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We examine the spread of Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) in Italy, to address the appropriate methodological choices for the
design of selective relaxations of the current containment measures. Pressing rel-
evance stems from the need to restart the economy dramatically affected by the
lockdown. We employ a spatially explicit, data-intensive model of the patterns of
disease spread in Italy, with the goal of providing tools to: estimate the baseline
trajectory, i.e. the expected unfolding of the outbreak if the current contain-
ment measures were kept in place indefinitely; assess possible deviations from the
baseline, should relaxations of the current lockdown result in increased disease
transmission; and estimate the isolation effort required to prevent a resurgence of
the outbreak. For instance, a 50% increase in effective transmission as a result of
the loosening of confinement measures, to be instated on May 4, yields an epidemic
curve that shows a major rebound larger than the previous peaks in most regions.
A control effort, capable of isolating a daily percentage of approximately 7% of the
individuals in the exposed and pre-symptomatic stages, proves necessary to coun-
terbalance such an increase, and maintain the epidemic curve onto the decreasing
baseline trajectory. We explore several scenarios, provide the basic data to design
the related control strategies and discuss their feasibility. Should suitable control
via tracing and testing prove unfeasible, stop-and-go enforcement or delay of the
lockdown relaxations would be necessary to reduce the isolation effort required to
maintain the epidemic trajectory under control.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction

While the pandemic caused by SARS-CoV-2 is still ravaging most countries of the
world and containment measures are implemented worldwide, a debate is emerging on
whether these measures might be partially alleviated — and in case how and when 2 This
discussion requires appropriate models that guide decision-makers through alternative
actions via scenarios of the related trajectories of the epidemic.

The setup of country-wise epidemiological models is particularly challenging for
SARS-CoV-2 owing to submerged infections® and to the marked spatial heterogeneity of
the epidemic spread. For example, in Italy, where the (largely underestimated) reported
infections and deaths are respectively 203 591 and 27 682 as of April 29, the latitudinal
characters of the spread of infections showed marked delays in the beginning of the
local outbreaks * Health-policy and science underpin the design of suitable containment
strategies, which include individual and collective (local and medium- to long-distance)
mobility limitations, provision of personal protective equipment (PPE), massive, possibly
targeted identification of infectious cases, and the setup of layers of administrative and
environmental engineering controls.” These strategies must consider the level of effective
connectivity between communities and the different epidemiological parameters that
characterize them.

We elaborate our analysis based on a recently published, spatially explicit model of
the COVID-19 spread in Italy, inclusive of mobility among communities, the timing of
infection seeding, mobility restrictions and social distancing.* The model is a spatial
system that solves in time and for each of the 107 Italian provinces the balance of,
and the coupled fluxes among, several epidemiological compartments in which the
total population of a community is subdivided, namely individuals who are susceptible,
exposed, pre-symptomatic infectious, asymptomatic/mildly symptomatic, infected with
heavy symptoms, and recovered

Local communities are each described by a compartmental model, and are connected
via mobility fluxes of individuals from the mobile epidemiological compartments (sus-
ceptible, exposed, pre-symptomatic, asymptomatic/mildly symptomatic and recovered
individuals). Thus, the force of infection of each community depends not only on the
local epidemiological variables, but also on the epidemiological variables of the con-
nected communities. Infections, therefore, not only do occur within each community,
but can also be imported or exported. In addition, the model accounts for infections
occurring because individuals of different communities meet in a third location, because
e.g. they work or study in the same place. The relative balance of the fluxes among
the various compartments is regulated by process parameters that are estimated in a
Bayesian framework using reconstructed data about the number of daily hospitalized
cases in all Italian provinces from February 24 to April 24. All relevant technical details
are provided as Supplementary Material (SM).
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Results and Discussion

If current lockdown measures are maintained indefinitely, the epidemic curve would
continue to decrease in all Italian regions (figure[I)), although at different rates. We report
for convenience daily hospitalization counts aggregated for administrative regions, even
though the model accounts for finer spatial granularity.

The lockdown in Italy might be relaxed on May 4. How would the modes of
relaxation of current confinement measures affect residual epidemic trajectories? For
example, one must account for the fact that only some activities are announced to be
allowed. In addition, acquired awareness may have different lasting effects on social
behaviour regardless of imposed measures, and the use of PPE may change through
time. Here, we propose to assess the actual increase in overall transmission by tracking
the departure of the epidemic curve from the one projected by using the transmission
rate achieved during the lockdown (the baseline scenario, blue curve in figure[I)) . We
estimate that an effective increase of 10 % of transmission, stemming from different
combinations of the above factors, is expected to yield a less pronounced decline of
the daily new hospitalization cases in most regions (figure [I). A 20 % increase would
instead determine a rebound of the epidemic in all regions but Lombardia. This regional
differential response depends on the current level of transmission and, marginally, on
the differential prevalence of the susceptible population, which is lower in the regions
that were more severely hit by the first phase of the outbreak.

A deviation of incoming data from the baseline in figure [[| towards an unacceptable
epidemic trajectory (say, the red curve in figure[I)) should raise an alert and call for control
action. Matching the right scenario in real time may be achieved by data assimilation
and ensemble Kalman filtering® Control may consist in either re-tightening of the
containment measures, possibly of the stop-and-go type,# or alternative interventions.
While the strategy adopted during the first phase of the outbreak mostly relied on the
isolation and treatment of symptomatic cases, a different mix of interventions is possible
and desirable. A keystone of such a mix should be an increased isolation effort through
tracing, and possibly testing,” individuals who have been in close contact with a known
infection® possibly with the help of technological advances like tracing apps.©

Clinical and epidemiological evidence suggests that viral shedding peaks at the end
of the latent period, and that shedding rapidly declines after the symptoms’ onset or the
evolution towards an asymptomatic case '’ Moreover, viral shedding is similar regardless
of the emergence of symptoms in the disease course of a patient® This evidence suggests
that isolation is much more effective if targeted at individuals in a latent stage (exposed,
E, and pre-symptomatic, P, compartments of the model,* see SM). We therefore focus
on these individuals and estimate the percentage and the corresponding number of
individuals that should be isolated daily (figure [2)), to counterbalance the increase in
transmission due to loosening the containment measures, thus maintaining the epidemic
curve in the decreasing trajectory achieved during the lockdown (blue lines in figure I)).
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Figure 1: Clockwise from top: Daily numbers of newly hospitalized cases respectively for
Italy and its hardest hit regions (Lombardia, Piemonte, Marche, Veneto and Emilia Romagna).
The remaining regions are shown as SM. Red empty dots represent data. The blue solid line
represents the baseline scenario, i.e. the median of the computed results with current restriction
measures maintained indefinitely beyond May 3, 2020. The green and red solid lines represent
the scenarios corresponding to a release of the containment measures determining an effective
increase in the overall transmission rates of respectively 10 % and 20 %. The 95 % confidence

intervals are color-coded in analogy to their median scenarios. Parameter values are reported as
SM.
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To complement the above information, figure [2| reports the estimated abundance
of exposed and pre-symptomatic individuals in the considered regions at the date of
the announced new measures (May 4), along with the expected number of new daily
symptomatic cases (C) predicted by the model. As an example, in Lombardia an increase
in transmission of 50 % would quickly lead to a ramping epidemic curve (SM). However,
daily isolation of about ~ 1800 out of ~ 26 000 (~ 7 %) exposed and pre-symptomatic
individuals would effectively counterbalance the increase in transmission and bring back
the curve to the baseline. The estimated number of latent individuals that needs to be
isolated every day is of the same order of magnitude of the daily new symptomatic cases
that are likely to self-report to the health structures (~ 1031). Therefore, the isolation
effort should prioritize all the close contacts that the daily new symptomatic cases have
had in the previous two days (i.e. the peak of viral shedding!?). As infected individuals
might not immediately test positive, and because obtaining test results takes time, this
strategy might imply to precautionary isolate, at least temporarily, all close contacts. The
percentage of these contacts that are actually infected, and thus contribute to reaching
the required isolation target, depends on the secondary attack rate. The latter needs to
be carefully evaluated depending on the context where the contacts occurred, and on the
new conditions upon the relaxation of the confinement measures with increased people
awareness and the use of PPE. Should targeting all primary contacts of all new daily
symptomatic cases prove insufficient to reach the required target number, secondary
contacts would also need to be targeted. In this case, testing primary contacts would
help identifying actually infected cases, thus refining the tracing of secondary contacts ./

If the isolation target proves impossible to achieve for the limits of resources and/or
logistical reasons, a possible strategy may consist in delaying the relaxation of the
confinement measures. To that end, we note that delaying by an additional month the
release of containment measures would more than halve the abundance of exposed and
pre-symptomatic individuals, thus proportionally reducing the number of individuals
who need to be isolated (results shown as SM).

Results shown here are derived by assuming that 75 % of infections are mildly
symptomatic or asymptomatic,* which is consistent with empirical evidence>*® Such as-
sumption leads to an infection fatality ratio (IFR) of 1-5 %. We repeated the analysis (in-
cluding parameter estimation) by assuming 90 % of asymptomatic/mildly symptomatic
infections, which leads to an IFR of 0-5%. These two values bracket the available
estimates of IFR for western countries ' While the daily percentage of latent individ-
uals that must be isolated in the two cases is similar, the abundance of exposed and
pre-symptomatic individuals in the latter scenario is more than twofold, and so is the
isolation target in terms of the number of individuals (SM). The trajectories shown in
figure |1| are robust with respect to the assumed asymptomatic fraction, at least for the
relatively short projection horizon considered here.
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Figure 2: The plots indicate the daily number (left scale) and the daily percentage (right scale) of
latent individuals (exposed E and pre-symptomatic P compartments) to be isolated to maintain the
epidemic trajectory onto the blue curve in figure[T](corresponding to the current lockdown) despite
the possible increase in transmission induced by the actual release of restrictions (horizontal axes).
Solid lines refer to median values, shaded areas to the 95 % (lighter blue) and 50 % confidence
intervals. In each panel, median and 95 % confidence interval of E, P and new daily symptomatic
cases (C) are given (estimates refer to May 4). The other Italian regions are shown as SM.
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Conclusions

Health policy decisions concerning the relaxation of current containment measures of
the COVID-19 epidemic in Italy imply decisions focused on the expected social and
economic benefits. However, costs are hard to put a price tag on, because they depend
on the macroscopic effects of the relaxations measures, stemming from their real-life
application in terms of PPE adoption, social distancing, potential and realized mobility
patterns, evolution of alertness about precautionary measures. Because proper choices
of cost/benefit ratios are necessary to decide key health policy actions, epidemiological
scenarios are necessary to provide at any time a reasoned estimate of the actual number
of local infections based on the modelling scenario that best fits the early signs of
local revamping of the epidemic. To that end, monitoring on a daily basis the number
of new hospitalizations is essential to assimilate data with suitable spatial granularity.
Interventions include the reinstatement of human mobility while enforcing the strict
adoption of precautions and hygiene measures. Taken together, they reflect an overall
exposure hardly predictable a priori.

To bring the epidemic curve back on track (e.g. near the baseline trajectory observed
prior to relaxation) health policy makers should consider a mix of interventions that may
include the re-tightening of confinement measures, possibly by a stop-and-go implemen-
tation based also on seasonality effects, or evidence on limits to the acquired immunity,
and/or the effective isolation of infectious individuals.*® Modeling studies can provide
reasoned estimates of the minimum target to be attained, in this study through the latters.
The proper strategy to achieve the isolation target is the domain of public health policy.
The complementary use of testing in the control strategy is instead the domain of virol-
ogy and epidemiology. To both domains, proper modelling scenarios offer information
otherwise unavailable.

Our results suggest that each Italian region should carefully evaluate its current
tracing, testing and isolation capacity in order to plan and manage the second phase of
the epidemic.
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Supplementary Material

Epidemiological model
The original SEPIA model

Here, we use the model SEPIA% which includes the following compartments: Sus-
ceptible (S5), Exposed (E), Pre-symptomatic (P), Infected with heavy symptoms (/),
Asymptomatic/mildly symptomatic (A), Hospitalized (H), Quarantined at home (Q),
Recovered (R) and Dead (D) individuals. The local dynamics of transmission is given

by:
S=-18
E=1S-6E
P =6gE — 6pP
I=06pP - (m+yr+ap)l
A= (1-0)6pP —yaA (1)
H=(1-Onl - (yg+an)H
0 =l -0
R=vy/I+yaA+yuH +y00
D =qa;l +ayH .

Susceptible individuals (§) become exposed to the viral agent by contacting individuals
who are in each of the three infectious stages: pre-symptomatic, heavily symptomatic
or asymptomatic/mildly symptomatic. Frequency-dependent contact rates are assumed,
so that exposure is governed by the following force of infection

_ BpP+Bil+B4A 2)
S+E+P+I+A+R’

where p, B and 4 are the stage-dependent transmission rates. Exposed individuals (E)
are latently infected, until they enter the pre-symptom stage (atrate dg). Pre-symptomatic
individuals (P) progress (at rate 6 p) to become (with probability o) either symptomatic
individuals with heavy symptoms (/) or (with probability 1 — o) asymptomatic/mildly
symptomatic individuals (A). Heavily symptomatic infectious individuals (/) exit their
compartment if/when (a) they are isolated from the community (at rate 77) because they
are hospitalized (a fraction 1 — ) or quarantined at home (a fraction (), (b) recover
from infection (at rate vy;), or (c) die (at rate ;). Asymptomatic/mildly symptomatic
individuals (A) leave instead their compartment after having recovered from infection (at
rate y4). Hospitalized individuals (H) may either recover from infection (at rate yy) or
die (at rate ay). Quarantined (i.e., home-isolated) individuals (Q) leave their compart-
ment upon recovery (at rate yp). People recovering from infection or dying because of
COVID-19 populate the classes of recovered (R) and dead (D) individuals, respectively.

10
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The effect of isolation

Following lockdown release, the expected increase in the transmission rates can be
compensated by isolation of cases. We argue in the main text that isolation is more
effective if targeted to exposed and pre-symptomatic phases. Therefore, when isolation
is enforced, two out-fluxes, pg E and pp P, must be considered from the exposed and pre-
symptomatic compartments, respectively. The parameters pr and pp (days~!) represent
the rate at which infected individuals in the E and P classes are effectively isolated from
the community. For the sake of simplicity, we assume pg = pp = p. Also, individuals
isolated are simply removed from the community, without any further consideration of
their clinical trajectories.

Spatial dynamics

We couple the n local communities via a community-dependent force of infection that in-
corporate human mobility at a geographically suitable resolution. The force of infection
for community 7 is given by

1 S 2Ye(PIA} D=l ,ByC,ijk

e Y
= Xe{S.E.PIAR} Zik=1 L ik

where Cl.); (with X € {S,E, P, 1, A, R}) is the probability (Z?zl C’i); = 1 for all i’s and
X’s) that individuals in epidemiological state X who are from community i enter into
contact with individuals who are present at community ; as either residents or because
they are traveling there from community & (note that 7, j and k may coincide).

Spatial coupling is parameterized by using information from the latest nation-wide
assessment of mobility fluxes, which was produced by the Italian National Institute of
Statistics (ISTAT) in 2011 (data available athttps://www.istat.it/it/archivio/
139381). For each second-level administrative unit (province), say i, two quantities
are extracted from the ISTAT data, namely the fraction p; of mobile people, i.e. the
residents of i who defined themselves as commuters, and the fraction g;; of mobile
people between i and all other administrative units j = 1...n (including j = 7). The
contact probabilities Cff (X € {S,E, P, 1, A, R}) are then defined based on the quantities
pi and g;;. Specifically, we assume

(1=pi)+ (1 =rx)pi+rxpigij ifi=]j

cX =
rxpiqij otherwise,

tj

where the parameter rxy (0 < rx < 1) describes the fraction of contacts occurring
while individuals in epidemiological compartment X are traveling. In other words,
for community i, the social contacts of non-mobile people (a fraction 1 — p; of the
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community size), those of mobile people that do not occur during travel (a fraction 1 —ry
of total contacts for people in epidemiological compartment X) and those associated with
mobility for people who travel within their community (a fraction g;; of mobile people)
contribute to social mixing within the community. Conversely, the contacts occurring
between two different communities, say i and j, are a fraction rx of the total contacts of
the individuals in epidemiological compartment X, multiplied by the probability p; that
people from i travel (independently of the destination) and the probability g;; that the
travel occurs between i and ;.

Epidemiological data

For the calibration of the model we consider the epidemiological data collected by
the Dipartimento della Protezione Civile (data available at https://github.com/
pcm-dpc/COVID-19), which are released daily and comprehend: at the regional level,
the cumulative numbers of positive, dead and recovered individuals, together with the
actual number of positive individuals that are severe symptomatic (hospitalized) or are
under quarantine at home; at the province level, the cumulative numbers of positive
cases.

Due to the strong space-time variations in the number of tests performed, the most
trustworthy variable to monitor the outbreak is the daily number of hospitalizations
individuals, in the following indicated with H™. This quantity corresponds to the flux
(1=¢)nl inthe H compartment of our model, and grants a straightforward link between
data and model variables. However, H™ is not directly provided in the online data, and
we thus adopt a stochastic approach to derive H™ combining data regarding the number
of hospitalized individuals and deaths, and estimated distribution of delays between
hospitalization and death or discharge.

At any given day k, H,icn is obtained by the observed variations in the daily number
of hospitalized individuals, Hy — Hy_1, plus the daily deaths Dg‘” = Dy — Dy_1, and
the number of individuals discharged from the hospital, here indicated with R;{’“t. Under
the assumption that the recorded deaths for COVID19 are all from the hospitals, RZ‘“ is
obtained by modeling as random variables the days 7 spent in a hospital before death,
whose probability density function (PDF) is indicated with pp(7), and the time in a
hospital before discharge, whose PDF is indicated with pz (7).

Our procedure consists of the following steps. Sampling a random value from pp (7)
for each individual in D°", we obtain the days of entrance of individuals that will die,
thus the sequence Dikn. We estimate the number of individuals entering on day k that
will be eventually discharged as:

in _ in in
k _Hk _Dk

Then R{"" is obtained by sampling an exit time from pg(7) for each individual in R}Cn.
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Finally:
"= Hy — He_y + D™ + RO™.

Reports by ISS indicate that for COVID-19 casualties the median residence time at
a hospital is about 5 days1? We use this information to parameterize the distribution
pp(7) as an exponential function of mean 5 (hence, a median of 3-5 days; 0-05-0-95
quantiles: 1-4-15-0 days). We also assume that pg(7) follows a gamma distribution with
shape parameter 14 and scale 1, which has a median of 13-7 days (0-05-0-95 quantiles:
8-5-20-7 days), in agreement with the recovery rate previously estimated.*

Final data adopted for parameter estimation of the regional model is the median over
100 random generations of H}C“, downscaled to the province level and smoothed by using
a moving average of 7 days. A sensitivity analysis of H}"' on the parameters of the pp(7)
and pg(7) showed that the time series considered have only marginal variations.

Parameter estimation

The effect of the containment measures was parameterized in our previous application®
by assuming that the transmission parameters (Sp, 5 and 54) had a sharp decrease after
the containment measures announced on February 24 and March 8. We update here
such description to fully account for the set of progressively more restrictive measures
that were introduced form March 8 to March 22, when also industrial and production
activities were stopped. We describe the temporal changes in the Sp’s (the remaining
transmission parameters, §; and S4, are assumed to be proportional to Sp, see table
[T) using 4 values: The value before February 24 (8p,), the values achieved right after
(within two days) the measures introduced on February 24 (8p,) and the first set of
lockdown measures implemented on March 8 (8p,). Finally, we assume that due to the
progressive implementation of the lockdown and the introduction of more restrictive
measures, the transmission rates further linearly decreased from March 10 to March
22, eventually achieving the value (Bp,), which is then held constant. We let Sp,
possibly vary among different Italian regions to reflect possible heterogeneity in disease
transmission. Specifically, we estimate the hyperparameters controlling the prior of the
parameters Sp,/Bp, (a Gaussian distribution truncated between 0 and 1) in a hierarchical
Bayesian framework. Moreover, we fix some parameters and update others based on
our previous estimation and on new pieces of evidence that became available in the
meanwhile. Parameters are estimated comparing data and simulation of the flux of
hospitalization ((1 — )nl) at provincial scale. We assume that each data point follows a
negative binomial distribution with mean yu, equal to the value predicted by the model,
and variance equal to wu (NB1 parametrization>:1%), Parameter values are summarized
in Table Tl

13


https://doi.org/10.1101/2020.04.30.20083568
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.04.30.20083568; this version posted May 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Parameter (units) | Median 95 % CI | Information
Bp, (dh 126 [1-24, 1-28] Estimated
1/6k (d) 4.6 sl
1/6p (d) 2 PO
1/n (d) 5 -
1/vi (d) 14 §
1/ay (d) 25

Ba/Bp (1) 0-022 [0-020, 0-030] | Estimated
Bi1/Ba (1) 1 2
Br,/Bp, (1) 0-90 [0-87, 0-94] Estimated
Bp,/Bp, (1) 0-66  [0-63, 0-68] Estimated
mean Sp,/Bp, (1) 0-59  [0-55, 0-62] Estimated
standard deviation Bp,/Bp, (1) 0-054 [0-035, 0-127] | Estimated
Aty (d) 35 4

w (1) 245  [2-28, 2-56] Estimated

Table 1: Model parameters. The posterior distribution of the parameters marked as estimated
was sampled through the DREAMzg implementation of the Markov chain Monte Carlo algo-
rithm 19 For all estimated parameters we used uninformative priors within biologically meaning-
ful boundaries. Moreover, following our previous application,* we assumed o = 0-25, rg = 0-5
andrE =rp =rpA=rR=17rgs, while rr=ro =rg = 0. Moreover: Yo =7Yr =YH, YA = 2’)/1,
and « H =ay.
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Figure 3: Epidemic scenarios for the regions not shown in ﬁgure
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Figure 5: Isolation target for the regions not shown in figure
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