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Appendix

INDSCI-SIM
A state-level epidemiological model for India: INDSCI-SIM

Snehal Shekatkar, Bhalchandra Pujari, Mihir Arjunwadkar, Dhiraj Kumar Hazra, Pinaki Chaudhuri, Sitabhra Sinha,
Gautam I Menon, Anupama Sharma, Vishwesha Guttal
INDSCI-SIM is the first detailed, state-specific, epidemiological compartmental model for COVID-19 in
India.

Objectives

Their work include the following objectives:
• To develop an India-specific state-level model to predict spread of COVID-19 using state-of-the-art
epidemiological models.

• Calibrate model to clinical parameters, so that these can be used as benchmark numbers for modeling.
• Incorporate state-specific demographic data.
• Model different non-pharmaceutical interventions (NPI) strategies in each state.
• Make all the codes and online tools available.
• Flexible enough for easy update and changes transparently communicated.

Similarities with our model

• It features both the susceptible and exposed compartment in the same definition in our model.
• Exactly two compartments arise from the exposed compartment (into pre-symptomatic and asymptomatic),
like our model (asymptomatic and symptomatic). The parameter γ used in this work is analogous to the
parameter used r used in our work.

• Only symptomatic individuals are hospitalized.
• Unlike some famous fundamental models like SIR, SEIR, etc. and alike our model, this work too have
separated the deceased compartment from the recovered compartment.

Dissimilarities from our model

• This work have introduced compartments like pre-symptomatic and mildly symptomatic, which we have
clubbed together with the symptomatic and asymptomatic compartments in our model.

• In our model, we have included a compartment for those people who have recovered from the disease, but in
the process have incurred permanent disability, unlike this work.

• In our model, we have distinguished between patients who are mildly and critically ill by segregating the
total hospitalized in the Quarantined (Q) and ICU (Q′) compartments.

• In our model, we have introduced a carrier state compartment (C) to account for inefficiency in medical
checking, wherein some individuals may be wrongly tested negative and thus subsequently, leave quarantine.

• In this work, an individual can die only after being hospitalized. We have relaxed this requirement in our
model, wherein transitions can occur to the deceased (D) or disabled (Rd) compartments from any of the
following compartments: Symptomatic infected (Is), Asymptomatic Infected (Ias), Quarantined (Q), ICU (Q)
and Carrier State (C).

• In our model, we have accounted for the possibility of re-infection (after subsequent loss of immunity upon
recovery) by incorporating a transition line from Recovered (R) compartment to the Susceptible (S)
compartment.
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Works of some Epidemiologists
• Anthony Fauci

Director of the National Institute of Allergy and Infectious Diseases.

– Coronavirus Infections—More Than Just the Common Cold

In this article, he discusses • Why Corona virus infections are much more than just common cold • The
History of SARS dating back to 2002 • The symptoms and mortality rate • Difference between MERS
and SARS • Countermeasures being taken against Covid-19

– Covid-19 — Navigating the Uncharted

In this article, he discusses • Median age of Patients (59) • Age factor in the mortality rate • Effect of
Asymptomatic cases on the mortality rate • Government strategies and Vaccines

– Novel vaccine technologies for the 21st century

In this article, he discusses • Novel approaches to vaccine development • key insights that enabled the
production of a stabilized subunit vaccine candidate • Technical advances in mRNA vaccines •
revaccination of uninfected adolescents

• Jeffrey Shaman
Infectious disease expert at Columbia University.

– Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus
(SARS-CoV2)

In this article, he discusses • The effect of undocumented infections on dissemination • A mathematical
model that simulates the spatiotemporal dynamics • time-to-event observation model using a Gamma
distribution • Application of model-inference framework to the observed outbreak

– Initial Simulation of SARS-CoV2 Spread and Intervention Effects in the Continental US

In this article, he discusses • Use of metapopulation model applied at county resolution to simulate the
spread and growth of COVID-19 • Projection of the outbreak in the continental US for 180 days after
March 13 • The effects of social distancing and travel restrictions on the outbreak

– Direct Measurement of Rates of Asymptomatic Infection and Clinical Care-Seeking for
Seasonal Coronavirus

In this article, he discusses • Rates of Asymptomatic Infection • Clinical Care-Seeking for Seasonal
Coronavirus • findings from a proactive longitudinal sampling study

• Gerardo Chowell
Mathematical epidemiologist, Georgia State University.

– Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on
board the Diamond Princess cruise ship, Yokohama, Japan, 2020

In this article, he discusses • Cases on board the Diamond Princess cruise ship, Yokohama, Japan •
statistical modelling analysis to estimate the proportion of asymptomatic individuals • Laboratory
testing by PCR

– Transmission potential and severity of COVID-19 in South Korea

In this article, he discusses • Transmission potential and severity of COVID-19 in South Korea • The
mean reproduction number of COVID-19 in Korea • fatality rate is higher among males and increases
with age.

– Estimating Risk for Death from 2019 Novel Coronavirus Disease, China, January-February
2020

In this article, he discusses • Estimating Risk for Death from 2019 Novel Coronavirus Disease, •
time-delay adjusted risk for death from COVID-19 • breakdown of the healthcare system • enhanced
public health interventions, including social distancing and movement restrictions.
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• Juan Gutierrez
Mathematics proffesor, University of Texas at San Antonio.

– Investigating the Impact of Asymptomatic Carriers on COVID-19 Transmission

In this article, he discusses • Impact of Asymptomatic Carriers on COVID-19 Transmission • Inaccuracy
of current Reproduction number • effective reproduction number could range from 5.5 to 25.4 •
agreement with average case data collected from thirteen countries

– An Epidemiological Model of Malaria Accounting for Asymptomatic Carriers

In this article, he discusses • Asymptomatic individuals in the context of malarial disease • Rigorous
mathematical analysis of a new compartmentalized malaria model accounting for asymptomatic human
hosts • qualitative analysis will fill in the gaps of what is currently known

• Tara Smith
Epidemiologist, Kent State University.

– Report from the American Society for Microbiology COVID-19 International Summit, 23
March 2020: Value of Diagnostic Testing for SARS–CoV-2/COVID-19

She discusses about • Value of Diagnostic Testing for SARS–CoV-2/COVID-19 • types of tests available
and how they might be useful • Test for Viral RNA • Serology
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