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We examine the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) in Italy, to address the appropriate methodological choices for the design of se-
lective relaxations of the current containment measures. Pressing relevance stems from
the need to restart the economy dramatically affected by the lockdown. We employ a
spatially explicit, data-intensive model of the patterns of disease spread in Italy, which
devotes proper attention to the paramount role of inapparent infections. We aim at pro-
viding tools to: estimate the baseline trajectory, i.e. the expected unfolding of the outbreak
if the current containment measures were kept in place indefinitely; assess possible de-
viations from the baseline, should relaxations of the current lockdown result in increased
disease transmission; and estimate the isolation effort required to prevent a resurgence
of the outbreak. A 40 % increase in effective transmission as a result of the loosening
of confinement measures would yield an epidemic curve that shows a major rebound,
larger than the previous peaks in most regions. A control effort capable of isolating a
daily percentage of approximately 5.5 % of the exposed and highly infectious individuals
proves necessary to counterbalance such an increase and maintain the epidemic curve
onto the decreasing baseline trajectory. We explore several scenarios, provide the basic
data to design the related control strategies, and discuss their feasibility. Should suit-
able control via tracing and testing prove unfeasible, stop-and-go enforcement or delay
of the lockdown relaxations would be necessary to reduce the isolation effort required to
maintain the epidemic trajectory under control.

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.20083568doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction
While the pandemic caused by SARS-CoV-2 is still ravaging most countries of the
world1,2 and containmentmeasures are implementedworldwide3, a debate is emerging on
whether these measures might be partially alleviated, and in case how and when4–7. This
discussion requires appropriate models that guide decision-makers through alternative
actions via scenarios of the related trajectories of the epidemic.

The setup of country-wide epidemiological models8,9 is particularly challenging for
SARS-CoV-2 owing to inapparent infections10–12 and to themarked spatial heterogeneity
of the epidemic spread9. For example, in Italy, where the (largely underestimated)
reported infections and deaths are respectively 207 428 and 28 236 as of May 1, the
latitudinal characters of the spread of infections showed marked delays in the beginning
of the local outbreaks9.

To make things even more complicated, empirical evidence suggests that asymp-
tomatic infectious individuals could be as contagious as symptomatic ones10,13. Pre-
symptomatic infectious cases are also an important vehicle of infection, as epitomized
by the value of the pre-symptomatic transmission parameter which proves larger than the
transmission rates of symptomatic and asymptomatic infections9. This is supported by
field epidemiological evidence14–16 and virological findings reporting cases of COVID-
19 fueled by strong pre- or oligo-symptomatic transmission17–19 and shedding20.

We base our analysis on a recently published, spatially explicit model of the COVID-19
spread in Italy, inclusive of mobility among communities, the timing of infection seed-
ing, mobility restrictions and social distancing9. We assume that, for the time being and
in the near-term, no imported infections occur from outside the national boundaries. The
model is a spatial system of coupled ordinary differential equations that solves in time,
and for each of the 107 Italian provinces, the balance of, and the coupled fluxes among,
several epidemiological compartments in which the total population of a community is
subdivided. Specifically, we describe the dynamics of individuals who are susceptible,
latently infected, at peak infectivity, asymptomatic/mildly symptomatic, infected with
heavy symptoms, and recovered (Methods). Local communities are connected by mo-
bility fluxes of individuals from the mobile epidemiological compartments (susceptible,
exposed, peak infectivity, asymptomatic/mildly symptomatic and recovered individu-
als). Thus, the force of infection of each community (Methods) depends not only on
the local epidemiological variables, but also on those of the connected communities.
Infections, therefore, not only do occur within each community, but can also be imported
from, or exported to, linked communities. In addition, the model accounts for infections
occurring because individuals of different communities meet in a third location. The
relative balance of the fluxes among the various compartments is regulated by process
parameters that are estimated in a Bayesian framework (Methods).

The fundamental improvements of our framework with respect to other non-spatial,
well-mixed models initially devised for single megacities21, or for a whole country22, lie
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in the detailed description of the geographic context and its networks of epidemiological
interactions. Therefore, we have updated the benchmark model9 through the estimation
of parameters using the number of daily hospitalized cases in all 107 Italian provinces
from February 24 to May 1 (Methods). To estimate parameters, we account for the set of
progressively more restrictive measures that were introduced from February 22 (initial
restrictive measures) to March 22, when Italy went into a full lockdown closing also
non-essential industrial and other production activities.23–25.

Available epidemiological data26–28 must be viewed as an approximation. In fact,
confirmed infections depend on testing efforts that local officials were able to deploy to
identify confirmed infections, thus leading to underreporting. The ratio of confirmed
to actual infections was estimated to be around 10%9. Under-reporting applies even
to fatality counts, although to a lesser extent with respect to reported infections29,30.
Moreover, fatality rate can change in time due to stress in health care facilities [30]. In
order to alleviate these problems, in this work we used for parameter estimation only
reconstructed data on daily rates of hospitalization (Methods).

Health-policy and science underpin the design of suitable containment strategies,
which include individual and collective (local and medium- to long-distance) mobility
limitations23, provision of personal protective equipment (PPE)31, massive, possibly
targeted identification of infectious cases32,33, and the setup of layers of administrative
and environmental engineering controls31. These strategies must consider the level
of connectivity realized among communities after lockdown release, and the different
epidemiological parameters that effectively characterize them8,9. Recent results on the
effects of lifting restrictions in the Boston area suggest that a response system based on
enhanced contact tracing and testing can play a major role in relaxing social distancing
interventions in the absence of herd immunity against SARS-CoV-234.

Here, we generate scenarios of the Italian infection dynamics resulting from the bulk
effect of lifting the current restrictions, which initiated on May 4. How will the modes
of relaxation of previous confinement measures affect residual epidemic trajectories?
The answer to this question is not trivial, because different activities will be allowed to
resume at different times. In addition, acquired awareness may have different lasting
effects on social behaviour regardless of imposed measures, and compliance to proper
use of PPE31 may fade away in time. Here, we propose to assess the actual increase
in overall transmission by tracking the departure of the epidemic curve from the one
projected by using the transmission rate achieved during the lockdown. We address
the mitigation of the likely increased exposure, in particular by estimating the sufficient
number of case isolation interventions that would prevent rebounding of the epidemics.
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Figure 1: Comparative analysis of data and model results for hospitalizations in 107 Italian
provinces as of May 1, 2020. The maps show: a) a sketch of the Italian regions; b,
c) the prevalence of cumulative hospitalizations in each Italian province up to May
1, reconstructed data (b) and model simulations (c); d) Ratio between the estimated
transmission rate on May 1, and the one estimated at the beginning of the outbreak
(February 24).

Results

Parameter estimation and model results
The model reproduces well the prevalence of cumulative hospitalizations in the 107
Italian provinces up toMay 1 (Figs. 1 and 2). By considering heterogeneous transmission
rates after March 22 (see Methods), we estimate a large reduction in the effective disease
transmission rate in each province. This reduction, expressed as a ratio of effective
transmission estimated on May 1 to the initial uncontrolled one, ranges between 0.3 and
0.4 depending on location (Fig. 1d). Technically, this reduction is computed via the
product of the reduction in transmission rates (V%3/V%0 , see Methods) times the fraction
of the population still susceptible to the infection on May 1. The latter, however, is very
sensitive to the fraction of infections that develop heavy symptoms (parameter f in the
model, see Methods). The reference value assumed is f=25%, which is consistent with
empirical evidence8. However, we carried out a sensitivity analysis to investigate the
role of inapparent infections10 by repeating parameter estimation with f=10% and 50%
as well, thus covering a broad enough spectrum of possible values. All other parameters,
whose meaning is detailed in the Methods Section, are reported in Table 1.

Scenarios of national and regional epidemic trajectories
If the transmission rates estimated at the end of the lockdown persisted indefinitely, the
epidemic curve would continue to decrease in all Italian regions (baseline scenario, blue
curve in Fig. 2), although at different rates. We report for convenience daily hospital-

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.20083568doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Daily numbers of newly hospitalized cases for Italy and its hardest hit regions. Shown
here are reconstructed data (empty circles), and model results (solid lines and confi-
dence intervals). Clockwise from top: Italy, Lombardia, Piemonte, Marche, Veneto
and Emilia Romagna. The remaining regions are shown in Fig. S1. The blue solid line
represents the baseline scenario, i.e. the median of the computed results with current
restriction measures maintained indefinitely beyond May 3, 2020. The green and pur-
ple solid lines represent the scenarios corresponding to a release of the containment
measures determining an effective increase in the overall transmission rates of respec-
tively 20 % and 40 %. The 95 % confidence intervals are color-coded in analogy to their
median scenarios. Plots refer to a fraction of infections leading to heavy symptoms f
equal to 25%. Plots referring to the other two values considered (f=50% and 10%)
are reported in Supplementary Figures S2 and S3.
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ization counts aggregated for administrative regions, although the model accounts for a
finer spatial granularity (107 provinces and metropolitan areas, see Fig. 1).
The lockdown in Italy has been relaxed on May 4. Here, we propose to assess the

actual increase in overall transmission of the infection by tracking the departure of the
residual epidemic curve from the baseline scenario. This allows us to estimate the overall
effect of the new exposure caused by the local lockdown relaxations. An increase of 20 %
in the transmission rate, subsumimg the effective combination of economic activities’
resumption and modified contact rates, yields a decline milder than that of the baseline
for the new daily hospitalization cases in most Italian regions. A 40 % increase would
instead determine a significant rebound of the epidemic in most regions (Fig. 2, see also
Supplementary Information (SI)).

The trajectories shown in Fig. 2 prove robust with respect to the assumed value of f,
at least for the relatively short projection horizons considered here, which are relevant
to contingency planning. Indeed, the curves in Fig. 2, obtained with f = 25%, compare
well with those reported in Supplementary Figures S2 and S3, obtained by assuming
f = 50% and 10%, respectively.
The fraction of susceptible individuals obtained for different values of f, the heavy

symptomatic fraction, strongly varies throughout the Italian regions (Fig. 3). Since the
beginning of the epidemic up to May 1, the susceptible fraction of the population has
decreased more markedly in the northern regions, which have been more severely hit
by the outbreak, with the minimum values reached in Lombardia (0.97, 0.95, and 0.87
with f=50, 25 and 10%, respectively). By contrast, central and southern regions had
minimal reductions of their susceptible fraction. These results bear obvious implications
on possible revamping of the epidemics reaching new peaks of dangerous proportions,
as it denies any short- or medium-term possibilities to attain herd immunity.

Different assumptions for f result in different values of the infection fatality rate
(IFR), defined as the ratio between the official death count (at a certain date) and the
corresponding total number of infections estimated by the model. As of May 1, we
estimate an IFR of 4, 2 and 0.8%, respectively for f = 50, 25 and 10%.

Isolation effort
Isolation of cases to counterbalance the possible increase in transmission following the
relaxation of the restrictive measures is a conceivable strategy, alternative to extending
lockdown or to stop-and-go enforcement of containment measures. Isolation effort
critically depends on tracing and testing. Evidence of peak of viral shedding before and
right after symptom onset13 (see also Methods) suggests that isolation is more effective
if targeted at incubating individuals, i.e. those in the exposed, � , and peak of infectivity,
%, compartments of the model. We therefore focus on these individuals and estimate
the percentage and the corresponding number of individuals that should be isolated
daily (Fig. 4, Methods) to counterbalance the increase in transmission resulting from
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Figure 3: Temporal dynamics of the fraction of susceptible individuals in each region, estimated
by considering three possible percentages of heavy symptomatic infections: f = 50 %
(blue curve), 25 % (green curve), and 10 % (red curve). Thick solid curves refer to
medians values, while shaded areas indicate the 95% confidence intervals.
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the loosening of the containment measures, thus maintaining the epidemic curve in the
decreasing trajectory achieved during the lockdown (blue lines in Fig. 2). In analogy
to the analyses presented above, we show results under the three different assumptions
about the heavy symptomatic fraction: f = 50%, 25% and 10%.

Figure 4 also reports the estimated abundances of exposed, � , and individuals at peak
infectivity, %, in the considered regions at the date of the announced new measures (May
4), along with the expected number of new daily symptomatic cases (�) predicted by the
model. As an example, in Lombardia an increase in transmission of 40 % would lead to
a rebound of the epidemic curve (Fig. 2). However, for the reference value of f = 25%,
daily isolation of about ∼1200 out of ∼22 000 (∼5.5 %) individuals belonging to the
� and % compartments would effectively counterbalance the increase in transmission
and bring back the curve to the baseline scenario (blue curve in Fig. 2). The reported
isolation target in terms of the number of individuals to be isolated (left axis of Fig.
4) refers to the necessary effort right after the relaxation of the containment measures.
If the epidemic is successfully controlled, and the cases continue to decline (i.e. they
follow the baseline scenario), the isolation effort proportionally decreases over time.
The isolation effort in terms of percentage of � and % individuals to be isolated (right
axis of Fig. 4) remains instead constant.

While the isolation effort expressed as percentage of the � and % individuals to be
isolated daily is not particularly sensitive to the assumed fraction of infections developing
heavy symptoms, f, the value changes dramatically when expressed in terms of the
absolute number of individuals (Fig. 4). Asf decreases, a larger fraction of the epidemic
remains unobserved. Therefore, to closely match the daily hospitalizations data, a much
larger pool of � and % individuals is estimated (Fig. 4).

To assess the feasibility of the isolation effort required to contain the epidemic, we
report the amount that can be achieved by tracing and isolating all the infections generated
by the new daily symptomatic cases (black dashed lines in Fig. 4). For a given increase in
transmission, a required effort (solid lines in Fig. 4) exceeding such amount implies that
tracing and isolation of all primary infections generated by the new daily symptomatic
cases is insufficient. In this case, secondary infections (i.e. infections generated by the
primary infectees) need also to be targeted. As the role of the unobserved epidemic
increases (i.e. f decreases, from left to right columns in Fig. 4), isolation of primary
contacts alone can compensate only for mild increases in transmission.

The timing of the relaxation of the restrictive measures also has a great impact on the
isolation effort required to control the epidemic. Delaying the release of containment
measures by an additional month would have reduced the abundance of � and % indi-
viduals by about two thirds, thus proportionally reducing the number of individuals that
need be isolated (Fig. S7).
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Figure 4: Daily number (left axis) and daily percentage (right axis) of exposed � and individuals
at peak infectivity, %, to be isolated daily to maintain the epidemic trajectory onto
the blue curve in Fig. 2 (corresponding to the current lockdown) despite the possible
increase in transmission induced by the actual release of restrictions (horizontal axes).
Different columns refer to different values of the symptomatic fraction f: 50% (left,
blue), 25% (center, green) and 10% (right, red). Solid lines refer to median values,
shaded areas the 95 % (lighter shade) and 50 % confidence intervals. In each panel,
median and 95 % confidence interval of � , % and new daily symptomatic cases (�) are
given (estimates refer to May 4). The dashed black lines indicate the estimated number
of � and % individuals that can be isolated by tracing all the infections generated by the
new daily symptomatic cases. The other Italian regions are shown in Supplementary
Figures S4, S5 and S6.
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Discussion
The above results, whose reliability to issue scenarios stems from their capability to
closely match the hospitalization data locally and globally, probed in particular the role
of inapparent infections by assuming a rather broad range of values of f. The highest
value (f = 50%) matches the empirical results found by testing for two weeks an entire
community (Vo’ Euganeo, IT, ∼ 3000 inhabitants)10, whereas the lowest (f = 10%) is
likely to be a lower bound, unachievable in the actual geographic context, because it may
reflect also the age structure of a much younger population35. Another way to assess
the plausibility of the assumed fraction of infections that develop heavy symptoms, is to
compare the IFR estimated with different values of f. The values of IFR corresponding
to f = 25% and f = 10% (2% and 0.8%, respectively) bracket the available estimates
of IFR for western countries36. Thus the median value assumed (f = 25%) seems like
a sensible choice to probe the actual role of the unobserved epidemics in Italy.

Social distancing, PPE use, reduced or impeded mobility, and increased awareness
led to an overall decrease of transmission of about 65% with respect to the initial
uncontrolled epidemic (Fig. 1d). This result is consistent with other estimates obtained
using different methods37,38, and is largely attributable to the implemented measures,
and only marginally to acquired immunity. Indeed, even in the most extreme scenario
considered here (f = 10%), the acquired immunity would be responsible for less than
15% of the reduction occurred in the most severely hit region (Lombardia, Fig. 4),
suggesting that herd immunity is far even in the hardest hit territories and. Seasonality
effects5, not explicitly accounted for here, might also have had a role in the reduction of
transmission.

The scenarios shown in Fig. 2 suggest the impact of social distancing, testing, contact
tracing and household quarantine on a possible second-wave of the COVID-19 epidemic
in Italy (see also34). Actually, an observed deviation of incoming data from the baseline
in Fig. 2 (say, towards an unacceptable epidemic trajectory like the purple curve) should
raise a red flag and call for control action. Matching the right scenario in real time may
be achieved through data assimilation and ensemble Kalman filtering8. The continuous
update of the estimated state and parameters of the system, in fact, would allow the
coupling of feedback and feed-forward controls, thus projecting the number of apparent
and inapparent infections at least a latency period ahead of time. Incidentally, we deem
this feature a significant advance produced by our method. Indeed, this procedure would
provide – in time for action – a reasoned assessment of the actual exposure, in particular
the number of exposed and infectious individuals that only models can evaluate. This is
tantamount to distinguishing, after lifting the lockdown, between potential and realized
transmission. The former is the maximum possible prevention of contagion given a set
of rules. The latter is the bulk effect of the effective compliance to precautions associated
with the relaxation of the lockdown. Thus, an increase in estimated exposure reflects
the actual collective behaviors of mobile individuals, and the collective respect of rules
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regarding social distancing, PPE adoption, or crowding, to name a few. We argue that
realized transmission can only be evaluated from early signs decoded from scenarios
implemented through a model akin to ours.

Control may consist in either re-tightening of the containment measures, possibly of
the stop-and-go type5, or alternative interventions. While the strategy adopted during the
first phase of the outbreak mostly relied on the isolation and treatment of symptomatic
cases, a different mix of interventions is possible and desirable for the second phase. A
keystone of such a mix should be an increased isolation effort by tracing39 and testing32
individuals who have been in close contact with a known infection24,40, possibly with
the help of technological advances like tracing apps33.
We estimated the isolation target needed to counterbalance an increase in effective

transmission (Fig. 4), and to maintain the epidemic trajectory onto the decreasing
pattern achieved during lockdown. One way to achieve the required isolation target
is to trace the close contacts of daily new symptomatic cases, who are more likely
to self-report or be otherwise identified. However, as infected individuals might not
immediately test positive, and because obtaining test results takes time, this strategy
might imply as a matter of precaution to isolate, at least temporarily, all close contacts
that the symptomatic case has had in the previous days. Tracing and isolating all primary
infections generated by the symptomatic cases is a challenging task, because tracing is
hardly exhaustive and not all symptomatic cases can be identified. Depending on the
extent of the unobserved epidemic, however, isolation of primary infections might not
suffice (see Fig. 4). Secondary contacts ought to be targeted as well in this case. Testing
primary contacts would help identifying actually infected cases, thus refining the tracing
of secondary contacts32. We also showed that, if the isolation target proves impossible
to achieve for the limits of resources and/or logistical reasons, a possible strategy may
consist in delaying further relaxations of confinement measures. Our results thus suggest
that each Italian region should carefully evaluate its current strategies for tracing, testing
and its isolation capacity, to plan and manage the second phase of the epidemic.

To keep the epidemic under control, health policy makers should consider a mix of
interventions that include the re-tightening of confinement measures, possibly by a stop-
and-go implementation based also on seasonality effects, or evidence on limits to the
acquired immunity5, and/or the effective isolation of infectious individuals4,8. Modeling
studies can provide reasoned estimates of the minimum target to be attained, in this study
through the latters. The proper strategy to achieve the isolation target is the domain of
public health policy. The complementary use of testing in the control strategy is instead
the domain of virology and epidemiology. To both domains, proper modelling scenarios
offer information otherwise unavailable.
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Methods

Epidemiological model
The original (�%�� model

Here, we use the model (�%��9. The model is spatially explicit, i.e. it accounts for
the coupled dynamics of a set of = interacting communities. In each community, say 8
(8 = 1 . . . =), the model includes the following compartments: Susceptible ((8), Exposed
(�8), Peak infectivity (%8), Infected with heavy symptoms (�8), Asymptomatic/mildly
symptomatic (�8), Hospitalized (�8), Quarantined at home (&8), Recovered ('8), and
Dead (�8) individuals. The dynamics of transmission is given by:

¤(8 = −_8 (C)(8
¤�8 = _8 (C)(8 − X��8
¤%8 = X��8 − X%%8
¤�8 = fX%%8 − ([ + W� + U�)�8
¤�8 = (1 − f)X%%8 − W��8
¤�8 = (1 − Z)[�8 − (W� + U�)�8
¤&8 = Z[�8 − W&&8
¤'8 = W� �8 + W��8 + W��8 + W&&8
¤�8 = U� �8 + U��8 .

(1)

Susceptible individuals ((8) become exposed to the viral agent by contacting indi-
viduals who are in any of the three infectious stages, namely peak infectivity, heavily
symptomatic or asymptomatic/mildly symptomatic. Frequency-dependent contact rates
are assumed, so that exposure is governed by the community-dependent, time-varying
force of infection

_8 (C) =
=∑
9=1
C(8 9 (C)

∑
.∈{%,�,�}

∑=
:=1 V.,: (C)C.: 9 (C).:∑

-∈{(,�,%,�,�,'}
∑=
:=1 C-: 9 (C)-:

,

where C-
8 9
(C) (with - ∈ {(, �, %, �, �, '}) is the probability (

∑=
9=1 C-8 9 (C) = 1 for all

8’s, -’s, and C’s) that individuals in epidemiological state - who are from community 8
enter into contact with individuals who are present at community 9 at time C as either
residents or because they are traveling there from community : (note that 8, 9 and : may
coincide), and V., 9 (C) (. ∈ {%, �, �}) are the stage- and time-dependent transmission
rates.

Exposed individuals (�8) are latently infected, until they enter the peak infectivity
stage (at rate X� ). This stage has been specifically introduced9 to account for the
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clinical and epidemiological evidence indicating that viral shedding peaks just before
symptom onset and then declines after the emergence of symptoms or the evolution
towards an asymptomatic case10,13. Peak infectivity individuals (%8) progress (at rate
X%) to become (with probability f) either symptomatic individuals with heavy clinical
symptoms (�8) or (with probability 1−f) asymptomatic/mildly symptomatic individuals
(�8). Heavily symptomatic infectious individuals exit their compartment if/when (a)
they seek treatment at a health-care facility, (at rate [), following which they may
be hospitalized (a fraction 1 − Z) or quarantined at home (a fraction Z ; either ways,
they are assumed to be effectively removed from the general community), (b) recover
from infection (at rate W�), or (c) die (at rate U�). Asymptomatic/mildly symptomatic
individuals (�8) leave their compartment upon recovering from infection (at rate W�).
Hospitalized individuals (�8) may either recover from infection (at rate W�) or die (at
rate U�). Quarantined (i.e. home-isolated) individuals (&8) leave their compartment
upon recovery (at rate W&). People recovering from infection or dying because ofCOVID-
19 populate the classes of recovered ('8) and dead (�8) individuals, respectively.

Application of the model to the Italian COVID-19 epidemic

Model (1) is run at the scale of second-level administrative divisions, i.e. provinces and
metropolitan cities (107 units as of 2020). Population size in each spatial unit is taken
from the official estimates provided yearly (last update: January 1st, 2019) by the Italian
National Institute of Statistics (Istituto Nazionale di Statistica, ISTAT; data available at
http://dati.istat.it/Index.aspx?QueryId=18460).

The values of the transmission rates (V.,8 (C)) are dependent on epidemiological status
(. ∈ {%, �, �}) as in the original formulation of the model9. In addition, they are
assumed to be space- and time-dependent to take into account the effects of the various
containment measures put in place in the first months of the epidemic (see below for
further details).

Spatial coupling is parameterized by using information from the latest nation-wide
assessment of mobility fluxes, which was produced by the Italian National Institute of
Statistics (ISTAT) in 2011 (data available at https://www.istat.it/it/archivio/
139381). For each second-level administrative unit (province), say 8, two quantities
are extracted from the ISTAT data, namely the fraction ?8 of mobile people, i.e. the
residents of 8who defined themselves as commuters, and the fraction @8 9 ofmobile people
between 8 and all other administrative units 9 = 1 . . . = (including 9 = 8). The contact
probabilities at the beginning of the epidemic (C = 0), C-

8 9
(0) (- ∈ {(, �, %, �, �, '})

are then defined based on the quantities ?8 and @8 9 . Specifically, we assume

C-8 9 (0) =
{
(1 − ?8) + (1 − A-)?8 + A- ?8@8 9 if 8 = 9
A- ?8@8 9 otherwise ,
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where the parameter A- (0 ≤ A- ≤ 1) describes the fraction of contacts occurring
while individuals in epidemiological compartment - are traveling. In other words,
for community 8, the social contacts of non-mobile people (a fraction 1 − ?8 of the
community size), those of mobile people that do not occur during travel (a fraction 1−A-
of total contacts for people in epidemiological compartment -) and those associated with
mobility for people who travel within their community (a fraction @88 of mobile people)
contribute to social mixing within the community. Conversely, the contacts occurring
between two different communities, say 8 and 9 , are a fraction A- of the total contacts
of the individuals in epidemiological compartment - , multiplied by the probability ?8
that people from 8 travel (independently of the destination) and the probability @8 9
that the travel occurs between 8 and 9 . To account for the effect of the confinement
measures, we progressively reduce extra province mobility according to the estimates
obtained through the analysis of data collected through mobile applications23. As a
conservative assumption, we elaborate near future scenarios maintaining the same level
of extra-province mobility estimated during the lockdown, as only few commercial and
production activities have resumed and extra-regional mobility is not allowed.

Epidemiological data
For the calibration of the model we consider the epidemiological data collected by
the Dipartimento della Protezione Civile (data available at https://github.com/
pcm-dpc/COVID-19), which are released daily and comprehend: at the regional level,
the cumulative numbers of positive, dead and recovered individuals, together with the
actual number of positive individuals that hospitalized or are under quarantine at home;
at the province level, the cumulative numbers of positive cases.

Due to the strong space-time variations in the number of tests performed, the most
trustworthy variable to monitor the outbreak is the daily number of hospitalizations, in
the following indicated with �in. This quantity corresponds to the flux (1 − Z)[� in the
� compartment of our model, and grants a straightforward link between data and model
variables. However, �in is not directly provided in the online data, and we thus adopt a
stochastic approach to derive �in combining data regarding the number of hospitalized
individuals and deaths, and estimated distribution of delays between hospitalization and
death or discharge.

At any given day : , �in
:
is obtained by the observed variations in the daily number

of hospitalized individuals, �: − �:−1, plus the daily deaths �out
:
= �: − �:−1, and

the number of individuals discharged from the hospital, here indicated with 'out
:
. Under

the assumption that the recorded deaths for COVID-19 are all from the hospitals, 'out
:

is obtained by modeling as random variables the days g spent in a hospital before death,
whose probability density function (PDF) is indicated with ?� (g), and the time in a
hospital before discharge, whose PDF is indicated with ?' (g).
Our procedure consists of the following steps. Sampling a random value from ?� (g)
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for each individual in �out, we obtain the days of entrance of individuals that will die,
thus the sequence �in

:
. We estimate the number of individuals entering on day : that

will be eventually discharged as:

'in
: = �

in
: − �

in
:

Then 'out
:

is obtained by sampling an exit time from ?' (g) for each individual in 'in
:
.

Finally:
�in
: = �: − �:−1 + �out

: + '
out
: .

Reports by ISS indicate that for COVID-19 casualties the median residence time at
a hospital is about 8 days for patients that accessed ICU, and 5 days without ICU41.
We use this information to parameterize the distribution ?� (g) as a gamma distribution
of mean 7 and coefficient of variation 0.5 (hence, a median of 6.42 days; 0.05–0.95
quantiles: 2.39–13.56 days). We also assume that ?' (g) follows a gamma distribution
of mean 14 and coefficient of variation 0.5, which has a median of 13.7 days (0.05–0.95
quantiles: 4.78–27.14 days), in agreement with the recovery rate previously estimated9.

Final data adopted for parameter estimation of the regional model is the median over
100 random generations of �in

:
, downscaled to the province level and smoothed by using

a moving average of 7 days. A sensitivity analysis of �in
:
on the parameters of the ?� (g)

and ?' (g) showed that the time series considered have only marginal variations.

Parameter estimation
The effect of the containment measures was parameterized in our previous application9
by assuming that the transmission parameters (V%, V� and V�) had a sharp decrease after
the containment measures announced on February 24 and March 8. We update here
such description to fully account for the set of progressively more restrictive measures
that were introduced form March 8 to March 22, when also non-essential industrial and
production activities were stopped. We describe the temporal changes in the V%’s (the
remaining transmission parameters, V� and V�, are assumed to be proportional to V%, see
table 1) using 4 values: The value before February 24 (V%0), the values achieved right
after (within two days) the measures introduced on February 24 (V%1) and the first set
of lockdown measures implemented on March 8 (V%2). Finally, we assume that due to
the progressive implementation of the lockdown and the introduction of more restrictive
measures, the transmission rates further linearly decreased from March 10 to March
22, eventually achieving the value (V%3), which is then held constant. We let V%3 vary
among different Italian regions to reflect possible heterogeneity in disease transmission.
Specifically, we estimate the hyperparameters controlling the prior of the parameters
V%3/V%2 (a Gaussian distribution truncated between 0 and 1) in a hierarchical Bayesian
framework.
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Parameter (units) Median 95 % CI Information

V%0 (d−1) 1.26 [1.24, 1.28] Estimated
1/X� (d) 4.6 13,24

1/X% (d) 2 13,24

1/[ (d) 5 44

1/W� (d) 14 9

1/U� (d) 25 9

V�/V% (1) 0.022 [0.020, 0.030] Estimated
V�/V� (1) 1 9,10

V%1/V%0 (1) 0.89 [0.87, 0.92] Estimated
V%2/V%1 (1) 0.72 [0.70, 0.73] Estimated
mean V%3/V%2 (1) 0.50 [0.48, 0.51] Estimated
standard deviation V%3/V%2 (1) 0.038 [0.025, 0.053] Estimated
ΔC0 (d) 35 9

l (1) 2.42 [2.33, 2.52] Estimated

Table 1: Model parameters. The posterior distribution of the parameters marked as estimated was
sampled through the DREAMZS implementation of theMarkov chainMonte Carlo algo-
rithm45. For all estimated parameters we used uninformative priors within biologically
meaningful boundaries. Following our previous application9, we assumed f = 0.25,
A( = 0.5, Z = 0.45 and A� = A% = A� = A' = A( , while A� = A& = A� = 0. Moreover:
W& = W� = W� , W� = 2W� , and U� = U� .

We impose an initial condition of one exposed individual in the province of Lodi
(where the first cases were reported) ΔC0 days before February 24. Following our
previous application9, we estimate also the initial condition of the exposed compartment
in each province to account for the possible seeding effect occurred during this period.

Parameters are estimated comparing data and simulation of the flux of hospital ad-
missions ((1 − Z)[�) at the provincial scale. We assume that each data point follows a
negative binomial distribution with mean `, equal to the value predicted by the model,
and variance equal to l` (NB1 parametrization42,43). Parameter values are summarized
in Table 1.

The effect of testing and isolation
Following lockdown release, the expected increase in the transmission rates can be
compensated by isolation of cases. Clinical and epidemiological evidence suggests that
viral shedding peaks at the end of the latent period, and that shedding rapidly declines
after the symptoms’ onset or the evolution towards an asymptomatic case13. Moreover,
viral shedding is similar regardless of the emergence of symptoms in the disease course
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of a patient10. This evidence suggests that isolation should be more effective if targeted
at individuals in the exposed, � , and peak infectivity, %, compartments of the model.
Therefore, we focus on these individuals as priority targets for isolation.

When isolation is enforced, two out-fluxes, d�,8�8 and d%,8%8, must be considered
from the exposed and peak infectivity compartments, respectively. The parameters d�,8
and d%,8 (days−1) represent the community-dependent rate at which infected individuals
in the �8 and %8 classes are effectively isolated from the community. For the sake of
simplicity, we assume d� = d% = d. Also, individuals isolated are simply removed
from the community, without any further consideration of their clinical trajectories,
which is deemed reasonable considering the relatively short timespan of the simulations
performed here.

We estimate for each province the percentage (i.e. d8) and the corresponding number
of individuals (d8 (�8 + %8)) that should be isolated daily to counterbalance the increase
in transmission due to the loosening of containment measures, so as to maintain the
same level of trasmissivity achieved during the lockdown. In analogy to the analyses
presented above, we repeat the estimation of the isolation effort under the three different
assumptions about the heavy symptomatic fraction: f = 25%, 50% and 10%.

References
1. World Health Organization. Coronavirus disease (COVID-2019) situation reports
https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/situation-reports/ (2020).

2. The Center for Systems Science and Engineering. Coronavirus COVID-19 Global
Cases https://arcg.is/0fHmTX (2020).

3. European Commission. Joint European Roadmap towards lifting COVID-19 con-
tainment measures https://ec.europa.eu/info/sites/info/files/
communication_ - _a _ european _ roadmap _ to _ lifting _ coronavirus _
containment_measures_0.pdf (2020).

4. Leung, K.,Wu, J. T., Liu, D.&Leung, G.M. First-wave COVID-19 transmissibility
and severity in China outside Hubei after control measures, and second-wave
scenario planning: a modelling impact assessment. The Lancet 395, 1382–1393.
doi:10.1016/s0140-6736(20)30746-7 (Apr. 2020).

5. Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting
the transmission dynamics of SARS-CoV-2 through the postpandemic period.
Science, eabb5793. doi:10.1126/science.abb5793 (Apr. 2020).

6. Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of
population-wide interventions in Italy. Nature Medicine. doi:10.1038/s41591-
020-0883-7 (Apr. 2020).

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.20083568doi: medRxiv preprint 

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://arcg.is/0fHmTX
https://ec.europa.eu/info/sites/info/files/communication_-_a_european_roadmap_to_lifting_coronavirus_containment_measures_0.pdf
https://ec.europa.eu/info/sites/info/files/communication_-_a_european_roadmap_to_lifting_coronavirus_containment_measures_0.pdf
https://ec.europa.eu/info/sites/info/files/communication_-_a_european_roadmap_to_lifting_coronavirus_containment_measures_0.pdf
http://dx.doi.org/10.1016/s0140-6736(20)30746-7
http://dx.doi.org/10.1126/science.abb5793
http://dx.doi.org/10.1038/s41591-020-0883-7
http://dx.doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/


7. Editor, T. Coronavirus: shared lessons on lifting lockdowns. Nature 581, 581.
doi:http://dx.doi.org/10.1038/d41586-020-01311-x.

8. Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination
of novel coronavirus (SARS-CoV2). Science, eabb3221. doi:10.1126/science.
abb3221 (Mar. 2020).

9. Gatto, M. et al. Spread and dynamics of the COVID-19 epidemic in Italy: effects
of emergency containment measures. Proc. Natl. Acad. Sci. USA. Published online
April 23, 2020. doi:10.1073/pnas.2004978117 (2020).

10. Lavezzo, E. et al. Suppression of COVID-19 outbreak in the municipality of Vo,
Italy. doi:10.1101/2020.04.17.20053157. medRxiv: 2020.04.17.20053157
(Apr. 18, 2020).

11. Luo, L., Liu, D., Liao, X., et al. Modes of contact and risk of transmission
in COVID-19 among close contacts. doi:10.1101/2020.03.24.20042606.
medRxiv: 2020.03.24.20042606 (Mar. 26, 2020).

12. Bi, Q., Wu, Y., Mei, S., et al. Epidemiology and Transmission of COVID-19 in
Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts. doi:10.
1101/2020.03.03.20028423. medRxiv: 2020.03.03.20028423 (Mar. 27,
2020).

13. He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-
19. Nature Medicine. doi:10.1038/s41591-020-0869-5 (Apr. 2020).

14. Du, Z. et al. Serial Interval of COVID-19 among Publicly Reported Confirmed
Cases. Emerging Infectious Diseases 26. doi:10.3201/eid2606.200357 (June
2020).

15. Nishiura, H., Linton, N. M. & Akhmetzhanov, A. R. Serial interval of novel
coronavirus (COVID-19) infections. International Journal of Infectious Diseases
93, 284–286. doi:10.1016/j.ijid.2020.02.060 (Apr. 2020).

16. Ganyani, T. et al. Estimating the generation interval for COVID-19 based on
symptom onset data. doi:10.1101/2020.03.05.20031815. medRxiv: 2020.
03.05.20031815 (Mar. 8, 2020).

17. Holshue, M. L. et al. First Case of 2019 Novel Coronavirus in the United States.
New England Journal of Medicine 382, 929–936. doi:10.1056/nejmoa2001191
(Mar. 2020).

18. Hoehl, S. et al. Evidence of SARS-CoV-2 Infection in Returning Travelers from
Wuhan, China. New England Journal of Medicine 382, 1278–1280. doi:10.1056/
nejmc2001899 (Mar. 2020).

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.20083568doi: medRxiv preprint 

http://dx.doi.org/http://dx.doi.org/10.1038/d41586-020-01311-x
http://dx.doi.org/10.1126/science.abb3221
http://dx.doi.org/10.1126/science.abb3221
http://dx.doi.org/10.1073/pnas.2004978117
http://dx.doi.org/10.1101/2020.04.17.20053157
2020.04.17.20053157
http://dx.doi.org/10.1101/2020.03.24.20042606
2020.03.24.20042606
http://dx.doi.org/10.1101/2020.03.03.20028423
http://dx.doi.org/10.1101/2020.03.03.20028423
2020.03.03.20028423
http://dx.doi.org/10.1038/s41591-020-0869-5
http://dx.doi.org/10.3201/eid2606.200357
http://dx.doi.org/10.1016/j.ijid.2020.02.060
http://dx.doi.org/10.1101/2020.03.05.20031815
2020.03.05.20031815
2020.03.05.20031815
http://dx.doi.org/10.1056/nejmoa2001191
http://dx.doi.org/10.1056/nejmc2001899
http://dx.doi.org/10.1056/nejmc2001899
https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/


19. Rothe, C. et al. Transmission of 2019-nCoV Infection from an Asymptomatic
Contact in Germany. New England Journal of Medicine 382, 970–971. doi:10.
1056/nejmc2001468 (Mar. 5, 2020).

20. Wölfel, R. et al.Virological assessment of hospitalized patients with COVID-2019.
Nature. doi:10.1038/s41586-020-2196-x (Apr. 1, 2020).

21. Tang, B. et al. Estimation of the Transmission Risk of the 2019-nCoV and Its
Implication for Public Health Interventions. Journal of Clinical Medicine 9, 462.
doi:10.3390/jcm9020462 (Feb. 2020).

22. Flaxman, S. et al. Report 13: Estimating the number of infections and the impact
of non-pharmaceutical interventions on COVID-19 in 11 European countries tech.
rep. (2020). doi:10.25561/77731. https://spiral.imperial.ac.uk:
8443/handle/10044/1/77731.

23. Pepe, E. et al. COVID-19 outbreak response: first assessment of mobility changes in
Italy following lockdown tech. rep. (COVID-19MobilityMonitoring project, 2020).
https://covid19mm.github.io/in- progress/2020/03/13/first-
report-assessment.html (2020).

24. Cereda, D. et al. The early phase of the COVID-19 outbreak in Lombardy, Italy
arXiv: 2003 . 09320v1 [q-bio.PE]. https : / / arxiv . org / abs / 2003 .
09320v1.

25. Guzzetta, G. et al. Potential short-term outcome of an uncontrolled COVID-
19 epidemic in Lombardy, Italy, February to March 2020. Eurosurveillance 25.
doi:10.2807/1560-7917.es.2020.25.12.2000293 (Mar. 2020).

26. Dipartimento della Protezione Civile. COVID-19 Italia - Monitoraggio della situ-
azione https://arcg.is/C1unv (2020).

27. Dipartimento della ProtezioneCivile.EmergenzaCoronavirus: la risposta nazionale
http://www.protezionecivile.gov.it/attivita-rischi/rischio-
sanitario/emergenze/coronavirus (2020).

28. Istituto Superiore di Sanità. Coronavirus: ultimi aggiornamenti https://www.
epicentro.iss.it/coronavirus/aggiornamenti (2020).

29. Ciminelli, G. & Garcia-Mandicó, S. COVID-19 in Italy: An analysis of death
registry data https://voxeu.org/article/covid-19-italy-analysis-
death-registry-data (2020).

30. ISTAT. Impatto dell’epidemia COVID-19 sulla mortalità totale della popolazione
residente. Primo trimestre 2020 https://www.istat.it/it/files//2020/
05/Rapporto_Istat_ISS.pdf (2020).

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.20083568doi: medRxiv preprint 

http://dx.doi.org/10.1056/nejmc2001468
http://dx.doi.org/10.1056/nejmc2001468
http://dx.doi.org/10.1038/s41586-020-2196-x
http://dx.doi.org/10.3390/jcm9020462
http://dx.doi.org/10.25561/77731
https://spiral.imperial.ac.uk:8443/handle/10044/1/77731
https://spiral.imperial.ac.uk:8443/handle/10044/1/77731
https://covid19mm.github.io/in-progress/2020/03/13/first-report-assessment.html
https://covid19mm.github.io/in-progress/2020/03/13/first-report-assessment.html
https://arxiv.org/abs/2003.09320v1
https://arxiv.org/abs/2003.09320v1
https://arxiv.org/abs/2003.09320v1
http://dx.doi.org/10.2807/1560-7917.es.2020.25.12.2000293
https://arcg.is/C1unv
http://www.protezionecivile.gov.it/attivita-rischi/rischio-sanitario/emergenze/coronavirus
http://www.protezionecivile.gov.it/attivita-rischi/rischio-sanitario/emergenze/coronavirus
https://www.epicentro.iss.it/coronavirus/aggiornamenti
https://www.epicentro.iss.it/coronavirus/aggiornamenti
https://voxeu.org/article/covid-19-italy-analysis-death-registry-data
https://voxeu.org/article/covid-19-italy-analysis-death-registry-data
https://www.istat.it/it/files//2020/05/Rapporto_Istat_ISS.pdf
https://www.istat.it/it/files//2020/05/Rapporto_Istat_ISS.pdf
https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/


31. World Health Organization. Rational use of personal protective equipment (PPE)
for coronavirus disease (COVID-19): interim guidance https://apps.who.
int/iris/handle/10665/331498 (2020).

32. Grassly, N. et al. Report 16: Role of testing in COVID-19 control Imperial College
London. https://www.imperial.ac.uk/media/imperial- college/
medicine/mrc-gida/2020-04-23-COVID19-Report-16.pdf (2020).

33. Ferretti, L. et al.Quantifying SARS-CoV-2 transmission suggests epidemic control
with digital contact tracing. Science, eabb6936. doi:10.1126/science.abb6936.
https://doi.org/10.1126/science.abb6936.

34. Aleta, A. et al. Modeling the impact of social distancing, testing, contact tracing
and household quarantine on second-wave scenarios of the COVID-19 epidemic
https://cosnet.bifi.es/wp-content/uploads/2020/05/main.pdf
(2020).

35. Dowd, J. B. et al. Demographic science aids in understanding the spread and
fatality rates of COVID-19. medRXiv. (31 March 2020). doi:10.1101/2020.03.
15.20036293. https://doi.org/10.1101/2020.03.15.20036293 (Mar.
2020).

36. Ferguson, N. et al. Report 9: Impact of non-pharmaceutical interventions (NPIs)
to reduce COVID-19 mortality and healthcare demand (Imperial College London,
2020). doi:10.25561/77482. http://hdl.handle.net/10044/1/77482.

37. Vollmer, M. et al. Report 20: Using mobility to estimate the transmission intensity
of COVID-19 in Italy: A subnational analysis with future scenarios tech. rep.
(2020). doi:10.25561/78677. https://www.imperial.ac.uk/mrc-global-
infectious-disease-analysis/covid-19/report-20-italy/.

38. Guzzetta, G. et al. The impact of a nation-wide lockdown on COVID-19 transmis-
sibility in Italy. arXiv: 2004.12338v1 [q-bio.PE] (Apr. 26, 2020).

39. Hellewell, J. et al. Feasibility of controlling COVID-19 outbreaks by isolation of
cases and contacts. The Lancet Global Health 8, e488–e496. doi:10.1016/s2214-
109x(20)30074-7 (Apr. 2020).

40. Zhang, J. et al. Evolving epidemiology of novel coronavirus diseases 2019 and
possible interruption of local transmission outside Hubei Province in China: a de-
scriptive and modeling study. doi:10.1101/2020.02.21.20026328. medRxiv:
2020.02.21.20026328 (Feb. 23, 2020).

41. Palmieri, L. et al. Caratteristiche dei pazienti deceduti positivi aCOVID-19 in Italia
Istituto Superiore di Sanità. https://www.epicentro.iss.it/coronavirus/
bollettino/Report-COVID-2019_29_aprile.pdf (2020).

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.20083568doi: medRxiv preprint 

https://apps.who.int/iris/handle/10665/331498
https://apps.who.int/iris/handle/10665/331498
https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-04-23-COVID19-Report-16.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-04-23-COVID19-Report-16.pdf
http://dx.doi.org/10.1126/science.abb6936
https://doi.org/10.1126/science.abb6936
https://cosnet.bifi.es/wp-content/uploads/2020/05/main.pdf
http://dx.doi.org/10.1101/2020.03.15.20036293
http://dx.doi.org/10.1101/2020.03.15.20036293
https://doi.org/10.1101/2020.03.15.20036293
http://dx.doi.org/10.25561/77482
http://hdl.handle.net/10044/1/77482
http://dx.doi.org/10.25561/78677
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-20-italy/
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-20-italy/
https://arxiv.org/abs/2004.12338v1
http://dx.doi.org/10.1016/s2214-109x(20)30074-7
http://dx.doi.org/10.1016/s2214-109x(20)30074-7
http://dx.doi.org/10.1101/2020.02.21.20026328
2020.02.21.20026328
https://www.epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_29_aprile.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_29_aprile.pdf
https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/


42. Cameron, A. C. & Trivedi, P. K. Econometric models based on count data. Com-
parisons and applications of some estimators and tests. Journal of Applied Econo-
metrics 1, 29–53. doi:10.1002/jae.3950010104 (Jan. 1986).

43. Lindén, A. & Mäntyniemi, S. Using the negative binomial distribution to model
overdispersion in ecological count data. Ecology 92, 1414–1421 (2011).

44. Task force COVID-19. Epidemia COVID-19, Aggiornamento nazionale: 23 aprile
2020 Dipartimento Malattie Infettive e Servizio di Informatica, Istituto Superiore
di Sanità. https://www.epicentro.iss.it/coronavirus/bollettino/
Bollettino-sorveglianza-integrata-COVID-19_23-aprile-2020.pdf
(2020).

45. Ter Braak, C. J. F. &Vrugt, J. A. Differential EvolutionMarkov Chain with snooker
updater and fewer chains. Statistics and Computing 18, 435–446. doi:10.1007/
s11222-008-9104-9 (Oct. 2008).

Acknowledgments
EB, DP and AR acknowledge funding from Fondazione Cassa di Risparmio di Padova e
Rovigo (IT) through its grant 55722 (April 2020).

Contributors
EB, MG and AR were responsible for conceiving the work. EB, DP and LM were
responsible for numerical simulations and model parameter estimation. All authors
were responsible for data analysis and statistics and writing the manuscript.

Competing interests
We declare no competing interests.

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.20083568doi: medRxiv preprint 

http://dx.doi.org/10.1002/jae.3950010104
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_23-aprile-2020.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_23-aprile-2020.pdf
http://dx.doi.org/10.1007/s11222-008-9104-9
http://dx.doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information

Figure S1: Epidemic scenarios for the regions not shown in Fig. 2.
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Figure S2: Same as Fig. 2 of the main text but for f = 50%
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Figure S3: Same as Fig. 2 of the main text but for f = 10%
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Figure S4: Isolation effort for all Italian regions. Symbols as in Fig. 4. Values refer to the case
f = 50%.
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Figure S5: Isolation effort for all Italian regions. Symbols as in Fig. 4. Values refer to the case
f = 25%.
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Figure S6: Isolation effort for all Italian regions. Symbols as in Fig. 4. Values refer to the case
f = 10%.
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Figure S7: Isolation effort as shown in Fig. 4 but for a starting date of the relaxation of the
restrictive measures delayed by one month.

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.20083568doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Parameter estimation and model results
	Scenarios of national and regional epidemic trajectories
	Isolation effort

	Discussion
	Methods
	Epidemiological model
	The original SEPIA model
	Application of the model to the Italian COVID-19 epidemic

	Epidemiological data
	Parameter estimation
	The effect of testing and isolation

	Supplementary Information

