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Many countries have introduced Lockdowns to contain the COVID19 epidemic. Lockdowns, though an
effective policy for containment, imposes a heavy cost on the economy as it enforces extreme social distancing
measures on the whole population. The objective of this note is to study alternatives to Lockdown which
are either more targeted or allows partial opening of the economy. Cities are often spatially organized into
wards. We introduce Multi-lattice small world (MLSW) network as a model of a city where each ward is
represented by a 2D lattice and each vertex in the latex represents an agent endowed with SEIR dynamics.
Through simulation studies on MLSW we examine a variety of candidate suppression policies and find that
restricting Lockdowns to infected wards can indeed out-perform global Lockdowns in both reducing the attack
rate and also shortening the duration of the epidemic. Even policies such as partial opening of the economy,
such as Two Day Work Week, can be competitive if augmented with extensive Contact Tracing.

INTRODUCTION
The World Health organization(WHO) on March 12, 2020 declared COVID-19 outbreak as a pan-
demic1. The virus first emerged in China in late December [19], and since than it has invaded more
than 150 countries posing an unprecedented threat to global public health. As of 19th April more
than 2 million people have been infected globally and has resulted in more than 100 thousand deaths.
The Director of WHO recently warned that The worst is yet to come (Press). Several countries have
suffered massive loss of human lives, there are far greater number of countries where COVID19 has
just arrived. The anticipated cumulative loss of lives in these countries could be apocalyptic and
require urgent measures. There is now a growing view among scientists (Press) and many world
leaders (UN press release) that Rapid Suppression of COVID19 transmission must be the way
forward.
In the absence of any vaccine, governments across the globe are announcing various forms

of moderate to extreme Social Distancing measures for containing this pandemic which ranges
from Self-Isolation to imposing Lockdowns. Lockdown was first used in China for fighting the
COVID19 pandemic. The effectiveness of such Lockdowns is still being evaluated [6], but there
is now global consensus that it is probably the best tool for containment. Despite the success of
Lockdown there are however growing concerns that Lockdown may have unintended consequences
which could be devastating to the economy (Press). Unemployment is an inevitable outcome
of economic downturn and it is no surprise that Lockdowns have resulted in significant job
losses. For instance, in France half of private sector employees have been unemployed because
of Coronavirus related Lockdown (Press). There is thus an urgent need for seeking effective
alternatives to Lockdowns.
Targeted Social Distancing, such as isolating individuals who are in the contact network of an

infected individual, fares better than Population wide measures in treating specialized diseases([10]).
Usually the contact network of an individual is rarely known. However, in recent times, one can

1http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/
who-announces-covid-19-outbreak-a-pandemic
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use Contact Tracing using GPS enabled smartphones to discover the underlying contact network.
Preliminary results suggest that contact tracing and Case isolation tools can help in containing
COVID19 if applied very early. However, if applied even slightly later than 3 weeks the epidemic
spirals out of control[9, 11].
In this note we seek to exploit the network structure to obtain a comparative assessment of

various Non-Pharmaceutical Policies (NPIs) as suitable alternatives to Lockdowns when applied in
the early stages of the epidemic.

A summary of the main findings are as follows
(1) Cities are spatially organized intoWards. Restricting the imposition of a Lockdown to infected

wards seems to be the best suppression strategy and can be more efficient than Lockdowns.
(2) Opening up the economy, like a 2 Day work-week, can be competitive with global lockdowns

if there is extensive contact tracing.
(3) Contact Tracing involves checking the state of the persons in the contact network of the

suspect and then isolating them if neccessary. Our empirical results suggest that this mayn’t
be as effective as Tracing the Contacts and their Contacts(TC2S). The suggested TC2Sstrategy
can substantially lower the attack rate, by more than 30%, over the prevalent Contact Tracing
approach.

(4) Apart from the study we also contributeMLSW, a flexible mathematical model, which can
be used for studying policy interventions in a city. The relevant software would be made
available soon.

Disclaimer: The aim of this report to make authorities aware of policy alternatives to Lockdown.
The conclusions we draw are about the relative efficacy of various strategies and not about their
absolute predictability. Also, our study does not consider ethical factors, issues related to civil
liberties, and economic hardships of the proposed interventions.

METHODS
Understanding the spread of Infectious Disease on a Network has emerged as an active area
of research in Mathematical Epidemiology (see [12, 18] for a survey). Compared to traditional
compartmental models [13] these models incorporate contact structure and are thus considered
as more realistic for explaining epidemics. Empirical modeling of COVID19 outbreak suggests
that Network based models such as Small world networks can be a better candidate to explain the
spread of the disease [23]. Small world networks [22] was first introduced in epidemiology by [1]
for understanding epidemic spread on networks. Since then there has been substantial interest in
using Small World Networks in modeling specialized disease outbreaks [15, 16, 20]. To the best
of our knowledge no study has attempted to understand the spread of COVID19 on small world
networks. Previously studies of epidemic modeling on Small World Networks have used SEIR, as a
compartmental model, on 1D and 2D lattice based models [4].
In this note we simulate a SEIR model on a Small World network to assess several NPIs as

sustainable strategies for hindering the progress of COVID19 in a city. Small world networks posit
a 1D or 2D lattice structure on the entire population with occasional long edges. Such networks
will miss the point that the cities are not necessarily homogeneously structured but are often
organized into spatial clusters, for example the city of London has 25 wards. The motivation for
modeling the ward structure arises from the need for containment of disease at the ward level.
Directing measures to target affected individuals should have the most effect in containment but
unfortunately there mayn’t be enough technological support for executing such measures. Imposing
a coarse measure such as Lockdown on an entire city is unsustainable as it would face compliance
issues from the broader population. Ward level interventions may strike the right compromise
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Fig. 1. A multi lattice small world example
with four wards. Each ward is a 2D torus.

in deriving sustainable containment policies. It is also to be noted that ward wise containment
policies are already being considered in several Indian cities including Bengaluru (Press). Our aim
is to compare such strategies to Lockdown.

Urban Environments as Multi-Lattice Small worlds
We develop a small world model which involves modeling a ward as a 2D lattice. The city of
Bengaluru is divided into 198wards. Neighboring wards are naturally defined and they create edges
in the resulting neighborhood graph of the city. Each ward is replaced by a population between
400 to 800 people in direct proportion to the population of each ward to simulate a city of roughly
105 citizens.

We will now describe a small world model of a city consisting of wards . At each ward, the
population is a regular 2D lattice with edges to all eight neighbors. This models local spatial
interaction. The lattice is also wrapped around (it is a torus) so that it has no boundary. If two
wards are neighbors, e vertex pairs are choosen at random across the two wards and an edge is
inserted across each of the five pairs. These edges model interaction between adjacent wards. This
is done for every pair of neighboring wards. In this way, the graph is created. What this graphs
lacks are long edges. Inspired by the small world model, we rewire an edge in this graph with
probability p0. We cycle through all the edges. Every edge (u,v), is rewired with probability p0.
Here, we choose a new vertex v ′ randomly from the entire graph and the edge (u,v) is replaced by
this edge (u,v ′). These edges capture non-local contact interaction.
This procedure results in a graph which at one level contains neighborhood information of

the city and at another, the small world characteristics due to the long edges. Since we have a
collection of lattices in our graph (instead of one), we call it Multi-Lattice Small World (MLSW).
MLSW is parametrized by {n1, . . . ,nW ,W, e,p0} where W is the number of Lattices. A Lattice
w ∈ {1, . . . ,W} has nw vertices which reflects the population in the ward. Inter lattice edges are
parametrized by e and finally p0 is the rewiring probability.
The city of Bengaluru when viewed as MLSW haveW = 198, e = 5, 400 ≤ nw ≤ 800,p0 = 0.1.

The resulting graph has 116, 631 vertices and 472, 319 edges. This model can be enhanced in several
ways by using detailed knowledge of the city such as transportation patterns to determine the long
edges. Modeling Epidemics in Urban networks is not new (see [7] and citations therein). However,
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Fig. 2. State Transiton Diagram

Table 1. Assumptions on COVID 19 Disease progression

Incubation period [19] 5 days
Onset of Symptoms after Infection [21] 5 days

Infected people requiring Hospitalization[21] 4.4 %
Hospitalized people requiring ICU [21] 30%

No of days in Hospital for Severe patients[21] 8 days
No of days in ICU[21] 10 days

IFR[21] 1%

we are unaware of any work which tries to account for the ward structure. The proposed model,
MLSW, is novel not only in epidemiology but also in the area of small world models.MLSWcan
be viewed as a special instance of Random Spatial Networks [2]. A detailed mathematical study
comparing MLSW with such networks will be presented elsewhere. In this note we present a
simulation study for assessing different NPIs as suppression policies.

Disease progression and Transmission
In this section we develop an SEIR based state model of an stochastic Agent which resides in one of
the vertices ofMLSW and interacts with its neighbors. The parameters of the agent are adjusted
to model the progression of the disease in an individual and the interaction between the agents are
modeled to suit the transmission dynamics of COVID19.

Disease Progression
We develop a state based model for Disease Progression in an Individual based on the following
assumptions based on existing literature, also summarized in Table 1.

Assumptions: Incubation period of the virus is assumed to be 5 days. 4.4% of infected patients
require hospitalization in 5 days after showing signs of infection. 30% of Hospitalized patients may
require ICU admission or ventilator access. Half the ICU patients die.

The state model: Each vertex can be in one of seven states. All nodes start as susceptible S , and
eventually end as either dead D or recovered R. In between a vertex will be either exposed E or
infected I . We have three levels of infection, mild IM , severe IS , and critical IC . The entire state
transition diagram including transition probabilities is defined in Figure 2. Based on the probabilites
on the self loops, it is clear that the expected number of days to escape at nodes E, IM , IS , IC is
5, 5, 8, 10 respectively. These numbers are in tune with the number in [5].
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Disease Transmission
To describe the spread of the disease we consider the following approach. When one end of an edge
is infected (i.e., in state IM, IS, or IS), and the other end is susceptible S , with some probability,
vertex at the other end transitions to E. This probability depends on the nature of infection and
we will parametrize the probability of IM infecting a susceptible person to be βM . Similarly, we
also introduce parameters βS , βC to measure probability of infection by a patient in state IS and IC
respectively. We will calibrate β = [βM , βS , βC ]

⊤ to match the basic reproduction rate, R0, assumed
to be 2.8 [14].

SIMULATING THE PROGRESS OF COVID19 ONMLSW
The simulation begins by initializing the states of INDEX number of nodes to IM inMLSW. This
state serves as introducing INDEX number of Index patients in the population.

A day in the Simulation consist of two steps, namely Edge Sweep and Node Sweep.
Edge Sweep: All the edges in MLSW are inspected in an arbitrary order. If edge (u,v) has one

of its endpoints (say v) as susceptible S , and the other endpoint (u) as infected (there are three
possibilities here: IM, IS, IC). Then the infection will spread to v with a probability that depends on
the nature of the infection at u. Let β = [βM , βS , βC ]

⊤ be a vector of parameters where βM , βS , βC
are probabilities of infecting a node with vertex S corresponding to states IM, IS, IC respectively. If
the infection should spread, the new state of the node v would be exposure E.
Vertex Sweep: All nodes of MLSW are inspected in arbitrary order. Each node u is in one of

seven states. Unless the states are in R or D where nothing happens as these are final states, in all
other case the node transitions to a new state or stays put according to the probabilities assigned
in 2. This mimics the progression of the disease in an individual.
The simulation runs through several days till there are no infected patients in the network, i.e.

all states are in any one of R, S,D states.

MODEL CALIBRATION
The Edge Sweep requires β . The state transition has 11 parameters as can be read from Figure 2.
And then there is the rewiring probability p0. Each of these sets of parameters play a unique role.

The rewiring probability p0 determines how fast the disease can spread in the network. If the long
edges are missing, we are left with lattices connected to their neighbors and this takes infection a
long time to propagate. Long edges shorten this time. Even mild values of p0 show rapid ability to
mix. Large p0 essentially results in a random graph.
The Edge Sweep parameters βM , βS , βC determine how fast the infection actually propagates

on MLSW. The state transition matrix determines how long a person is active to infect. It also
determines the death rate amongst the people who do get infected.

The lattice we have chosen has 8 neighbors corresponding to the eight immediate vertices around
a fixed vertex on a 2D grid. Let us fix a vertex. It has typically 8 neighbors on an average (the
specific degree will change a bit depending on the rewiring). Suppose the vertex is in state IM . Then
the probability of propagating the infection to a fixed neighbor is βM . If the number of susceptible
neighbors is d then the expected number of infections is dβM . If the probability of exiting IM is
γM (this value can be read from the state transition diagram), the number of days it takes to exit
the state is 1

γM
. This means the total number of neighbors infected in expectation is d βM

γM
. The

process repeats itself for severe and critical infections but the dominant term is d βM
γM

. We now
match this to the assumed value of R0 = 2.8 to obtain β0M = 0.07. In absence of any other data on
hospital infections etc we set the value of β0S = 0.02 and β0C = 0.001. Hence, we will assume that
β = β0 = [β0M , β0S , β0C ]

⊤.
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An important parameter to match is the Infection Fatality Rate (IFR) rate. The IFR rate is the
probability of transitioning from E to D in the state transition diagram. We match IFR rate, the
percentage of total infected patients match, along with active infected patients peaking around 75
days, with those of [5]. In all our simulation INDEX is set to 5.

INTERVENTION POLICIES FOR RAPID SUPPRESSION
We are seeking policy alternatives to Lockdown which can rapidly suppress the COVID19 pandemic.
Lockdown measures, though extremely effective, involve extreme social distancing measures for
the entire population hence making them unsustainable for long duration. Policy alternatives to
Lockdowns should therefore seek more targeted Social distancing, or aim to limit the amount of time
for continuous lockdown. Keeping this in mind we explore two kinds of strategies. The first kind
of strategy, called Targeted Interventions, involve either Contact Tracing and Isolation or Hotspot
specific interventions. The second kind of strategy involves limiting the severity of Lockdowns by
various means such as opening the economy for a few days in the week, or relaxing the lockdown.
A list of few envisaged policies are mentioned in Table 2.

Metrics for Evaluating Suppression policies
Any suppression policy needs to be effective and sustainable. The effectiveness of any policy would
depend on its ability to contain the infection to a small fraction of the population. Often, such
measures could be extreme in nature and thus sustainability depends on the duration of the time
it is enforced, shorter the better. To evaluate both these aspects one can consider the following
metrics for evaluating a policy A.

• The length of the epidemic,denoted by Tepi(A) , is defined as the duration of the epidemic
starting with few infected patients and ending when there are no infected people in the
population. For sustainability purposes Tepi(A) should be low.

• Attack rate, measured as follows

I∞(A) =
100
N

(
Number of infected people till timeTepi

)
(1)

Since infected people either recover or die, I∞(A) = R∞(A) + D∞(A), where

R∞(A) =
100
N

(
Number of recovered people till timeTepi

)
(2)

and D∞(A) denotes the percentage of Deaths due to policy A.
A good suppression policy should ensure that I∞ is low which implies that both D∞ and R∞

are low.
From these observation one can draw the insight that a policy would gain acceptability if it is
as effective as a lockdown but it is enforced for a shorter length of time than Lockdown. We
encapsulate this insight via preference score, defined as follows.

The preference score of a policy A with respect to a base policy A0 is defined as

score(A;A0) =
1
2

(
I∞(A)
I∞(A0)

+
Tepi(A)
Tepi(A0)

)
(3)

This score can be used to evaluate preference of a policy over the base policy A0. A policy A
would be preferable to A0 if score(A;A0) is less than 1.

DESCRIPTION OF INTERVENTION POLICIES
Using the designed metrics we will the study the acceptability of the following policies, also
summarized in Table 2.

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who has(which was not certified by peer review)copyright holder for this preprint 
Thethis version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.29.20085126doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20085126
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lockdown(LD): Lockdowns have been enforced in different ways across the globe. For example
in UK (Press) you are allowed to go out for a walk or exercise once a day, while in India this is
not allowed. There is also compliance To model this varied degree of Lockdown we introduce
a parameter called relaxation factor, η, which is allowed to vary between [0, 1]. This parameter
modulates the transmission parameter to obtain an effective transmission rate of β = ηβ0, The value
of η = 0 corresponds to perfect lockdown and η = 1 represents the other extreme with no lockdown.
Perfect lockdown corresponds to the entire population being quarantined. As practiced in many
places LD is enforced by shutting down all but essential services. This should definitely lower
βM considerably and getting such estimates would be difficult. One can assume that Lockdown
will correspond to a small η. A small η corresponds to lowering of the reproduction rate in the
network. (We hesitate to use R0 here because reproduction rate has meaning at any instant of time
in a network.) In the absence of clear guidelines, in this note we will define LD as any measure
which can achieve η ≤ 0.5. It would be useful to know how long should such a lockdown need to
continue.

Fixed Duration Lockdown(FDLD): As an alternative to LD one can consider a fixed duration
Lockdown (FDLD). In India, the Government announced a lockdown for 21 days on March 23rd
and then extended it for another 20 days. Keeping this in mind we simulated a FDLD of 40 days
and applied it after 20 days of onset of the pandemic.

Tracing the Contacts and their Contacts and Sealing (TC2S): Contact Tracing and Case
Isolation is an important tool in the fight against this epidemic. It is long argued that Targeted
Social Distancing may be more effective than social distancing measures imposed on the whole
population [10]. Contact Tracing usually involves checking for infections in all persons who have
come in the contact of an infected person. Based on empirical results (see Figure 4) we propose a
two level strategy-not only trace the contacted persons of the patient, but also trace their contacts
as well. We call this policy Tracing the Contacts and their Contacts (TC2S) and implement it as
follows. The trigger is when a node u becomes severe (IS) or critical (IC). In this case, we look at
all its neighbours v and seal it if it is state IM . We then look at the neighbours of v and then seal
all their neighbours who is in state IM .as well. Finding the neighbours of u and their neighbours
are part of the tracing mechanism. Sealing means the node will not have any connections with its
neighbours and it could be implemented by either self-isolation or being admitted to Quarantine
facilities. Here is a reason for doing this two level tracing. The nodeu must have got infected by one
of its neighbours up (who may have recovered since), who could have infected other neighbours as
well. We cannot reach these neighbours by merely sealing the neighbours of u. Hence the two level
tracing and sealing.
For such a scheme to be viable it is important that the number of people who are traced and

isolated are small. We introduce a percentage measure of efficiency for TC2S as follows

Te =
1
N
Total number of people traced × 100, N = Size of Population (4)

Very few countries have the ability to implement TC2S at the whole population scale and it is
reasonable to assume that most countries can do it only whenTe is a small fraction of the population.

Ward Seal and Open(WSO): In LD an entire city will be under lockdown. Instead of shutting
the entire city one can enforce lockdowns in Infection Hotspots, in case of Bengaluru it could be
wards with infected patients. Such strategies are already being considered (Press).

A ward can be isolated by removing all edges to other wards. In our case, we merely change βM
by an η factor to account for account for delivery boys, health officials, and stray travel to groceries
etc. The difference to the global lockdown is that the βM is lowered only for those nodes in wards
that are in lockdown.
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Table 2. List of Interventions: TI stands for Targeted Interventions, RD stands for Relaxed LockDowns

Policy Type Description
LD Lockdown
LD(mild) RD Mild Lockdown
FDLD RD 40 day lockdown
TDWW+LD RD Two day week followed by a

strict lockdown
TC2S TI Tracing and sealing of neighbours

and their neighbours of Infected patients
WSO TI Ward level sealing and opening

with different relaxation factors

The opening and closing of ward are guided by a low-water mark and a high-water mark, denoted
WSO(low,hiдh). It will be assumed that once the infections in a ward cross the high-water mark the
epidemic surveillance triggers are activated and the ward is declared as a Hotspot which requires
intervention. The ward will be sealed that is lockdown will be imposed till such time that the
infections subside to a low-water mark which signifies tolerable level. To measure the economic
efficiency ofWSO we introduce

Wl =

∑W
i=1Ti

W ·Tepi(LD)
, (5)

Ti = Total number of days the ward i was shut,
W = Total number of wards

Tepi(LD) = Tepi for LD

To explain the motivation forWl we consider the following. Assume that loss to the economy
incurred by shutting down one ward for 1 day is c units. The loss incurred byWSOis then

∑W
i=1 cTi .

The loss incurred by LDpolicy is cTepiW. Thus Wl measures the relative loss to the economy
compared to LD.

Thus any ward specific policy requiring the wards to be shut down should be considered practical
only ifWl is low. For our implementation we have chosen low = 0, and high = 3. For values of low
other than 0 the system becomes unstable. Ideally one should aim for the highest value of the upper
limit to minimize the duration of the lockdown.The chosen number 3 seems to be the best possible.

Two day week followed by a Lockdown(TDWW+LD): In spirit ofWSO one can withdraw
the lockdown for some amount of time and re-impose it after sometime. It is clear that with the
infection doubling every 5 days[8], if left unchecked, it maybe risky to withdraw the lockdown for
a whole week. Assuming that first symptoms will occur after 5 days, one could potentially allow a 2
day work-week. The policy intervention is to impose a lockdown for 5 days and open the economy
for 2 days.
Other variations of the policies such as one Lockdowns on alternate weeks or three day week

don’t seem to work as well as the two day week. So we don’t consider these alternatives here.
Do Nothing(DN): This is the base case where no interventions are done and the population

achieves immunity after getting infected by the virus.
Remarks: We want to re-emphasis that we have taken a uniform approach to various stages of

lockdown using a single factor η. For example, in a global or a ward level lockdown, it is natural to
expect all long edges emanating from the ward to be ineffective. Instead, we retain the edges but
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Fig. 3. DN vsFDLD: On the left is the infection curve with no interventions. On the right is a forty day
lockdown.

dampen the probability of infection propagating to account for the delivery boys, the local police,
the health workers etc who still move through the ward.

RESULTS
In this section we present results of simulation studies of various policies mentioned in Table 2 on
Small world network. One run of the algorithm starts with 5 index patients and iterates till there
are no infected patients in the population. In Table 3 we report the median over 11 runs of relevant
parameters namely projected number of deaths per million, R∞, and Tepi. We also reportWl and Te
wherever applicable.

For the sake of comparison between policies we have color-coded the values in the table. Red
indicates unacceptable, Green indicates acceptable and Yellow indicates can be considered. We assume
that a city’s Healthcare system can deal with patients comfortably if the percentage of infected
population is less than 5%(I∞ is less than 5%). In case of epidemic outbreaks it can be pushed to
higher values for a short amount of time say 15%. To assess the suitability of the duration of the
policy, Tepi, one could compare it with Tepi for LD. From our simulations it seems that a strict
Lockdown may take around 4 months(median value) to make the population Infection free. We
rounded all Tepi estimates to nearest months, and decide that all values less than 4 months are
acceptable, as it is more efficient than LD. IfTepi is more than double the duration during Lockdown,
i.e. more than 8 months, we can consider it as unacceptable. Values in between can be deemedas can
be considered. To assess the suitability of Te we assume that only a small fraction of the population
can be contact traced and isolated. We set this limit to less than 0.5%. Any number more than 1%
would be unacceptable. ForWl one can argue that a policy should not be as expensive as LD. Any
acceptable value must be necessarily less than 1. As lockdowns are expensive, one can argue that
any policy should incur a loss which is a small fraction of the loss incurred by LD. We set the
threshold forWl to be 0.1 for being acceptable. Any value between 0.1 and 1 can be considered. A
value more than 1 is not acceptable. These thresholds are only notionally set to enable comparison.
They can be set more precisely by using information from Health Departments from respective
cities.

Do Nothing, the base case: Figure 3 shows the number of infections with time for DN when
no interventions are applied. The peak occurs at about 67 days on an average. The number of
deaths are 8702 per million and around 85% of the people have been infected and recovered. These
numbers are in line with [5] and serves as a sanity check. The longevity of the virus seems to be
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Fig. 4. Tracing and Sealing helps but the peaks are still substantial. TC1S (trace and seal immediate contacts)
does worse than the two level tracing, TC2S.

Fig. 5. The rewiring parameter p0 has a role to play in how far the disease spreads across the wards. Right:
Zoomed version of the graph to show even a small amount of rewiring has a huge effect on the speed of
disease spread.

roughly six months. The transmission parameters are unmodified with η = 1. Our numbers are
slightly higher than that of [5] as we allow for Infections to be propagated by severely and critically
ill patients as well.

Tracing and Sealing: As can be see from Figure 4, TC2S as a stand alone strategy brings down
the total infected population to less thab 2/3 of DN resulting in significant reduction of deaths
per million. It also prolongs the life of the epidemic to a little less than a year. Fatality rate at
5650 deaths/million, though lower than DN, but still is unacceptably high. Also, it is to be noted
that roughly 15% population needed to be sealed. To compare, the TC1S numbers are these: 7528
deaths/million while sealing 11% of the population. This is a 33% increase in death/million without
a dramatic decrease in the percentage of population sealed. Hence we discard TC1S in favour of
TC2S.

As we will see, TC2S works even better when it augments another strategy.
The effect of p0 on the graph: Figure 5 shows rewiring is a sensitive parameter. A moderate

number of edges rewired results in speeding up the spread of the epidemic. The graphs show how
fast an epidemic can sweep through the different wards of the city by simply tuning the rewiring
parameter, p0.
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Fig. 6. The effect of η: Figure on the left shows infection over time for η ≥ 0.6. Any policy which yields
1 ≥ η ≥ 0.6 will help in flattening the curve. Figure on the right shows Lockdown implemented after 20 days
from the onset of the pandemic for β = 0.5 and β = 0.4. It shows that the suppression is achieved. Smaller
values of η yield quicker suppression.

The effect of relaxation factor, η: The aim of most Intervention strategies is to reduce the β ’s
so that the effective transmission comes down. The relaxation factor, η, takes values between 1 and
0 and serves to reduce the transmission parameters (ηβM ,ηβS ,ηβC ). This allows to model various
Interventions designed to hinder the transmission by a single parameter η. Figure 6 shows plots
of the number of infected persons with time for various values of η. As η decreases the speed of
progression becomes slower and the disease takes longer time and the peak infection also comes
down. However, it effects most of the population, almost the same death and recovery rates. As
reported elsewhere (for e.g. [5]), such reductions in transmission rates could be obtained by various
social distancing measures. These interventions ensures that the peak infection rate comes down
but overall a large fraction of population gets infected. These kind of measures help in flattening the
curve and does not help in Suppression. The results show that the strategies of suppression belong
to the regime of η < 0.5. In this regime both R∞ is extremely low and length of the epidemic is
reduced to below the base case. The figure in the right hand side of Figure 6 shows that the longevity
of the epidemic reduces as η decreases. Thus suppression strategies should aim for Interventions
which can halve the transmission rate. Such strategies would be difficult to achieve without extreme
social distancing, such as Lockdowns.

Lockdowns: LD is an extreme social distancing measure which can reduce the transmission rate.
In absence of any known reliable data, we assume that a Lockdown can reduce the transmission
rate to less than half. In this setup this corresponds to assuming that LD is a measure corresponding
to η < 0.5. In particular we will use η = 0.4. Figure on the right in Figure 6 shows that it is possible
that the disease dies out within 4 months. Simulation results suggest that this can be achieved
by affecting only 0.52% of the population and the pandemic can end in 115 days, both values are
median. Adding TC2S to LD significantly improves the infection rate by bringing it down to half.
The effectiveness of any other policy can be evaluated against these set of numbers.

Mild Lockdown: Instead of LD, a mild lockdown with parameter η = 0.6 reduces R∞ to 25.75%,
much lower than DN , but still it is much higher than that achieved by LD. However, if we use it
along with TC2S then it becomes a very effective strategy, reducing the infection rate to 1%.
Fixed duration Lockdown: Figure 3 compares it with DN. Instead of seeing the peak of

infection after 67 days in DN the new peak is shifted by 30 days approximately. It does not
yield any reduction in Infection rates or in number of deaths. If the policy is to be used only once
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ththen it should not be used early. To avoid the peak of infection one should apply the FDLD a
little later. The exact time to apply such a policy is still open. [3] recommends that it should be
used closer to the peak. This will avoid the second peak but as a policy FDLDis not acceptable as it
will anyway lead to significant infections and many deaths.

Two day work week with 5 day Lockdown: Figure 8 shows TDWW policy is better than
mild lockdown. This is not surprising as the lockdown is withdrawn only for 2 days but is enforced
for the remaining 5 days. It is still not practical as it gives a very high value of Tepi and also a
infection rate of more than 12%. However when enforced with TC2S it becomes an acceptable
policy with R∞ coming down to 0.35 and it takes the same time as LD.
Ward level Interventions: WSO(0,3) policy perfoms extremely well when strict lockdowns are

enforced inside the wards. The policy lowers the infection rate to 2/3 of that achieved by LD with
similar values of Tepi. As soon as the infection rises the respective affected wards are locked down.
Figure 7 shows a typical run of WSO(0,3). It exhibits multiple peaks of infection but the number of
infections at the peak is much lower than DN. TheWl loss value is 16.52% implying that most of
the wards are open most of the time. Coupling with TC2S further lowers the infection rate by a
factor of 3 and also halves Tepi. As an icing on the cake it reduces theWl loss value by almost a
factor of 3. However, if the lockdowns are not enforced strictly the policy can be dangerous. It is
slightly better than TC2S and moreover with aWl value of 3.77 it can be interpreted that policy
results in closure of the large parts of the city for a prolonged period of time. The mild lockdown
version ofWSO(0,3) is significantly improved if used alongside with TC2S.

DISCUSSION
Important insights drawn from the study are summarized by the following points.

(1) Doing Nothing (DN) and allowing infection to spread in the hope of growing Herd Immunity
is clearly not acceptable as it results in far too many infections and death.

(2) The study confirms that Lockdown(LD) is an acceptable strategy with and without contact
tracing as it reduced the attack rate to 0.52% compared to 85% with no interventions. When
used with TC2S it further improves to 0.35%.

(3) Lockdowns of limited duration or relaxed Lockdowns are not acceptable even in the early
stages. However, Lockdowns of limited duration is extremely useful to bring down the
infections temporarily.

(4) Releasing the lockdown for a few days in a week(TDWW) can be considered but it can be
risky. Contact Tracing should be a must for such policies.

(5) TC2S when used as a stand-alone strategy may not be effective but when used with some
of the other alternatives it can generate much improved policies. Mild lockdowns, which
on its own is not acceptable, but when coupled with TC2S produces an acceptable policy.
Another intervention, shortened week with lockdown (TDWW+LD) is risky but when
applied with TC2S becomes very effective. When used with TC2S it reduces the attack rate
by 1/3 that of Lockdown. The effectiveness of TC2S, as proposed here, would depend on not
only identifying the complete list of infected people in the contact network but also would
require identifying any infected people in the network of the contacts. These findings are
similar to [9, 11] where it is argued that extensive contact tracing and case isolation may help

(6) WSO(0,3) appears to be the most promising alternative to LD. It not only outperforms LD
on attack rate but also reduces the duration of the epidemic by 1/2 when augmented with
contact tracing. Even mild lockdowns with contact tracing in WSO can be an acceptable
alternative.
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Fig. 7. WSO(0,3) : On the left, different wards lockdown at different times and these account for multiple
peaks. On the right, when TC2S is imposed as well.

PREFERRED SUPPRESSION STRATEGY ALTERNATIVES TO LOCKDOWN
Figure 9 shows a bar-chart of preference scores, score(A; LD) (defined in (3)) of all considered
policies. Any policy with score less than 1 should be preferred over LD. From the chart two distinct
policy alternatives emerge which could match the effectiveness of Lockdown when applied as
Intervention measures in early stages of the pandemic.

(1) Shortened work week (TDWW+LD+TC2S) can be considered as an alternative to full
Lockdown. The policy advocates a 2 day week where the economy is open but the remaining
5 days a week, a lockdown is enforced.

(2) Opening and closing hotspots depending on Infection levels (WSO) can be a better alternative
to TDWW. This policy only constrains the residents inside the ward and rest the remaining
populance go about their business. TDWW would enforce lockdowns for most of the week
and hence it is more constraining thanWSO. Our study shows that if implemented in early
stages very few wards need to be shut down.

The success ofWSO policy crucially depends on the ability to Test all residents in the hotspots.
While Contact tracing is not necessary it will definitely help in improving theWSO policy outcomes.
An interesting insight is since we can target the tracing to the ward it even requires less number
of contacts to be traced then implementing LD. If there is substantial shortage of Testing kits
makingWSO unviable then one can consider the alternative policy of opening the economy for
Two days a week. If the two policies are weighed in terms of their economics then one can say
that WSO though opens the economy much more than the 2 day week policy but also requires
some investment in Testing, which could be a challenge in densely populated urban wards of
metropolises. But for both the interventions require Contact Tracing.
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Fig. 8. TDWW-policy: it prolongs the epidemic. Also, on the right is the zoomed version where one can
clearly see oscillations due to lifting and imposing of ban .

Fig. 9. Interventions and their preference scores, score(A; LD). Smaller score indicate that policy A is better
than LD.

CONCLUSIONS
In this note we reported an empirical study of various policy alternatives to Lockdown for sup-
pressing COVID19 pandemic on a city modeled by MLSW, a small world model. This type of
small world model does not seem to have been investigated before and a detailed mathematical
study of the properties should be an important area of investigation. Our results indicate three
interesting highlights. Firstly, Tracing the Contacts and their Contacts shows substantial benefits
over the usual practice of Tracing the Contacts. Secondly, opening the economy partially, say 2
days a week followed by a Lockdown, could be more effective than Lockdown. Thirdly, and most
importantly, the most preferred strategy should be to do hotpot surveillance. It is argued that not
only it has lower attack rates, it also is much faster in destroying the virus. On top of these two
things it is also economically far more efficient. If this is introduced early enough it is possible that

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who has(which was not certified by peer review)copyright holder for this preprint 
Thethis version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.29.20085126doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20085126
http://creativecommons.org/licenses/by-nc-nd/4.0/


η Deaths R∞ Tepi Te Wl
per million % (days) %

DN 1 8702 84.96 178
FDLD 0.4 8479 84.88 232
TC1S 1 7528 74.77 209 11
TC2S 1 5642 55.63 303 15.3
WSO(0,3)(mild) 0.6 2992 29.97 480 3.78
LD(mild) 0.6 2675 25.75 557
TDWW+LD 0.4 1354 12.55 675
LD(mild)+TC2S 0.6 103 1.09 184 0.15
WSO(0,3)(mild)+TC2S 0.6 171 1.05 274 0.2 .43
LD 0.4 51 0.52 115
TDWW+LD+TC2S 0.4 34 0.35 107 0.05
LD+TC2S 0.4 43 0.35 83 0.07
WSO(0,3) 0.4 18 0.33 124 0.18
WSO(0,3)+TC2S 0.4 18 0.09 65 0.02 0.04

Table 3. R∞,Te ,Wl are reported in percentages(see (2),(4), and (5) respectively). Tepi is the length of epidemic
measured in days. All numbers reported are median values of 11 runs. Green colored cells indicate that the
value in the cell is acceptable. Yellow colored cells indicate that the value can be considered while red colored
cells indicate unacceptable values. For more discussion on the acceptable, unacceptable, can be considered see
results. The policy acronyms are mentioned in Table 2

.

the pandemic can be suppressed in the early stages at a far lesser time then the currently practiced
Lockdowns.
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