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Abstract

To model COVID-19 spread, we use an SEIR agent-based model
on a graph, which takes into account several important real-life at-
tributes of COVID-19: super-spreaders, realistic epidemiological
parameters of the disease, testing and quarantine policies. We find
that mass-testing is much less effective than testing the symptomatic
and contact tracing, and some blend of these with social distancing
is required to achieve suppression. We also find that the fat tail of
the degree distribution matters a lot for epidemic growth, and many
standard models do not account for this. Additionally, the average
reproduction number for individuals, equivalent in many models
to R0, is not an upper bound for the effective reproduction number,
R. Even with an expectation of less than one new case per person,
our model shows that exponential spread is possible. The parameter
which closely predicts growth rate is the ratio between 2nd to 1st
moments of the degree distribution. We provide mathematical argu-
ments to argue that certain results of our simulations hold in more
general settings.

Summary

We use a model of COVID-19 spread, an SEIR[5] agent-based model
on a graph[2], which takes into account several important real-life
attributes of COVID-19:

• Super-spreaders[6], i.e. the fact that some people have many more
connections than others, are more likely to be infected and if in-
fectious will infect many more people than the median. We use a
power-law degree distribution.

• Realistic epidemiological parameters of the disease:
– Doubling time when no action is taken.

– Durations of different stages of disease progression (incubation,
symptoms, recovery).
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– Different infectiousness at each of these different stages.

– Importantly, we do not rely on estimates of R0, which are very
uncertain and depend on other assumptions.1 1 See popular article

• Testing and quarantine policies.

We provide simulation results and mathematical arguments to
argue that these results hold more generally. We draw conclusions
both about graph structure and about testing & quarantine policies.

Graph structure

The main conclusions about graph structure are:

• The average reproduction number for individuals, r, equivalent
in many models to R0, is not an upper bound for the effective
reproduction number, R. Even with an expectation of less than
one new case per person, our model shows that exponential
spread is possible. This is because of super-spreaders - the fat tail
of the degree distribution - who are more likely to get infected,
and when infectious infect many people.

• The degree distribution (not just its mean) matters a lot both for
the epidemic growth rate, and for the eventual outcome (number
of people infected). Many standard models neglect this (some-
times implicitly, using a model equivalent to constant degree, or
with degree distribution with a small standard deviation). These
models can produce systematic errors. Social distancing could be
effective by lowering the mean degree (which matters a lot), but it
could also be effective by limiting super-spreaders.

• A potentially highly cost-effective social distancing strategy
might therefore be to limit super-spreaders, e.g. by frequent test-
ing, by limiting their contagiousness or by reducing their number
of contacts, without changing the total number of contacts in the
population.

• The parameter which closely predicts growth rate is the ratio of
2nd to 1st moments of the degree distribution:
µ2/µ1 = E[D2]/E[D] where D is the degree of a random node. If
the average reproduction number for individuals is r, we get

R ≈ µ2/µ2
1 · r = µ2/µ1 · (infection probablility of one neighbor) (1)
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• Graph locality, the fact that neighbors of a given node tend to
be themselves connected, could also be important, but we don’t
model it yet. Other properties of the graph, like large highly con-
nected and sparsely connected subgraphs, could also be important
and aren’t modeled.

Testing & quarantine

The main conclusions from testing & quarantine policy simulations
are:

• Any relaxation of lockdowns without other measures only resets
the clock until the outbreak is critical.

• Safely exiting lockdowns depends primarily on testing capac-
ity and tracing capacity - tests per day, swiftness of results and
actions. Without those measures driving R below 1, exiting lock-
down would cause re-emergence of the epidemic. For limited
testing capacity, a more aggressive quarantine policy can serve as a
substitute.

• Better testing, tracing & quarantine policies can create contain-
ment with far less social distancing if they are effective enough -
good coverage, quick execution.

• Without full lockdown, mass testing of the general population
to search for unknown infected individuals is mostly futile for
containment, since it would require near universal testing to be
effective, which is far beyond current capacity. Limited testing
resources are much better spent testing the symptomatic and their
contacts.

Introduction & Model Specification

We use a Susceptible-Exposed-Infected-Recovered (SEIR) model[5]
for disease progression. We use an agent-based model, where each
agent (person) is represented as a node in a graph, and infection
happens between contacts, represented by graph edges.2 We also 2 See also this excellent implementation

of a similar model on GitHub.model testing and a Quarantine group of those who test positive, and
contact tracing of their neighbors in the graph. Each node belongs to
exactly one of the following groups:

Figure 1: Infected nodes can infect
neighboring Susceptible nodes - those
who share an edge with them. Full ani-
mation at bit.ly/seir-graph-animation.

Susceptible (S): Nodes which weren’t infected yet. These are the
only nodes which can be infected. When infected, they become Ex-
posed.
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Exposed (E): Nodes which were infected and are now in their pre-
symptomatic incubation period. They are infectious starting 2 days
before the end of their (Gamma distributed) incubation period, at
which point they develop symptoms (and become Infected).
Infected (I): Nodes which are now symptomatic. More infectious
than during the final Exposed period. When their (exponentially
distributed) Infected period ends, they become Recovered.
Recovered (R): Nodes who have recovered (or died). They are no
longer infectious and cannot be infected.

Figure 2: Contact tracing. Some share
of the neighbors of a node which
tests positive are traced and tested
themselves.

In addition to those groups, a node can also belong to additional
groups:
Tested Positive (TP): Nodes who tested positive for COVID-19. At
each simulation step, a certain share of Infected nodes are tested and
a certain share of all nodes are tested. Nodes which are Exposed or
Infected test positive. They become Quarantined, and potentially
their neighbors are as well. We do not model false positives.
Quarantined (Q): Nodes which are in quarantine. They can neither
infect nor get infected. Quarantine ends after a set period. Their
disease progression continues irrespective of Quarantine.

Figure 3: Quarantined node cannot
infect others. Susceptible, Exposed,
Infected and Recovered nodes shown.

We take as many parameters for the model as we can find from
real attributes of covid-19, and calibrate the total infection probability
to produce the doubling time of 3.1 days observed in various regions.
For more details about the model, see appendix below, and open
source code.

Figure 4: Epidemic Simulation. The
X axis is time and the Y axis is the
fraction of the population in each
group in linear scale (top) and log scale
(bottom).

Simulation starts with a certain number of Infected and Exposed
nodes, and simulates the progression, tracking the total number of
nodes in each group for later analysis. The results of a single sim-
ulation are plotted in the figure here. In this example there are no
quarantines at all, and the epidemic spreads exponentially. In the
early days, the number of Exposed outnumbers the Infected. The
epidemic spreads until herd immunity is reached, at which point it
decays exponentially until it is eradicated. The eventual number of
people who were infected is the final number of Recovered, about
60%.

Graph Structure Dramatically Affects Epidemic Growth

Our model can run on any graph. To model super-spreaders, we
use here a power law degree distribution for nodes, which is a lin-
ear transformation of X = U−γ, where U ∼ U[0, 1] is distributed
uniformly between 0 and 1. The degree is D = aX + b so that the
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minimum value of D is 2 and the mean value of D is a parameter
we vary. Nodes are connected to each other to satisfy the degree
constraint, but otherwise randomly, so there is no locality.

Figure 5: Different degree distributions
corresponding to different gamma
values. Higher gamma values give
a fatter tail to the distribution. Here
mean degree = 20, N = 105 nodes.

Gamma is important - the higher gamma is, the fatter the tail
of the degree distribution, so there are more super-spreaders with
stronger spreading. The power law distribution has a fatter tail than a
normal or an exponential distribution. The degree distribution in log
scale is in the figure on the right.

The average reproduction number, r

We define the average reproduction number, r, as the expected num-
ber of individuals infected by a single random person if that person
is infectious and all others are Susceptible. More precisely the defini-
tion is:

• Select a node in the graph at random, uniformly, so that each node
has an equal probability of being selected.

• Assume this node was infected (so it becomes Exposed, Infected,
then Recovered), but all other nodes are Susceptible. Let rnode be
the expected number of its neighbors that it would infect until it
recovers.

• r is the unweighted average of rnode over all nodes. r = rnode.

For example, assume half of the nodes have degree 10 and half have
degree 30, the disease lasts exactly 1 day and the daily probability of
infecting a neighbor is 0.1, then rnode = 10 · 1 · 0.1 = 1 for half of the
nodes, and rnode = 30 · 1 · 0.1 = 3 for the other half. So r = rnode =
1+3

2 = 2.
The advantage of this definition is that it is unambiguous and can

be calculated precisely from the properties of the graph and the epi-
demiological parameters. This definition is very closely related to R0.
The only difference is the uniform selection of the initial node, which
is crucial as we shall see. r is nearly proportional to the mean degree
times the probability of infection. For a homogeneous population,
where the degree of all nodes is constant, as in many models, we
have R0 = r. Therefore r is the reproduction number effectively used
in many models and definitions. We will show it is systematically
wrong as an approximation for R0.

Degree distribution, super-spreaders and growth rate

For a specific gamma value, r is a good determinant of growth rate.
But higher gamma values give a higher growth rate for the same r
and the same mean degree. This is through a fatter tail of the degree
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distribution - super-spreaders. This causes R (the expected number of
people that an infected node in the simulation infects) to be greater
than r (the expected number of nodes that a uniformly random node
would infect). As a specific case, there are many cases where r is less
than one, but we get exponential growth in the number of infected
individuals, sometimes very rapid growth.

Figure 6: Epidemic growth rate vs. r,
for different values of gamma (color).
Broadly, higher r yields higher growth
rate, but there is considerable hetero-
geneity with higher gamma also giving
higher growth rate.

In the graph on the right each point represents a simulation with
certain parameters (in fact, 10 simulations which are averaged). We
varied the mean degree, the infection probability of a single interac-
tion, and the degree distribution parameter gamma (0.4, 0.2, 0.1 and
0). We plot the growth rate observed in the simulation vs. r which
can be calculated from the mean degree and the epidemiological pa-
rameters (infection probability, recovery time, etc.). The daily growth
rate of an epidemic is by what factor the number of infected people
grows each day. A growth rate of 2 means the number doubles each
day, a growth rate of 0.5 means it halves each day. The growth rate
can be easily derived from the doubling time. For example, in one
simulation in this graph, for γ = 0.4 and r = 0.85 we have a daily
growth rate of 1.2.

We plot a few examples of epidemic simulations, all with r = 0.5,
the same mean degree and infection probability, but different values
of gamma. The different gammas radically change the course of the
epidemic. Gamma of 0.4 gives standard exponential growth until
herd immunity. Gamma of 0.2 and 0.1 give a constant simmer which
eventually dies out, and gamma of 0 gives quick containment.

Standard models neglect the degree distribution

Figure 7: Epidemic simulations with
different gamma values, plotting over
time the (log) share of Exposed and
Infected individuals in the population.

The fact that the degree distribution dramatically affects the epidemic
growth rate, and effective reproduction number, is very important in
practice, since many models don’t account for this fact. We review a
few families of models which do not model degree distribution:

• Compartmental models which are not agent-based, like SIR models[5]
where the model state is only the fraction of the population in
each group, implicitly assume that each infectious node causes
the same number of infections, and that each susceptible node is
equally likely to be infected. This amounts to assuming constant
degree, and no locality.

• Branching process models make the same modeling choice equiv-
alent to constant degree with no locality. Even well crafted models
with other strengths.[4]

• Two-dimensional (or in fact n-dimensional) spatial models, where
an interaction happens if two nodes are in some proximity to each
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other. In this case, the degree is not constant, but it has a relatively
small standard deviation - it certainly isn’t fat-tailed like a power-
law distribution. Two examples of this are Paul Romer’s covid-19

model and the instructional model by 3-blue-1-brown.

• Even agent based models which account for many traits of the
population, such as FRED[3], do not necessarily account for the
degree distribution. They do, however, model locality very well.

A mathematical argument for R = µ2/µ2
1 · r

There is a simple argument for why in our case the effective repro-
duction number R before the epidemic peaks is typically greater
than the average infection rate r. Recall our definition of r as the ex-
pected number of individuals infected by a single random person
if that person is infectious and all others are Susceptible. This is a
good approximation for the first step of infection. But after the first
step of infection, individuals with larger degrees are more likely to
have been infected, since they are more likely to have interacted with
an infectious individual. This means after the first step, the degree
distribution of the infectious is not the same as the population distri-
bution - it skews higher. Those higher degree individuals will then
infect (in expectation) more than r individuals, and so after the first
step, R will be greater than r. An extreme (and unrealistic) case of
this is a network with one central node and N-1 other nodes which
are only connected to the central node. Let’s take infection with prob-
ability 1 for simplicity. In this case r ≈ 2, but the expected number of
individuals infected in 2 steps is N-1, all other nodes, and much more
than r2, which is the expected in two steps if R = r.

More precisely, if the degree, D, in the population is distributed
by P(d) = P0(d), then irrespective of the degree distribution of the
infectious nodes in the first generation, in the second generation it
will be P1(d) = C · P0(d) · d, by Bayes’ theorem, because a node with
degree d is d times more likely to be connected to an infectious node
than a node with degree 1 is.3 Since these probabilities must sum up 3 This closed form formula of P1(d)

is true in expectation, not for every
specific second generation. It also
assumes relatively few infectious nodes,
so connections to multiple infectious
nodes are neglected.

to 1, the constant C comes out C = 1/ ∑d P0(d) · d = 1/E[D]. This
assumes independence between a node’s degree and its neighbors’
degrees (or infectiousness status). So we have

P1(d) =
P0(d) · d

E[D]
(2)

Suppose we start with one random infected node. That node has
expected degree E[D] and will infect r nodes (in expectation, by
definition of r). Those infected nodes have a higher mean degree.
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What is their expected degree, D1?

E[D1] = ∑
d

P1(d) · d = ∑
d

P0(d) · d2

E[D]
=

E[D2]

E[D]

Now, these new infected nodes which have a higher mean de-
gree will infect more than r nodes each. How many? If a node with
degree E[D] infects r nodes (So r/E[D] per neighbor), then, since in-
fection of each neighbor is independent of the infector’s degree, they
will each infect proportionally to their degree4: 4 In fact, after the first step, this will

be proportional to (degree − 1) since
the node in question was infected by
some other node, who can no longer
be infected. We neglect this. To be
even more precise, one would have
to consider the clustering coefficient
/ locality of the graph to know how
many neighboring nodes were not yet
infected. Our graph is not local, so we
do not address this.

E[nodes infected] = E[degree · infections per neighbor] =

E[D1] · E[infections per neighbor] =
E[D2]

E[D]
· r

E[D]
=

E[D2]

E[D]2
· r

This degree distribution of infected nodes will remain roughly
the same for a few steps, until Susceptible high degree nodes are
exhausted. During that time, each step each infected node will cause

the infection of (in expectation) E[D2]
E[D]2

· r nodes, so we have

R =
E[D2]

E[D]2
· r =

µ2

µ1
2 · r (3)

Note that if the degree is a constant d, this gives R = d2/d2 · r = r =

R0 as expected.
Since r is proportional to the mean degree, r = µ1 · P(infect single neighbor),

we get R = µ2
µ1

2 · r = µ2/µ1 · P(infect single neighbor).

R ∝ µ2/µ1 (4)

So the interesting factor is the ratio of the second to first moment
µ2/µ1 of the degree distribution.5 5 As an aside we note that for a directed

graph, a very similar argument gives
R = E[Din ·Dout ]

E[Din ]
2 · r ∝ E[Din ·Dout ]

E[Din ]
.We now test that this holds in our model. The daily growth rate is

a linear function of R, which relates to the time it takes the infected
node to incubate, infect and then recover (so called the “serial inter-
val”). We therefore try predicting the growth rate rather than the (not
easily observed) R.

On the right, we see that our theoretic R with the moment ratio is
a far better predictor of the growth rate than r that we tried before.
We see a robust power-law dependence, manifested as a straight line
in the log-log axes, with slope 0.4. This holds for any non-local graph
structure and a wide range of infection rates, whereas using R0 = r,
as many models do, is a far worse predictor.

Figure 8: Epidemic growth
rate vs. our theoretic predictor,
µ2/µ1 · infection probability. Each point is
a simulation, with its observed growth
rate (y) and calculated predictor (x),
for different values of gamma (color).
Unlike with r, now all gamma values,
correspond to a single straight line.
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Locality and clustering coefficient

Locality, i.e. the tendency of nodes to cluster so that neighboring
nodes share many of their neighbors, is a realistic feature of human
interactions, and can be very important for epidemic spread as well.
Locality means an infected node has fewer nodes to infect than their
degree suggests, since some of the node’s neighbors have likely al-
ready been infected by the same source which infected this node
itself. The extreme version of this is if every household is isolated,
where the epidemic can only spread within infected households, and
then die out.

We don’t model this, but getting a more realistic graph of human
interactions can yield more conclusions6, and this is an important 6 see this preprint

avenue for future work. Note that even simulations which are very
realistic and use real statistical data about schools, work places etc.
still don’t always model a fat tailed degree distribution, so these are
somewhat complementary approaches.

Selecting graph parameters

We don’t have direct evidence of the true distribution of degrees
(or infectiousness) in the population. There is some arbitrariness
in selecting the mean degree and the infection probability. Absent
direct evidence, in what follows we select gamma=0.2, which makes
the degree of the top 0.1 percentile (1/1,000 nodes) equal about 15

times the median degree. We think this is a somewhat reasonable
approximation of the true distribution. We select the mean degree
arbitrarily to be 20, and calibrate the infection probability accordingly
to produce a doubling time of 3.1 days. This is the real-life doubling
time absent any action, as observed for example in US death rates.7 7 We estimated the doubling time from

total number of reported COVID-19

deaths in the USA: from March 4th to
March 28th, 2020 the number increased
from 11 to 2220 deaths. the Source.
Similar numbers were observed in
other geographies where no significant
interventions were implemented.

Conclusion

Graph structure, i.e. the network of who can infect whom, has a deci-
sive effect on the growth of epidemics. Specifically, super-spreaders,
or the fat tail of the degree distribution, matter a lot, in addition to
the mean degree. The expected number of infections of a random
individual, r, in many models equivalent to R0, is not a good enough
indicator of epidemic spread. It is also obviously not a property of a
virus itself, since it depends on many other conditions, such as social,
living & hygiene conditions. We showed that the graph structure has
a very large influence on the effective reproduction number, R, even
when r stays constant, because of dynamics of the epidemic spread.
It is therefore crucial to model the graph structure to reach the right
conclusions about epidemic spread.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20081828doi: medRxiv preprint 

https://cmmid.github.io/topics/covid19/tracing-bbc.html
https://www.worldometers.info/coronavirus/country/us/
https://doi.org/10.1101/2020.04.30.20081828
http://creativecommons.org/licenses/by/4.0/


modeling covid-19 on a network: super-spreaders, testing and containment 10

Testing & Quarantine Policies

Results

• Exiting lockdowns without allowing critical levels of spread is
possible if testing and tracing capacity are available. Without those
measures driving R below 1, exiting lockdown would cause re-
emergence of the epidemic.

• Testing & quarantine policies can create containment even without
social distancing if they are effective enough (good coverage, quick
execution), or if they are less effective but combined with some
social distancing.

– Testing the general population (mass testing) is mostly futile for
containment. In order to actually create containment, it needs
to be done at such a high rate that requires infeasible resources.
Spending the same amount of tests on symptomatic patients
and their contacts is much more efficient.

– Testing just the symptomatic can create containment, but only
if it’s done with such speed and certainty that are not really
feasible.

– Tracing the contacts of those who tested positive and testing
them, is another important tool for containment. And its ef-
fects might even be understated in our results, due to certain
abstractions in our model, most of all lack of locality of the
graph. Combined with testing the symptomatic, it can achieve
containment more easily.

– Absent test kits, such as in developing countries, diagnosing by
symptoms and then aggressively tracing contacts and quaran-
tining them without testing can be a substitute for testing.

Outcomes of interest

To compare different policies against each other, we need to explain
what the policies are and what outcomes we care about. Let’s start
with the outcomes. The three main outcomes we’ll track here are the
following.

• Share of the population eventually infected. This is the pro-
portion of individuals who are infected at some point before the
epidemic is eradicated. Some fraction of this is the deaths, so this
is obviously important. We term a share of fewer than 5% "con-
tainment".
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• Peak daily test rate. This is the maximum number of tests per-
formed in a single day during the course of the epidemic. It’s
important because this is how we know if we can even support a
certain policy, in terms of the amount of test kits it requires.

• Quarantine days per person. The total quarantine time experi-
enced by all individuals throughout the epidemic, divided by the
total number of individuals in the population. This gives the num-
ber of days the average person will spend in quarantine.

Keep in mind that our simulations start with 0.1% of the popu-
lation Infected, and 0.15% of the population Exposed. So outcomes
should sometimes be scaled to the share of the population infected
when the policy is implemented, for example peak test rate.

Policies

Our policies are divided into three main categories, according to who
is tested:

• Mass Testing - testing the general population. A random subset
of the general population (that has not tested positive before)
is tested. Exposed or Infected individuals who are tested, test
positive. We parameterize this by the fraction of the population
tested each day.

• Test only the symptomatic patients, and nobody else. However,
not all of them are tested, and not immediately. We model this as a
random subset of Infected individuals being tested every day (and
found positive). We parameterize by what fraction of the Infected
are tested per day, or equivalently by the expected number of
days between developing symptoms and being tested. This could
also be testing not with kits, but by symptoms, for example in
developing countries.

• Test & trace. This is a complement to testing the symptomatic
or the general population, in which for those who test positive,
their contacts are also tested with some probability, to find other
Exposed or Infected individuals. All the positives are quarantined.
We parameterize this by the share of contacts traced and tested.
We also briefly consider the case where contacts aren’t tested with
test kits, but instead all quarantined.

All of these policies can be combined with social distancing. We
now go over these policies and report the outcomes they produce.
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Mass testing

How many tests of the general population would we have to perform
every day in order to achieve containment? We’ll look at different
fractions of the population tested every day (30%, 10%, 1% etc.), and
graph main outcomes that result from each intensity of this policy. To
create containment, we need to test 30% of the population every day.
If we only test 10% of the population every day, we get 34% of the
population infected - no containment (blue bars). Of course the test
rate is very high in both of these options.

Figure 9: Policy outcomes of mass-
testing. The X axis denotes the fraction
of the population tested every day, in
descending order - to the left is more
testing. The Y axis tracks our 3 main
outcomes (on a logarithmic scale).

There’s a good argument for why it’s hard to achieve contain-
ment this way. Testing a random X% of the population per day and
quarantining the positives only reduces the growth rate of the epi-
demic by X% a day, since it "eliminates" X% of the carriers. If the
epidemic grows faster than X% a day (as in our case), this doesn’t get
the growth rate below 1 and does not achieve containment. This is
not to say mass testing is not effective at all, just that it requires so
many tests to be effective, that these testing efforts are much better
spent elsewhere. Other methods to detect carriers must be consid-
ered.

Testing the symptomatic

Now we review policies of testing the symptomatic. Our parameter
is the expected number of days between a patient developing symp-
toms (becoming Infected in our model) and being tested. On the
right is a chart of the outcomes.

Figure 10: Policy outcomes of testing
the symptomatic. The X axis denotes
the average number of days to detect
an Infected individual - left is quicker
detection - and the Y axis our 3 main
outcomes, again on a logarithmic scale.

Notice if it takes 0.2 days (almost immediately) to detect a symp-
tomatic patient and those who tested positive are immediately quar-
antined, we get about 2% of the population eventually infected -
substantial, but still containment. In this case, we need to test 0.1%
of the population at the peak day. If it takes 1 day to detect a symp-
tomatic patient, it will make 20% of the population get infected - no
containment. We would also need more tests at the peak in this case,
and require more quarantine time.

In other words, quarantining all the Infected immediately as
they become Infected (before they infect anybody else) can stop the
spread, but if it takes even one day on average to find and quarantine
the symptomatic, we get exponential growth. This means even if all
symptomatic patients self-isolate and stop infecting after one day of
symptoms, we would still not achieve suppression. Though it does
slow down the doubling time significantly, from 3.1 to 7.7 days (not
shown on the chart).

The reason it’s hard for testing the symptomatic alone to create
containment is that there are pre-symptomatic infections in the incu-
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bation period (the Exposed stage in our model). These infections can-
not be stopped by testing the symptomatic, no matter how immediate
the test is. These could be very significant for COVID-19. If these pre-
symptomatic infections alone create an effective reproductive number
R > 1, testing the symptomatic will not create containment. In our
model, they create R of almost 1, so that even only a minor additional
delay in testing is enough to allow additional infections in the early
Infected period, and push R above 1. Something more is required.

Test & trace

Quarantining the Infected is useful for containment, as we’ve seen. A
way to leverage this to find more Infected and Exposed individuals
is to trace the contacts of the Infected individual, and to test them as
well to see if they have already been infected. This is called “test &
trace”. We implemented only one cycle of this:

1. Testing of Infected / general population (with some probability, as
before).

2. For those who tested positive, some fraction of their neighbors is
traced and tested. Of those tested, both Infected and Exposed test
positive.

3. Quarantining all those who tested positive from steps 1 and 2.

We did not model an additional steps of testing the neighbors of
positives from step 2, their neighbors, and so on.

Figure 11: Policy outcomes of contact
tracing. The X axis denotes the average
share of contacts of a positive case
which are traced & tested. The Y axis
is the outcomes. Assumes testing the
symptomatic yields detection in (on
average) 2 days.

Suppose it takes 2 days on average to detect an Infected individ-
ual. The chart on the right shows how the fraction of contacts suc-
cessfully traced changes our outcomes. This has a large effect. Trac-
ing all contacts of an Infected individual who tests positive achieves
containment, with 3% of the population eventually infected. Tracing
only 10% of the contacts (rightmost bars) does not achieve contain-
ment, with 24% of the population eventually infected.

We think this actually understates the real life effect of test &
trace. Our graph is not local at all, so there are no clusters of infected
nodes. This means that neighbors of an Infected node X, which tested
positive, are only more likely to be Exposed or Infected themselves
to the extent that they were infected by X. They don’t have any larger
chance of having been infected by the same node which infected X. In
reality, there is much clustering, and so tracing can help detect these
pockets of infections, and be even more effective.
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Test & trace can also be combined with mass-testing: tracing the
contacts of those who test positive. Even with 100% of contacts traced
and tested, still mass-testing of just over 10% of the population daily
is required for containment. The peak test rate in this case is pre-
dictably very large, almost identical to mass-testing without contact
tracing. Again, we see that there is not much point in mass testing.

Limited testing capacity and more aggressive quarantine

If not enough test kits are available to test all contacts, as in develop-
ing countries, tracing might still be possible. In this case, instead of
testing contacts, a more aggressive policy of quarantining all of the
traced contacts without testing them can achieve results which are at
least as good at containment, at the price of much more quarantine
time. In a sense, testing is a substitute for more quarantine. If there is
slack test capacity, where the constraint is just the cost of a single test
and not the amount of tests performed per day, testing can be a way
to minimize quarantine time.

With social distancing

All of these analyses were done assuming there is no social distanc-
ing, so absent any testing & quarantines the doubling time is 3.1
days. But what if social distancing & hygiene push the infection
rate down a bit? We performed all of the same simulations with a
lower infection probability (about 2/3 of the original), which gives
a basic doubling time of about 5 days. This does not correspond to
lockdown, but to some social distancing measures still in place, say
limiting large gatherings. The policies’ relative effectiveness stays the
same, except that now slightly less action is required.

Conclusion

In conclusion, there are a few tools at our disposal to decrease the
effective reproduction number R below 1 and achieve containment:

• Testing symptomatic individuals - helps a lot, but not enough on
its own. The faster and more hermetic it is, the more effective it is.

• Contact tracing - helps a lot as well.

• Social distancing to slow the base rate of spread.

• Mass testing - requires a lot of tests to have an effect, so less effec-
tive.
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Policy Containment with Containment with some social

business as usual distancing (doubling time ~5 days)

Mass testing

without contact tracing Test 30% daily. Test >10% daily.

with contact tracing Test >10% daily, Test 10% daily,

trace 100% of contacts. trace 50% of contacts.

Testing the symptomatic

without contact tracing Detect Infected in 0.2 day Detect Infected in 1 day.

with contact tracing Detect Infected in 1 day, Detect Infected in 2 days,

trace 50% of contacts. trace 50% of contacts.

Enough of these need to be combined to drop R below 1. Differ-
ent combinations are possible according to what is feasible and least
costly. Our simulations suggest some social distancing (short of lock-
down), testing of symptomatics and contact tracing are the way to
go. But this is sensitive to economic calculations of costs, and the
available technology. Nevertheless, these measures, or others, must
be applied in order to exit lockdown without the epidemic spreading
very quickly again.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20081828doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20081828
http://creativecommons.org/licenses/by/4.0/


modeling covid-19 on a network: super-spreaders, testing and containment 16

Appendices
Model specification

Model mechanics

In more detail, here are the model mechanics. For a full specification,
refer to the open source code. Each simulation step is composed of
several steps which change the different groups above. See illustra-
tive animation at bit.ly/seir-graph-animation.

for each simulation step:

S, E = infection_step()

E, I = incubation_step()

TP = testing_step()

Q = quarantine_step()

I, R = recovery_step()

infection_step (S -> E):

Each non-Quarantined Infected or Exposed node (in the final 2

days before becoming Infected) is infectious.
Each infectious nodes infects each of their non-Quarantined
Susceptible neighbors with a certain probability.
Nodes who were infected become Exposed and start their incu-
bation time, which has a Gamma distribution.

incubation_step (E -> I):

Exposed nodes whose incubation time has ended become In-
fected.
Exposed nodes who have less than 2 days left to become Infected
become infectious, but to a lesser degree.

testing_step (update TP):
A test is positive if a node is either Exposed or Infectious.
Tests of symptomatic: some proportion of Infected nodes are
tested (and test positive).
Mass-testing: some proportion of the entire population is tested.
Contact tracing: some proportion of neighbors of those who
tested positive, are also tested.

quarantine_step (update Q):
Nodes who tested positive enter Quarantine for 14 days. Op-
tionally, all neighbors of nodes who tested positive also enter
Quarantine for 14 days.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20081828doi: medRxiv preprint 

https://github.com/ofir-reich/seir-graph
http://www.bit.ly/seir-graph-animation
https://doi.org/10.1101/2020.04.30.20081828
http://creativecommons.org/licenses/by/4.0/


modeling covid-19 on a network: super-spreaders, testing and containment 17

Quarantined nodes who finished their quarantine time exit quar-
antine (and retain their SEIR state).
Quarantined nodes who tested positive in the past and are now
Recovered exit Quarantine, even if their 14 days aren’t up.
Quarantined nodes who tested positive in the past and haven’t
recovered stay in Quarantine, even if their 14 days are up.
Quarantined individuals can neither infect nor be infected.

recovery_step (I -> R):
Some proportion of Infected nodes become Recovered, and are
no longer infectious. This has no memory, so it creates an expo-
nentially distributed recovery time.

Initial conditions (initialize all groups)
Some fraction of nodes are randomly selected to start as Infected.
A slightly larger fraction are randomly selected to start as Ex-
posed. Their incubation times are drawn from the same Gamma
distribution of incubation time.
All other nodes start as Susceptible.
No nodes start as Recovered, Quarantined or Tested Positive.

The simulation makes several steps per day, with step-wise proba-
bilities calculated as the daily probabilities divided by the number of
steps per day. Full parameter table is below.

Figure 12: 10 simulations with group
sizes over time and their average (thick
line). There is some spread of results,
but mostly horizontal shifts in timing -
aggregate outcomes are rather robust.

Simulation results

We typically run a simulation of the progression of the epidemic
and collect aggregate stats at each simulation step: total number
of Susceptible, Exposed, Infected, Recovered, Quarantined, tests
performed. This creates several time series. We then typically run
10 simulations with the same model parameters and average these
time series to reduce noise (see figure on the right). We calculate our
final outcome stats on this average time series. There is some noise
or initial condition dependence in the individual simulations, which
is typically smoothed out in the average. Our simulation outcomes
can include the total number of nodes infected, the peak test rate,
the total quarantine time, the doubling time during the exponential
spread and more.

Strengths and limitations

The strengths of this model are:

• It models quarantines and contact tracing.
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• It models super-spreaders.

• By changing the graph structure, we will be able to model cluster-
ing and heterogeneity in R0.

• This model can be flexibly adapted to changing parameters or
policies.

• This model is open source.

The limitations of this model are:

• Many things are not modeled probabilistically, which should be:
all neighbors are traced and quarantined, quarantined individuals
never infect or get infected, tests come out positive for all Exposed
and Infected.

• We do not model dynamic edges - nodes in contact stay in contact
throughout.

• This is not the true graph form for human interactions, it is sim-
plified. The real connection graph of people is more complex, with
strong locality, but we do think it has a fat tailed degree distribu-
tion. We are unsure of the precise realistic parameters of the power
law distribution, and results are sensitive to that. Parameters of
the real-life graph (with and without social distancing) would be a
valuable addition.

• The mean degree of nodes we selected is arbitrary (but we cali-
brate the infection probability to give the correct doubling time, so
might correct that).

• We do not model asymptomatic patients directly. However, we
capture them through the daily probability of recovery which was
calculated to include them, and the probability an Infected node
is detected which is not 1. So they are modeled as Infected who
recover quickly and aren’t tested. This is an important avenue for
future work since they might be very numerous.[1]

• We do not model superspreading events (gatherings, etc.) and
these could be important if they increase the average number of
interactions (and so infections) or if they mix the graph a lot.

• We do not model false negative test results, but these are equiva-
lent to a smaller fraction of the population / Infected / neighbors
being tested, so it is included in the probability of testing, which in
fact represents the probability of detection. We also do not model
false positive test results.
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Parameter table

This is the parameter table for the simulation runs, along with their
default values. Some of these were changed in the different simula-
tions presented in the paper, as explained. Refer to the code for a full
specification of all parameters and their use.

parameter value meaning

N 10
5 Number of individuals in the simulation.

min_degree 2 Minimum degree of connection graph.

mean_degree 20 Mean degree of connection graph.

gamma 0.2 Parameter of degree distribution. Higher gamma means a fatter tail.

Default values make the top 0.1% degree = 15 * median degree.

doubling_days 3.1 USA deaths data (worldometers.info): 11 ->2,220 from March 4th to March 28th.

prob_infect 0.022 In a single interaction, what is the chance of an Infectious to infect a Susceptible.

Fitted to produce doubling_time For G with parameters (10
5, 2, 20, 0.2).

prob_infect_exposed_factor 0.5 In a single interaction on a single day, how much more likely is an Exposed,

in his infectious period before becoming contagious, to infect than an Infected.

prob_infect_exposed = prob_infect * prob_infect_exposed_factor.

duration_exposed_infects 2 How many days before developing symptoms (becoming Infected) an

Exposed individual is contagious. Considerable uncertainty.

incubation_duration_mean 5.1 Incubation period duration distribution mean. In days. Source.

incubation_duration_std 4.38 Incubation period duration distribution standard deviation. In days. Source.

prob_recover 0.28 Probability to change from Infections to Recovered in a single day. Inverse of

expected recovery time. Source.

days_in_quarantine 14 Length of imposed quarantine, in days.

steps_per_day 5 Number of simulation steps per one day of real life time.

initial_infected_num 100 Number of individuals infected at t=0.

prob_infected_detected * Probability that an Infected individual is tested in a single day.

prob_neighbor_detected * Probability neighbor of a positive is traced and tested.

prob_exposed_detected * Probability Exposed individual tested in a single day.

This is the fraction of the general population tested daily.
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