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 2 

ABSTRACT 1 
 2 
The research team has utilized privacy-protected mobile device location data, integrated with 3 
COVID-19 case data and census population data, to produce a COVID-19 impact analysis platform 4 
that can inform users about the effects of COVID-19 spread and government orders on mobility 5 
and social distancing. The platform is being updated daily, to continuously inform decision-makers 6 
about the impacts of COVID-19 on their communities using an interactive analytical tool. The 7 
research team has processed anonymized mobile device location data to identify trips and produced 8 
a set of variables including social distancing index, percentage of people staying at home, visits to 9 
work and non-work locations, out-of-town trips, and trip distance. The results are aggregated to 10 
county and state levels to protect privacy and scaled to the entire population of each county and 11 
state. The research team are making their data and findings, which are updated daily and go back 12 
to January 1, 2020, for benchmarking, available to the public in order to help public officials make 13 
informed decisions. This paper presents a summary of the platform and describes the methodology 14 
used to process data and produce the platform metrics. 15 
  16 
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 3 

1. INTRODUCTION 1 
 2 
Informed decision-making requires data. In the case of COVID-19, no previous pandemic had 3 
such a big universal impact on societies in the modern history, as a results historic data lacked key 4 
information on how people react to such a universal pandemic and how the virus impacts 5 
economies and societies. Data-driven decision-making becomes a challenge in such an 6 
unprecedented event. Thanks to the technology, we now have an enormous amount of observed 7 
data collected by mobile devices amid pandemic. We can now utilize this data to learn more about 8 
the various impacts of a pandemic on our lives, make informed decisions to fight the current 9 
invisible enemy, and be better prepared the next time such pandemics happen. Our research team 10 
has utilized a national set of privacy-protected mobile device location data and produced a COVID-11 
19 Impact Analysis Platform to provide comprehensive data and insights on COVID-19’s impact 12 
on mobility, economy, and society.  13 
 14 
Mobile device location data are becoming popular for studying human behavior, specially mobility 15 
behavior. Earlier studies with mobile device location data were mainly using GPS technology, 16 
which is capable of recording accurate information including, location, time, speed, and possibly 17 
a measure of data quality 1. Later, mobile phones and smartphones gained popularity, as they could 18 
enable researchers to sudy individual-level mobility patterns 2-4. Other emerging mobile device 19 
location data sources such as call detail record (CDR) 5-7, Cellular network data 8, and social media 20 
location-based services 9-13 have also been used by the researchers to study mobility behavior. 21 
Mobile device location data has proved to be a great asset for decision-makers amid the current 22 
COVID-19 pandemic. Many companies such as Google, Apple, or Cuebiq have already utilized 23 
location data to produce valuable information about mobility and economic trends 14-16. 24 
Researchers have also utilized mobile device location data for studying COVID-19- related 25 
behavior 17,18.  26 
 27 
Non-pharmaceutical interventions such as social distancing are important and effective tools for 28 
preventing virus spread. One of the most recent studies projected that the recurrent outbreaks might 29 
be observed this winter based on pharmaceutical estimates on COVID-19 and other coronaviruses, 30 
so prolonged or intermittent social distancing may be required until 2022 without any interventions 31 
19, highlighting the importance of improving our understanding about individual’s reaction to 32 
social distancing. Researchers have highlighted the importance of social distancing in disease 33 
prevention through modeling and simulation 20-23. The simulation models assume a level of 34 
compliance, which can now be validated through observed data. Our current platform utilizes 35 
mobile device location data to provide observed data and evidence on social distancing behavior 36 
and the impact of COVID-19 on mobility. We used daily feeds of mobile device location data,  37 
representing movements of more than 100 Million anonymized devices, integrated with COVID-38 
19 case data from John Hopkins University and census population data to monitor the mobility 39 
trends in United States and study social distancing behavior 24. In the next section we describe the 40 
methodology used to process the anonymized location data and produce the metrics that are 41 
available on the platform. The methodology section is followed by a brief overview of the 42 
platform. The last section presents concluding remarks. 43 
 44 
 45 
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2. METHODOLOGY 1 
 2 
The research team first integrated and cleaned location data from multiple sources representing 3 
person and vehicle movements in order to improve the quality of our mobile device location data 4 
panel. We then clustered the location points into activity locations and identified home and work 5 
locations at the census block group (CBG) level to protect privacy. We examined both temporal 6 
and spatial features for the entire activity location list to identify home CBGs and work CBGs for 7 
workers with a fixed work location. Next, we applied previously developed and validated 8 
algorithms 25 to identify all trips from the cleaned data panel, including trip origin, destination, 9 
departure time, and arrival time.  Additional steps were taken to impute missing trip information 10 
for each trip, such as trip purpose (e.g., work, non-work), point-of-interest visited (restaurants, 11 
shops, etc.), travel mode (air, rail, bus, driving, biking, walking, and others), trip distance (airline 12 
and actual distance), and socio-demographics of the travelers (income, age, gender, race, etc.) 13 
using advanced artificial intelligence and machine learning algorithms. If an anonymized 14 
individual in the sample did not make any trip longer than one-mile in distance, this anonymized 15 
individual was considered as staying at home. A multi-level weighting procedure expanded the 16 
sample to the entire population, using device-level and trip-level weights, so the results are 17 
representative of the entire population in a nation, state, or county. The data sources and 18 
computational algorithms have been validated based on a variety of independent datasets such as 19 
the National Household Travel Survey and American Community Survey, and peer reviewed by 20 
an external expert panel in a U.S. Department of Transportation Federal Highway Administration’s 21 
Exploratory Advanced Research Program project, titled “Data analytics and modeling methods for 22 
tracking and predicting origin-destination travel trends based on mobile device data” 25. Mobility 23 
metrics were then integrated with COVID-19 case data, population data, and other data sources. 24 
Figure 1 shows a summary of the methodology.  25 

 26 
Figure 1. Methodology 27 
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 1 
2.1. Trip Identification 2 

 3 
Trips are the unit of analysis for almost all transportation applications. Traditional data sources 4 
such as travel surveys include trip-level information. The mobile device location data, on the other 5 
hand, do not directly include trip information. Location sightings can be continuously recorded 6 
while a device moves, stops, stays static, or starts a new trip. These changes in status are not 7 
recorded in the raw data. As a result, researchers must rely on trip identification algorithms to 8 
extract trip information from the raw data. Basically, researchers must identify which locations 9 
form a trip together. The following subsections describe the steps our research team took to identify 10 
trips. The algorithm runs on the observations of each device separately. 11 
 12 

2.1.1. Pre-Processing 13 
 14 
First, all device observations are sorted by time. The trip identification algorithm assigns a hashed 15 
ID to every trip it identifies. The location dataset may include many points that do not belong to 16 
any trips. The algorithm assigns “0” as the trip ID to these points to identify them as static points. 17 
for every observation, we compute the distance, time, and speed between the point and its previous 18 
and next points if exist. 19 
 20 
The trip identification algorithm has three hyper-parameters: distance threshold, time threshold, 21 
and speed threshold. The speed threshold is used to identify if an observation is recorded on the 22 
move. The distance and time thresholds are used to identify trip ends. At this step, the algorithm 23 
identifies the device’s first observation with 𝑠𝑝𝑒𝑒𝑑	𝑓𝑟𝑜𝑚 ≥ 𝑠𝑝𝑒𝑒𝑑	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. This identified 24 
point is on the move, so a hashed trip ID is generated and assigned to this point. All points recorded 25 
before this point, if exist, are set to have “0” as their trip ID. Next, the recursive algorithm identifies 26 
if the next points are on the same trip and should have the same trip ID. 27 
 28 

2.1.2. Recursive Algorithm 29 
 30 
This algorithm checks every point to identify if they belong to the same trip as their previous point. 31 
If they do, they are assigned the same trip ID. If they do not, they are either assigned a new hashed 32 
trip id (when their 𝑠𝑝𝑒𝑒𝑑	𝑓𝑟𝑜𝑚 ≥ 𝑠𝑝𝑒𝑒𝑑	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) or their trip ID is set to “0” (when their 33 
𝑠𝑝𝑒𝑒𝑑	𝑓𝑟𝑜𝑚 < 𝑠𝑝𝑒𝑒𝑑	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). Identifying if a point belongs to the same trip as its previous 34 
point is based on the point’s “speed to”, “distance to” and “time to” attributes. If a device is seen 35 
in a point with 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜 ≥ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 but is not observed to move there 36 
(𝑠𝑝𝑒𝑒𝑑	𝑡𝑜 < 𝑠𝑝𝑒𝑒𝑑	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), the point does not belong to the same trip as its previous point.  37 
When the device is on the move at a point (𝑠𝑝𝑒𝑒𝑑	𝑡𝑜 ≥ 𝑠𝑝𝑒𝑒𝑑	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), the point belongs to 38 
the same trip as its previous point; but when the device stops, the algorithm checks the radius and 39 
dwell time to identify if the previous trip has ended. If the device stays at the stop (points should 40 
be closer than the distance threshold) for a period of time shorter than the time threshold, the points 41 
still belong to the previous trip. When the dwell time reaches above the time threshold, the trip 42 
ends, and the next points no longer belong to the same trip. The algorithm does this by updating 43 
“time from” to be measured from the first observation in the stop, not the point’s previous point. 44 
The algorithm may identify a local movement as a trip if the device moves within a stay location. 45 
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 6 

To filter out such trips, all trips that are within a static cluster and all trips that are shorter than 300 1 
meters are removed.  2 
 3 

2.1.3. Validation 4 
 5 
Figure 2 and Figure 3 show the validation of this algorithm by running the algorithm on a sample 6 
of national mobile device location data and comparing the trip lengths and travel times with the 7 
reported travel distances and travel times from the 2017 national household travel survey (NHTS 8 
2017). A satisfactory match is observed between the two datasets. 9 
 10 

 11 
Figure 2. Distance validation of the trip identification algorithm against NHTS2017 12 

 13 

 14 
Figure 3. Travel time validation of the trip identification algorithm against NHTS2017 15 

 16 
2.2. Activity Identification 17 

 18 
We first identify all activity points. Then, based on the temporal and spatial distribution of activity 19 
points, we identify the home census block group (CBG) and the work CBG. 20 
 21 

2.2.1. Activity Clustering 22 
 23 
The algorithm starts by clustering all device observations into activity locations using HDBSCAN 24 
26 clustering algorithm. This step takes the cleaned multi-day location data as input and applies an 25 
iterative algorithm until no cluster has a radius larger than two miles. The iterative algorithm 26 
consists of two parts: HDBSCAN based on a minimum number of point parameters and filtering 27 
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 7 

non-static clusters based on time and speed checks. After finalizing the potential stay clusters, the 1 
framework combines nearby clusters to avoid splitting a single activity (Figure 4).  2 
 3 

 4 
Figure 4. Activity clustering methodology 5 

 6 
2.2.2. Home and work CBG Identification 7 

 8 
Figure 5 shows the methodology for home and work CBG identification. Instead of setting a fixed 9 
time period for each type, e.g., 8pm to 8am as the study period for home CBG identification and 10 
the other half day for work CBG identification, the framework examines both temporal and spatial 11 
features for the entire activity location list. The benefits are two-fold: the results for workers with 12 
flexible or opposite work schedules would be more accurate and the employment type for each 13 
device could be detected simultaneously. Figure 6 shows the validation of home and work location 14 
imputations, by comparing the distance from home to work between longitudinal employer-15 
household dynamics (LEHD) data and the imputed locations for a set of mobile device location 16 
data for the Baltimore metropolitan area. We can observe a satisfactory match. 17 
 18 

 19 
Figure 5. Home/work CBG imputation methodology 20 
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 1 
Figure 6. Validation of home and work imputation against LEHD 2 

 3 
2.3. Imputation 4 

 5 
2.3.1. Mode Imputation 6 

 7 
Our research team developed a jointly trained single-layer model and deep neural network 27 for 8 
travel mode detection of this project. This model combines the advantages of both types of models 9 
to be able to make sufficient generalizations using a multi-layer DNN and capture the exceptions 10 
using the wide single-layer model. The datasets used for training the model were collected from 11 
the incenTrip mobile phone app 28, developed by the authors, where the ground truth information 12 
for car, bus, rail, bike, walk, and air trips was collected. To effectively detect the travel mode for 13 
each trip, feature construction is critical in providing useful information. Travel mode-specific 14 
knowledge is needed to improve the detection accuracy. In addition to the traditional features used 15 
in the literature (e.g. average speed, maximum speed, trip distance, etc.), we also integrated the 16 
multi-modal transportation network data to construct innovative features in order to improve the 17 
detection accuracy based on network data integration. The wide and deep learning method utilized 18 
in this study achieved over 95% prediction accuracy for drive, rail, air, and non-motorized, and 19 
over 90% for bus modes on test data. We have applied the trained algorithms on the location dataset 20 
to obtain multimodal trip rosters (see Figure 7 that shows raw location data points by different 21 
travel modes). The resulting mode shares show a decent match with the available travel surveys at 22 
both national and metropolitan levels.  23 
 24 
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 1 
Figure 7. Demonstration of the multi-modal travel patterns 2 

 3 
2.3.2. Purpose Imputation 4 

 5 
In the Home and work CBG Identification, we described how home and work CBGs can be 6 
identified. Other purposes can be directly identified through spatial joint of trip end locations and 7 
point of interest (POI) data. We have used a popular commercial POI dataset that includes more 8 
than forty million records for the U.S. For each trip end, we first filter all POIs that are located 9 
within a 200-meter radius of the trip-end. Next, we identify the trip purpose by the POI type of the 10 
closest POI. 11 
 12 

2.3.3. Socio-Demographic Imputation 13 
 14 
Due to privacy concerns, mobile device location data contain very little ground truth information 15 
about the device owners. However, it is essential to understand how representative the sample is 16 
and how different segments of the population travel. The state-of-the-practice method is to assign 17 
either the census population socio-demographic distribution or the public use microdata sample 18 
(PUMS) units to the sample devices within the same geographic area based on the imputed home 19 
locations. More advanced socio-demographic imputation methods utilize travel patterns and 20 
visited POI types to impute the socio-demographics. These methods require a significant amount 21 
of computation, as various features from different databases should be calculated and used. In 22 
order to balance the computations and conduct a timely analysis for the pandemic, we have used 23 
the state-of-the-practice method and assigned socio-demographic information to the anonymized 24 
devices based on the census socio-demographic distribution of their imputed CBG. Five-year 25 
American Community Survey (ACS) estimates for 2014 to 2018 from the U.S. Census Bureau can 26 
be used to obtain median income, age distribution, gender distribution, and race distribution for 27 
each U.S. CBG 29. For each device, we used Monte-Carlo simulation 30 to draw from the age, 28 
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 10 

gender, and race distribution at the device’s imputed home CBG. We also assigned the CBG’s 1 
median income to the device.  2 
 3 

2.4. Weighting 4 
 5 
The sample data needs to be weighted to represent population-level statistics. First, the devices 6 
available in our dataset are a sample of all individuals in the population, so we need to apply 7 
device-level weights. Second, for an observed device, only a sample of all trips may be recorded, 8 
so trip-level weights are also needed. For the sake of timeliness, we have applied simple weighting 9 
methods to obtain county-level device weights and state-level trip weights. In order to obtain 10 
device-level weights, we have used the home county, obtained from the imputed home CBG 11 
information. The weight for each device is equal to the number of devices observed in the device’s 12 
imputed home county divided by the population of the county, so all devices residing in a county 13 
would have the same device-level weight. For instance, if our sample includes 100 devices in a 14 
county with a population of 2,000, each device would be assigned a weight of 20. Population of 15 
each county can be obtained from the U.S. Census Bureau. For trip-level weights, we have 16 
calculated number of trips per person (trip rate) for each state during an average weekday in the 17 
first two weeks of February from our sample. We have also calculated this trip rate number for 18 
each state from NHTS2017. We have used a single trip rate for all trips generated from each state, 19 
equal to the NHTS trip rate divided by our observed trip rate.  20 
 21 

3. PLATFORM OVERVIEW 22 
 23 
The COVID-19 Impact Analysis Platform, available at data.covid.umd.edu provides data and 24 
insights on COVID-19’s impact with daily data updates. The research team are exploring how 25 
social distancing and stay-at-home orders are affecting travel behavior, spread of the coronavirus, 26 
and local economies. Through this interactive analytics platform, we are making our data and 27 
research findings available to other researchers, agencies, non-profits, media, and the general 28 
public. The platform will evolve and expand over time as new data and impact metrics are 29 
computed and additional visualizations are developed. Table 1 shows the current metrics available 30 
in the platform at the national, state, and county levels in the United States with daily updates. 31 
Figure 8 illustrates the platform. 32 
 33 
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Table 1. List of metrics available on the COVID-19 impact analysis platform 1 
Current Metrics Description 

social distancing 
index 

An integer from 0~100 that represents the extent residents and visitors are practicing social 
distancing. “0” indicates no social distancing is observed in the community, while “100” indicates 
all residents are staying at home and no visitors are entering the county.  
It is computed by this equation:  
𝑠𝑜𝑐𝑖𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔	𝑖𝑛𝑑𝑒𝑥	

= 	0.8 ∗ [%	𝑠𝑡𝑎𝑦𝑖𝑛𝑔	ℎ𝑜𝑚𝑒	 + 	0.01 ∗ (100	 − 	%𝑠𝑡𝑎𝑦𝑖𝑛𝑔	ℎ𝑜𝑚𝑒) ∗ (0.1
∗%	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑎𝑙𝑙	𝑡𝑟𝑖𝑝𝑠	𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑	𝑡𝑜	𝑝𝑟𝑒 − 𝐶𝑂𝑉𝐼𝐷 − 19	𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘	 + 	0.2
∗%	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑤𝑜𝑟𝑘	𝑡𝑟𝑖𝑝𝑠	 + 	0.4 ∗%	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑛𝑜𝑛 −𝑤𝑜𝑟𝑘	𝑡𝑟𝑖𝑝𝑠	 + 	0.3
∗%	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡𝑟𝑎𝑣𝑒𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)] 	+ 	0.2 ∗ %	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑜𝑢𝑡 − 𝑜𝑓
− 𝑐𝑜𝑢𝑛𝑡𝑦	𝑡𝑟𝑖𝑝𝑠 

% staying home Percentage of residents staying at home (i.e., no trips more than one mile away from home) 

#trips/person Average number of trips taken per person. 

% out-of-county 
trips 

The percent of all trips taken that travel out of a county. Additional information on the origins 
and destinations of these trips at the county-to-county level is available, but not currently shown 
on the platform. 

miles 
traveled/person Average person-miles traveled on all modes (car, train, bus, plane, bike, walk, etc.) 

#work 
trips/person 

Number of work trips per person (where a “work trip” is defined as going to or coming home 
from work) 

 #non-work 
trips/person 

Number of non-work trips per person. (e.g. grocery, restaurant, park, etc.).  Additional 
information on trip purpose (restaurant, shops, etc.) is available, but not currently shown on the 
platform.   

#COVID-19 
cases 

Number of new confirmed COVID-19 cases from the Johns Hopkins University’s GitHub 
repository. 

population Number of residents in a nation, state, or county as reported from the national Census database.  
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 1 
Figure 8. Platform illustration 2 

 3 
4. CONCLUSION 4 

 5 
The Integrated dataset compiled by our research team shows how the nation and different states 6 
and counties are impacted by the COVID-19 and how the communities are conforming with the 7 
social distancing and stay-at-home orders issued to prevent the spread of the virus. The platform 8 
utilizes privacy-protected anonymized mobile device location data integrated with healthcare 9 
system data and population data to assign a social distancing score to each state and county based 10 
on derived information such as percentage of people who are staying home, average number of 11 
trips per person and average distance traveled by each person. As the next steps, the research team 12 
is integrating socio-demographic and economic data into the platform to study the multifaceted 13 
impact of COVID-19 on our mobility, health, economy, and society. 14 
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