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Abstract

We formulated a mathematical model considering young (below 60 years old) and elder
(above 60 years) subpopulations to describe the introduction and dissemination of new
coronavirus epidemics in the São Paulo State, Brazil. From the data collected in São
Paulo State, we estimated the model parameters and calculated the basic reproduction
number as R0 = 6.828. Considering isolation as a control mechanism, we varied the
releasing proportions of young and elder persons to assess their epidemiological impacts.
The best scenarios were release of young persons, but maintaining elder persons isolated.
To avoid the collapse of the health care system, the isolation must be at least 80%.

Keywords: unique pulse of isolation/quarantine; pulses of release; numerical simula-
tions; new coronavirus; epidemiological scenarios

1 Introduction

Mathematical models allow us to understand the progression of viral infections if the natural
history of the disease is well documented. This understanding, in turn, permits forecasting
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epidemiological scenarios when control mechanisms are introduced aiming to reduce or eliminate
the infection. In the case of coronavirus disease 2019 (CoViD-19), which is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a strain of the RNA-based SARS-
CoV-1, the possibility of obtaining scenarios is of fundamental importance. The reason is that
in serious cases due to SARS-CoV-2 (new coronavirus) infection, immune cells overreact and
attack the lung cell causing acute respiratory disease syndrome and possibly death. In general,
the fatality rate in elder patients (60 years or more) is much higher than the average, and under
40 years seems to be around 0.2%. [10].

Due to the rapid spreading out of new coronavirus, its distribution is currently worldwide
(pandemic). This virus can be transmitted by droplets that escape the lungs through coughing
or sneezing and infect humans (direct transmission), or they are deposited in surfaces and
infect humans when in contact with this contaminated surface (indirect transmission). The
virus enters into susceptible persons through the nose, mouth, or eyes, and infects cells in the
respiratory tract, being capable to release millions of new viruses. Like all RNA-based viruses,
the new coronavirus tends to mutate faster than DNA-viruses, but lower than influenza viruses

Currently, there is not a vaccine, neither efficient treatment, although many drugs (chloro-
quine, for instance) are under clinical trial. Hence, isolation is the main, if not unique, way
of controlling the dissemination of this virus in a population aiming the change in the natu-
ral history of disease propagation (this change is commonly known as the flattening curve of
epidemics). Nevertheless, this isolation arises an important question: are there reliable strate-
gies to release these isolated persons aiming to avoid the retaken of its original progression of
infection?

Many mathematical and computational models are being used to describe current new
coronavirus pandemics. In the mathematical models, there is a fundamental threshold (see
[2]) called the basic reproduction number, which is defined as the secondary cases produced by
one case introduced in a completely susceptible population, which is denoted by R0. When a
control mechanism is introduced, this number is reduced and is called as the reduced reproduc-
tion number Rr. Ferguson et al. [5] proposed a model to investigate the effects of isolation of
susceptible persons. They analyzed two scenarios, called by them as mitigation and suppres-
sion, and predicted the numbers of severe cases and deaths due to CoViD-19 without control
mechanism, and compared them with those numbers when control is introduced.

In this paper, we formulate a mathematical model based on ordinary differential equations,
aiming the understanding of the dynamics (or trajectories of dissemination) of new coronavirus
transmission, and applying this model to forecast changes in the dynamics under intervention.
The model considers pulse isolation and a series of pulses of release (see [11] for a series of
pulses vaccination). The model aims to describe the onset and subsequent spread of the new
coronavirus in São Paulo State, Brazil. The understanding of the dynamics means that the
model parameters are fitted against data collected in São Paulo State, Brazil. These estimated
parameters are then used to study the potential scenarios when an intervention is introduced
as a control mechanism. São Paulo State adopted the isolation of persons as the controlling
mechanism, which can not be isolated indefinitely. Our main aim is to obtain epidemiological
scenarios when releasing strategies will be implemented after isolation.

The paper is structured as follows. In Section 2, we introduce a model, which is numerically
studied in Section 3. Discussions are presented in Section 4, and conclusions in Section 5.
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2 Material and methods

In a community where SARS-CoV-2 (new coronavirus) is circulating, the risk of infection is
greater in elder than young persons, as well as under increased probability of being symptomatic
and higher CoViD-19 induced mortality. Hence, the community is divided into two groups,
composed by young (under 60 years old, denoted by subscript y), and elder (above 60 years
old, denoted by subscript o) persons. The vital dynamics of this community are described by
per-capita rates of birth (φ) and mortality (µ).

For each sub-population j (j = y, o), all persons are divided into seven classes: susceptible
Sj, susceptible persons who are isolated Qj, exposed Ej, asymptomatic Aj, asymptomatic
persons who are caught by test and then isolated Q1j, symptomatic persons at initial phase
of CoViD-19 (or pre-diseased) D1j, pre-diseased persons caught by test and then isolated, plus
mild CoViD-19 (or non-hospitalized) Q2j, and symptomatic persons with severe CoViD-19
(hospitalized) D2j. However, all young and elder persons in classes Aj, Q2j, and D2j enter into
the same immune class I.

The natural history of new coronavirus infection is the same for young (j = y) and elder
(j = o) subpopulations. We assume that only persons in the asymptomatic (Aj) and pre-
diseased (D1j) classes are transmitting the virus, and other infected classes (Q1j, Q2j and D2j)
are under voluntary or forced isolation. Susceptible persons are infected according to λjSj
(known as mass action law [2]) and enter into classes Ej, where λj is the per-capita incidence
rate (or force of infection) defined by λj = λ (δjy + ψδjo), with λ being

λ =
1

N
(β1yAy + β2yD1y + β1oAo + β2oD1o) , (1)

where δij is Kronecker delta, with δij = 1 if i = j, and 0, if i 6= j; and β1j and β2j are the
transmission rates, that is, the rates at which a virus encounters a susceptible people and infects.
After an average period 1/σj in class Ej, where σj is the incubation rate, exposed persons enter
into the asymptomatic Aj (with probability pj) or pre-diseased D1j (with probability 1 − pj)
classes. After an average period 1/γj in class Aj, where γj is the infection rate of asymptomatic
persons, symptomatic persons acquire immunity (recovered) and enter into immune class I.
Another route of exit from class Aj is being caught by a test at a rate ηj and enters into class
Q1j and, then, after a period 1/γj, enters into class I. Possibly asymptomatic persons are
in voluntary isolation, which is described by the voluntary isolation rate χj. With respect to
symptomatic persons, after an average period 1/γ1j in class D1j, where γ1j is the infection rate
of pre-diseased persons, pre-diseased persons enter into non-hospitalized Q2j (with probability
mj) or hospitalized D2j (with probability 1−mj) class. Hospitalized persons acquire immunity
after a period 1/γ2j, where γ2j is the recovery rate of severe CoViD-19, and enter into immune
class I or die under the disease induced (additional) mortality rate αj. Another route of exiting
D2j is by treatment, described by the treatment rate θj. After an average period 1/γj in class
Q2j, non-hospitalized persons acquire immunity and enter into immune class I, or enter into
class D2j at a relapsing rate ξj.

In the model, we consider pulse isolation and intermittent (series of pulses) release of per-
sons. We assume that there is a unique pulse in isolation at time t = τ isj , described by

kjSjδ
(
t− τ isj

)
, but there are m intermittent releases described by

∑m
i=1 lijQjδ (t− ti), where
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ti = τ isj +
∑i

w=1 τwj, j = y, o, and δ (x) is Dirac delta function, that is, δ (x) = ∞, if x = 0,
otherwise, δ (x) = 0, with

∫∞
0
δ (x) dx = 1. The parameters kj and lij, i = 1, 2, · · · ,m, are the

fractions of i-th release of isolated persons, and τwj is the period between successive releases.
Figure 1 shows the flowchart of the new coronavirus transmission model.
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Figure 1: The flowchart of new coronavirus transmission model with variables and parameters.

The new coronavirus transmission model, based on above descriptions summarized in Figure
1, is described by system of ordinary differential equations, with j = y, o. Equations for
susceptible persons are

d

dt
Sy = φN − (ϕ+ µ)Sy − λSy − kySδ

(
t− τ isy

)
+

m∑
i=1

liyQyδ

(
t− τ isj −

i∑
w=1

τwy

)
d

dt
So = ϕSy − µSo − λψSo − koSoδ (t− τ iso ) +

m∑
i=1

lioQoδ

(
t− τ isj −

i∑
w=1

τwo

)
,

(2)
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for infectious persons,

d

dt
Qj = kjSjδ

(
t− τ isj

)
− µQj −

m∑
i=1

lijQjδ

(
t− τ isj −

i∑
w=1

τwj

)
d

dt
Ej = λ (δjy + ψδjo)Sj − (σj + µ)Ej

d

dt
Aj = pjσjEj − (γj + ηj + χj + µ)Aj

d

dt
Q1j = (ηj + χj)Aj − (γj + µ)Q1j

d

dt
D1j = (1− pj)σjEj − (γ1j + η1j + µ)D1j

d

dt
Q2j = (mjγ1j + η1j)D1j − (γj + ξj + µ)Q2j,

d

dt
D2j = (1−mj) γ1jD1j + ξjQ2j − (γ2j + θj + µ+ αj)D2j,

(3)

and for immune persons,

d

dt
I = γyAy + γyQ1y + γyQ2y + (γ2y + θy)D2y + γoAo + γoQ1o + γoQ2o+

(γ2o + θo)D2o − µI,
(4)

where Nj = Sj +Qj + Ej + Aj +Q1j +D1j +Q2j +D2j, and N = Ny +No + I obeys

d

dt
N = (φ− µ)N − αyD2y − αoD2o, (5)

with the initial number of population at t = 0 being N(0) = N0 = N0y + N0o, where N0y and
N0o are the number of young and elder persons at t = 0. If φ = µ + (αyD2y + αoD2o) /N , the
total size of the population is constant.

Table 1 summarizes the model variables.

Table 1: Summary of the model variables (j = y, o).

Symbol Meaning
Sj Susceptible persons
Qj Isolated among susceptible persons
Ej Exposed with new coronavirus persons
Aj Asymptomatic persons
Q1j Isolated among asymptomatic presosns by test
D1j Initial symptomatic (pre-diseased) persons
Q2j Isolated among pre-diseased persons by test
D2j Severe CoViD-19 persons
Ij Immune (recovered) persons

The non-autonomous system of equations (2), (3), and (4) is simulated letting intermittent
interventions to the initial and boundary conditions. Hence, the equations for susceptible and
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isolated persons become 
d

dt
Sy = φN − (ϕ+ µ)Sy − λSy

d

dt
So = ϕSy − µSo − λψSo

d

dt
Qy = −µQj,

(6)

j = y, o, and other equations are the same.
For the system of equations (6), (3), and (4), the initial conditions (at t = 0) are, for

j = y, o,

Sj (0) = N0j, Xj (0) = nXj
, where Xj = Qj, Ej, Aj, Q1j, D1j, Q2j, D2j, I, (7)

and nXj
is a non-negative number. For instance, nEy = nEo = 0 means that there is not any

exposed individual (young and elder) at the beginning of epidemics. We split the boundary
conditions into isolation and release, and assume that τ is = τ isy = τ iso and τi = τiy = τio, for

i = 1, 2, · · ·, m, then ti = τ is +
∑i

w=1 τw. A unique isolation at t = τ is is described by the
boundary conditions

Sj (τ is+) = Sj (τ is−) (1− kj) and Qj (τ is+) = Qj (τ is−) + Sj (τ is−) kj (8)

plus
Xj (τ is+) = Xj (τ is−) , where Xj = Ej, Aj, Q1j, D1j, Q2j, D2j, I. (9)

where we have τ is− = limt→τ is t (for t < τ is), and τ is+ = limτ is←t t (for t > τ is). The boundary
conditions for a series of pulses released at ti = τ is +

∑i
w=1 τw, for i = 1, 2, · · ·, m, are

Sj
(
t+i
)

= Sj
(
t−i
)

+ lijQj

(
t−i
)

and Qj

(
t+t
)

= (1− lij)Qj

(
t−i
)
, (10)

plus
Xj

(
t+i
)

= Xj

(
t−i
)
, where Xj = Ej, Aj, Q1j, D1j, Q2j, D2j, I. (11)

If τ = τi, then ti = τ is + iτ . If isolation is applied to a completely susceptible population, at
t = 0, there are not any infectious person, so S(0) = N0. If isolation is done at t = τ isj without
screening of persons harboring the virus, then many of them could be isolated with susceptible
persons.

Table 2 summarizes the model parameters and values (for elder classes, values are between
parentheses).

From the system of equations (2), (3), and (4) we can derive some epidemiological pa-
rameters: new cases, new CoViD-19 cases, severe CoViD-19 cases, number of deaths due to
CoViD-19, isolated persons, and number of occupied beds in hospitals.

The number of persons infected with new coronavirus is given by Ey + Ay + Q1y + D1y +
Q2y + D2y for young persons, and Eo + Ao + Q1o + D1o + Q2o + D2o for elder persons. The
incidence rates are

Λy = λSy and Λo = λψSo, (12)
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Table 2: Summary of the model parameters (j = y, o) and values (rates in days−1, time in days
and proportions are dimensionless). Some values are calculated (&), or varied (#), or assumed
(∗), or estimated (∗∗) or not available (∗∗∗).

Symbol Meaning Value
µ Natural mortality rate 1/(75× 360)[8]
φ Birth rate 1/(75× 360)∗

ϕ Aging rate 6.7× 10−6

σy (σo) Incubation rate 1/5 (1/5)[10]
γy (γo) Infection rate of asymptomatic persons 1/10 (1/11)[10]
γ1y (γ1o) Infection rate of pre-diseased persons 1/4 (1/4)[10]
γ2y (γ2o) Recovery rate of severe CoViD-19 1/10 (1/14)[10]
ξy (ξyo) Relapsing rate of pre-diseased persons 0 (0)∗

αy (αo) Additional mortality rate 0.0009 (0.009)∗∗

ηy (ηo) Testing rate among asymptomatic persons 0 (0)∗∗∗

χy (χo) Voluntary isolation rate of asymptomatic persons 0 (0)∗∗∗

η1y (η1o) Testing rate among pre-diseased persons 0 (0)∗∗∗

ky (ko) Proportion of Isolated susceptible persons 0 (0)∗

liy (lio) Proportion released at time ti 0 (0)∗

τ is Time of the intoduction of isolation 27
τ1(τi) Time of first (i-th) releasing 72(10)∗

θy (θo) Treatment rate 0(0)∗∗∗

β1y (β1o) Transmission rate due to asymptomatic persons 0.76 (0.76)∗∗

β2y (β2o) Transmission rate due to pre-diseased persons 0.76 (0.76)∗∗

ψ Scaling factor of transmission among elder persons 1.17∗∗

py (po) Proportion of asymptomatic persons 0.8(0.75)∗

my (mo) Proportion of mild (non-hospitalized) CoViD-19 0.8 (0.75)[3]

where the per-capita incidence rate λ is given by equation (1), and the numbers of new cases
Cy and Co are

d

dt
Cy = Λydt and

d

dt
Co = Λodt,

with Cy(0) = 0 and Co(0) = 0.
The numbers of CoViD-19 cases ∆y and ∆o are given by exits from Ay, D1y, Ao, and D1o,

that is,
d

dt
∆y = ηyAy + (γ1j + η1j)D1y and

d

dt
∆o = ηoAo + (γ1o + η1o)D1o

with ∆y(0) = 0 and ∆o(0) = 0, which are entering in classes Q1y, D2y, Q2y, Q1o, D2o, and Q2o.
The numbers of severe CoViD-19 (hospitalized) cases Ωy and Ωo are given by exits from

D1y, Q2o, D2o, and Q2y, that is,

Ω = Ωy + Ωo, with


d

dt
Ωy = (1−my) γ1yD1y + ξyQ2y

d

dt
Ωo = (1−mo) γ1oD1o + ξoQ2o

(13)
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with Ωy(0) = Ωo(0) = 0, which are entering in classes D2y and D2o at each day.
The number of deaths caused by severe CoViD-19 cases Π can be calculated from hospital-

ized cases. This number of deaths is

Π = Πy + Πo, with


d

dt
Πy = αyD2y

d

dt
Πo = αoD2o

(14)

with Πy(0) = Πo(0) = 0.
The number of susceptible persons in isolation in the absence of release is obtained from

Sis = Sisy + Siso , where


d

dt
Sisy = η2ySy, with Sisy (0) = 0

d

dt
Siso = η2oSo, with Siso (0) = 0,

(15)

where the corresponding fractions of isolated susceptible persons are f isy = Sisy /Ny and f isy =
Siso /No.

Finally, the number of beds B occupied during the evolving of epidemics is, for j = y, o,

B1 = B1y +B1o, with


d

dt
B1y = h1y (1− hy)

d

dt
Ωy − (αy + ς1y)B1y, with B1y(0) = 0

d

dt
B1o = h1o (1− ho)

d

dt
Ωo − (αo + ς1o)B1o, with B1o(0) = 0,

(16)
for beds in hospitals, and

B2 = B2y +B2o, with


d

dt
B2y = h1yhy

d

dt
Ωy − (αy + ς2y)B2y, with B2y(0) = 0

d

dt
B2o = h1oho

d

dt
Ωo − (αo + ς2o)B2o, with B2o(0) = 0,

(17)

for beds in ICU. The fraction of severe CoViD-19 needing ICU is hj, and 1/ς1j and 1/ς2j are
the average occupying time of beds in hospital and ICU, equal for young and elder persons,
where ς1j and ς2j are the discharging rates from hospital and ICU, for j = y, o. The fraction
h1j is severe CoViD-19 needing prolonged hospital care. The total number of occupied beds is
B = B1 +B2.

The system of equations (2), (3), and (4) is non-autonomous. Nevertheless, the fractions
of persons in each compartment approach the steady state (see Appendix A). Hence, at t = 0,
the basic reproduction number R0 is obtained substituting s0y and s0o by N0y/N0 and N0o/N0 in
equation (A.4), resulting in

R0 = R0y
N0y

N0

+R0o
N0o

N0

=
[
pyR

1
0y + (1− py)R2

0y

] N0y

N0

+
[
poR

1
0o + (1− po)R2

0o

]
ψ
N0o

N0

,

using equations (A.8) and (A.9).
Let us use the approximated effective reproduction number Ref given by equation (A.11),

that is, Ref = R0 (Sy/N + So/N). For t > 0, we have the effective reproduction number Ref ,
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with Ref (0) = R0 at t = 0, which decreases as susceptible persons decrease. However, at
t = τ is a pulse in isolation is introduced, hence we have Ref (τ

is+) = Rr, where the reduced
reproduction number Rr is given by

Rr = R0

[
Sy(τ is−)(1−ky)

N0
+

So(τ is−)(1−ko)
N0

]
, (18)

and Sy (τ is−) and So (τ is−) are the number of susceptible young and elder persons at the time
just before the introduction of isolation. Notice that at t = τ is, Ref (τ

is−) jumped down to
Ref (τ

is+). At i-th release time ti, we have Ref (t
+
i ) = Rr(i), with the reduced reproduction

number Rr(i) being given by

Rr(i) = R0

[
Sy
(
t−i
)

+ liyQy

(
t−i
)

N0

+
So
(
t−i
)

+ lioQo

(
t−i
)

N0

]
,

where Ref (t
−
i ) jumped up to Ref (t

+
i ) at t = ti. After t > tm, there is not release anymore, and

Ref = 1 when t→∞, and the new coronavirus returns to the original dynamics driven by R0.
Given N and R0, let us evaluate the number of susceptible persons to trigger and main-

tain epidemics. Let us assume that all model parameters for young and elder classes and all
transmission rates are equal, then R0 = σβ/ [(σ + φ) (γ + φ)] and Ref = R0S/N , using the ap-
proximated Ref given by equation (A.11). Letting Ref = 1, the critical number of susceptible
persons Sth at equilibrium is

Sth ≈ N

R0

. (19)

If S > Sth, epidemics occurs and persists (Ref > 1, non-trivial equilibrium point P ∗), and the
fraction of susceptible individuals is s∗ = 1/R0, where s∗ = s∗y + s∗o; but if S < Sth, epidemics
occurs but fades out (Ref < 1, trivial equilibrium point P 0), and the fractions of susceptible
individuals sy and so at equilibrium are given by equation (A.4). Remember that the threshold
Sth is valid only if the pulse isolation introduced at t = 0 is maintained forever.

We apply the above results to study the introduction and establishment of the new coron-
avirus in São Paulo State, Brazil.

3 Results

The results obtained in the foregoing section are applied to describe the new coronavirus infec-
tions in São Paulo State, Brazil. The first confirmed case of CoViD-19, occurred on February
26, 2020, was a traveler returning from Italy on February 21, and being hospitalized on Febru-
ary 24. The first death due to CoViD-19 was a 62 years old male with comorbidity who never
travelled to abroad, hence considered as autochthonous transmission. He manifested the first
symptoms on March 10, was hospitalized on March 14, and died on March 16. On March 24,
the São Paulo State authorities ordered isolation of persons acting in non-essential activities,
as well as students of all levels until April 6, further isolation was extended to April 22, and
postponed to May 10.
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The dynamics of the new coronavirus propagation is obtained by evaluating the system
of equations (2), (3), and (4) numerically using the 4th order Runge-Kutta method. Let us
determine the initial conditions supplied to this system. In the São Paulo State, the number of
inhabitants is N (0) = N0 = 44.6×106 according to SEADE [8]. The value of parameter ϕ given
in Table 1 was calculated by the equation (A.4), ϕ = bφ/ (1− b), where b is the proportion
of elder persons. Using b = 0.153 in the São Paulo State [8], we obtained ϕ = 6.7 × 10−6

days−1, hence, Ny (0) = N0y = 37.8×106 (s̄0y = N0y/N0 = 0.8475) and No (0) = N0o = 6.8×106

(s̄0o = N0o/N0 = 0.1525). The initial conditions for susceptible persons are set to be Sy (0) = N0y

and So (0) = N0o. For other variables, from Table 2, using py = 0.8 and my = 0.8, the ratio
asymptomatic:symptomatic is 4 : 1, and the ratio mild:severe (non-hospitalized:hospitalized)
CoViD-19 is 4 : 1. We also use these ratios for elder persons, even po and mo are slightly
lower. Hence, if we assume that there is one person in D2j (the first confirmed case), then
there are 4 persons in Q2j. The sum (5) is the number of persons in class D1j, implying that
there are 20 in class Aj, hence, the sum (25) is the number of persons in class Ej. Finally,
we suppose that no one is isolated or tested, and immunized. (Probably the first confirmed
COViD-19 person transmitted virus (since February 21 when returned infected from Italy), as
well as other asymptomatic travelers returning from abroad.)

Therefore, the initial conditions supplied to the dynamic system (2), (3), and (4) are{
Sj (0) = N0j, Qj (0) = Q1j(0) = 0, Ej (0) = 25,
Aj(0) = 20, D1j(0) = 5, Q2j(0) = 4 D2j(0) = 1, I(0) = 0,

where the initial simulation time t = 0 corresponds to the calendar time February 26, 2020,
when the first case was confirmed.

This section presents parameters estimation and epidemiological scenarios considering iso-
lation as the control mechanism. In estimation and epidemiological scenarios, we assume that
all transmission rates in young persons are equal, as well as in elder persons, that is, we assume
that

βy = β1y = β2y = β1o = β2o, and βo = ψβy,

hence, the forces of infection are λy = (Ay +D1y + Ao +D1o) βy/N and λo = ψλy. The reason
to include factor ψ is the reduced capacity of defense mechanism by elder persons (physical
barrier, innate and adaptive immune responses, etc.). The force of infection takes into account
all virus released by infectious individuals (Ay, D1y, Ao, and D1o), the rate of encounter with
susceptible persons, and the capacity to infect them (see [12] [13]). Additionally, the amount as-
pired by susceptible persons can be determinant in the chance of infection and in the prognostic
of CoViD-19 [19].

From data collected in the São Paulo State from February 26 until April 5, 2020, we fit
transmission (βy and βo) and additional mortality rates (αy and αo), and the proportions of
isolated persons (ky and ko) are estimated using data from March 24 until April 21. Once
determined these parameters, we study potential scenarios introducing isolation as control
mechanisms.
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3.1 Parameters estimation

Reliable estimations of both transmission and additional mortality rates is crucial, aiming the
prediction of new cases (to an adequate number of beds in a hospital, for instance) and deaths.
When the estimation is based on a few number of data, that is, at the beginning of epidemics,
some cautions must be taken, because the rates maybe over or under estimated. The reason is
that in the very beginning phase of epidemic, the spreading out of infections and death increase
exponentially without bound.

Currently, there is not a sufficient number of kits to detect infection by the new coronavirus.
For this reason, test to confirm infection by this virus are done only in hospitalized persons,
and also in persons who died, manifesting symptoms of CoViD-19. Hence, we have only data
of hospitalized persons (D2y and D2o) and those who died (Πy and Πo). Taking into account
hospitalized persons with CoViD-19, we fit the transmission rates, and for persons died due
to CoViD-19, we fit the additional mortality rates. These rates are fitted applying the least
square method (see [7]), that is

min
n∑
i=1

{
Zy (ti) + Zo (ti)−

[
Zob
y (ti) + Zob

o (ti)
]}2

, (20)

where min stands for the minimum value, n is the number of observations, ti is i-th observation
time, Zj stands for Ωj given by equation (13), and Πj is given by equation (14); and Zob

j stands
for the observed number of hospitalized persons Dob

2j and number of died persons P ob
j , j = y, o.

The fitted parameters are those minimizing the sum of squared differences.
Instead of using equation (20), the least square estimation method, we vary the parameters

and choose better fitting by evaluating the sum of squared distances between curve and data.

3.1.1 Fitting the transmission rates

The introduction of quarantine was at t = 27, corresponding to the calendar time March 24,
but the effects are expected to appear later. Hence, we will estimate taking into account the
confirmed cases from February 26 (t = 0) to April 5 (t = 39), hence n = 40 observations. It is
expected that at around simulation time t = 36 (April 2), the effects of isolation will appear
(the sum of incubation and pre-diseased infection periods (see Table 2) is around 9 days).

To estimate the transmission rates βy and βo, we let αy = αo = 0 and the system of equations
(2), (3), and (4), with initial conditions given by equation (7), is evaluated, and we calculate

n∑
i=1

{
Ωy (ti) + Ωo (ti)−

[
Dob

2y (ti) +Dob
2o (ti)

]}2
by varying βy and βo. We chose the transmission rates minimizing the sum of differences.
Letting additional mortality rates equal to zero (αy = αo = 0), we estimate βy and βo = ψβy,
against hospitalized CoViD-19 cases (D2 = D2y + D2o) data from the São Paulo State. The
estimated values are βy = 0.75 and βo = 0.8775 (days−1), where Ψ = 1.17, resulting in the basic
reproduction number R0 = 6.828 (partials R0y = 5.587 and R0o = 1.241), according to equation
(A.8). Figure 2(a) shows the estimated curve of D2 and observed data, plus two curves with
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lower transmission rates: βy = 0.55 and βo = 0.6435 (days−1), with R0 = 5.008; and βy = 0.45
and βo = 0.5265 (days−1), with R0 = 4.097 (partials R0y = 3.352 and R0o = 0.745). Figure 2(b)
shows curves, from t = 30 until 180 of D2 for young, elder, and total persons for R0 = 6.828
and 4.097.
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Figure 2: The estimated curve of severe CoViD-19 cases D2 (βy = 0.75 and βo = 0.8775
(days−1), with R0 = 6.828) and observed data, plus two curves with lower transmission rates:
βy = 0.55 and βo = 0.6435 (days−1), with R0 = 5.008; and βy = 0.45 and βo = 0.5265 (days−1),
with R0 = 4.097. Estimation was done using data from t = 0 to t = 39 (a), from top to bottom
as R0 increases, and the extended curves until t = 250 (b), from top to bottom for total, young
and elder persons, with continuous (R0 = 6.828) and dashed (R0 = 4.097) curves.

From Figure 2(a), as R0 decreases, the estimations become worst. From Figure 2(b), the
peak of higher R0 occurs at t = 68, while for lower R0, delayed in 33 days, at t = 101. The
peaks for R0 = 6.828 and 4.097 (between parentheses) are 6.86 × 105 (5.33 × 105), 5.08 × 105

(3.898× 105) and 1.78× 105 (1.43× 105), respectively, for young, elder and total persons.
Let us estimate the critical number of susceptible persons Sth from equation (19). For

R0 = 6.828, we have Sth = 6.532× 106. Hence, for the São Paulo State, isolating 38.07 million
(85.35%) or above persons is necessary to avoid the persistence of epidemics. The number of
young persons is 0.27 million less than the threshold number of isolated persons to guarantee
eradication of CoViD-19. For R0 = 4.097, we have Sth = 10.87× 106, implying to isolate 33.73
million (75.63%) or above persons, which is 4.07 million less than young persons.

3.1.2 Fitting the additional mortality rates

We estimate taking into account confirmed deaths from February 26 (t = 0) to April 5 (t = 39),
hence n = 40 observations, as we did in the previous estimation.

To estimate the mortality rates αy and αo, we fix the previously estimated transmission
rates βy and βo for R0 = 6.828 and 4.097, and evaluate the system of equations (2), (3) and
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(4), with initial conditions given by equation (7), to calculate

n∑
i=1

{
Πy (ti) + Πo (ti)−

[
P ob
y (ti) + P ob

o (ti)
]}2

,

by varying αy and αo. We chose the mortality rates minimizing the sum of differences. Fixing
the previously estimated transmission rates βy = 0.75 and βo = 0.8775 (both days−1), we
estimate additional mortality rates αy and αo by varying αy and αo. From the fact that
lethality among young persons is lower than elder persons, we let αy = 0.2αo [3], and estimate
only one variable αo. The estimated rates are αy = 0.0052 and αo = 0.026 (days−1). For lower
R0, fixing βy = 0.45 and βo = 0.5265 (days−1), we estimated αy = 0.08 and αo = 0.4 (days−1).
This is called the first estimation method.

The first estimation method used only one information: the risk of death is higher among
elder than young persons (we used αy = 0.2αo). However, the lethality among hospitalized elder
persons is around 10% [3]. Combining both findings, we assume that the deaths for young and
elder persons are, respectively, 2% and 10% of accumulated cases when Ωy and Ωo approach
plateaus (see Figures 4(a) and 5(a) below). This is called the second estimation method, which
takes into account a second information besides the one used in the first estimation method.
In this procedure, the estimated rates are αy = 0.0018 and αo = 0.009 (days−1) for both R0.

Figure 3 shows the estimated curves of Π = Πy+Πo provided by both methods of estimation
and observed data for R0 = 6.828 (a) and 4.097 (b). The second method of estimation fits very
badly in the interval of estimation from t = 0 to 39.
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Figure 3: The estimated curves of Π provided by both methods of estimation and observed
data from t = 0 until 39. The first estimation method provided for R0 = 6.828, αy = 0.0052
and αo = 0.026 (a), and for R0 = 4.097, αy = 0.08 and αo = 0.4 (b). Both figures show also
the second method of estimation, which fits very badly in the interval of estimation, providing
same αy = 0.0009 and αo = 0.009 (all in days−1).

For higher R0 = 6.828, Figure 4(a) shows the estimated curves of accumulated number
of severe CoViD-19 (Ωy, Ωo, and Ω = Ωy + Ωo), from equation (13). At t = 120 days, Ω
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approached an asymptote (or plateau), which can be understood as the time when the first
wave of epidemics ends. The curves Ωy, Ωo, and Ω reach values at t = 200, respectively,
1.511 × 106, 0.426 × 106, and 1.937 × 106. Figure 4(b) shows the estimated curves of the
accumulated number of CoViD-19 deaths (Πy, Πo, and Π = Πy + Πo), from equation (14).
The values of Πy, Πo, and Π are, at t = 200, for the first method of estimation, respectively,
0.747 × 105 (4.9%), 1.137 × 105 (26.7%) and 1.883 × 105 (9.72%), and for the second method
of estimation, respectively, 2.67× 104 (1.77%), 4.767× 104 (11.19%) and 7.437× 104 (3.84%).
The percentage between parentheses is the ratio Π/Ω.
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Figure 4: For R0 = 6.828, the estimated curves of accumulated number of severe CoViD-
19 (Ωy, Ωo and Ω = Ωy + Ωo) (a), from top to bottom for total, young and elder persons,
and accumulated number of CoViD-19 deaths (Πy, Πo and Π = Πy + Πo) (b), with continuous
(αo = 0.026) and dashed (αo = 0.009) curves. At t = 120 days, Ω and Π approached asymptotes
(or plateaus).

From Figure 4, the first estimation method for additional mortality rates provided around
2.5-times more than the second method. Especially, the first method estimated 26.7% against
11.2% of deaths in the elder subpopulation, while for the young subpopulation, 5% against 2%.
Hence, the second estimation method is more credible.

For lower R0 = 4.097, Figure 5(a) shows the estimated curves of accumulated number of
severe CoViD-19 (Ωy, Ωo, and Ω = Ωy+Ωo), from equation (13). At t = 160 days, Ω approached
an asymptote (or plateau), which can be understood as the time when the first wave of epidemics
ends. The curves Ωy, Ωo, and Ω reach values at t = 200, respectively, 1.484× 106, 0.422× 106,
and 1.906×106. Figure 5(b) shows the estimated curves of the accumulated number of CoViD-
19 deaths (Πy, Πo, and Π = Πy + Πo), from equation (14). The values of Πy, Πo, and Π are at
t = 200, for the first method of estimation, respectively, 6.594×105 (44.4%), 3.583×105 (84.9%)
and 1.018 × 106 (53.41%), and for the second method of estimation, respectively, 2.62 × 104

(1.76%), 4.718 × 104 (11.18%) and 7.338 × 104 (3.85%). The percentage between parentheses
is the ratio Π/Ω.

From Figure 5, the first estimation method for additional mortality rates provided much
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Figure 5: For R0 = 4.097, the estimated curves of accumulated number of severe CoViD-19
(Ωy, Ωo and Ω = Ωy + Ωo) (a), from top to bottom for total, young and elder persons, and
accumulated number of CoViD-19 deaths (Πy, Πo and Π = Πy + Πo) (b), with continuous
(αo = 0.4) and dashed (αo = 0.009) curves. At t = 160 days, Ω and Π approached plateaus.

higher values than the second method, for instance, 25-times more among young subpopulation.
Especially, the first method estimated 85% against 11.2% of deaths in the elder subpopulation.
Hence, the second estimation method is more credible. Notice that, from Figures 4 and 5, at
the end of the first epidemic wave, we have quite the same number of accumulated CoViD-19
cases for R0 = 6.828 and 4.097 (difference at most 1.8%) despite big differences in accumulated
deaths.

At t = 0, the numbers of susceptible persons, Sy, So and S = Sy + So are, respectively,
3.77762 × 107, 0.68238 × 107 and 4.46 × 107, which diminish due to infection at lower values
at t = 200 (figure not shown, see Figure 8(a) below to observe sigmoid shape). For higher
R0 = 6.828, the numbers of susceptible persons left behind are 2.346× 105 (0.62%), 0.294× 104

(0.043%) and 2.376 × 105 (0.53%), for young, elder and total persons, respectively. For lower
R0 = 4.097, the numbers of susceptible persons left behind are 8.823× 105 (2.34%), 6.957× 104

(1.02%) and 9.518×105 (2.13%), for young, elder and total persons, respectively. The percentage
between parentheses is the ratio S(200)/S(0). For young and total persons, there are 4-times
more susceptible persons available to be infected in the second wave when R0 decreases, while
for elder persons, 24-times. Hence, the second wave will infect much more elder persons.

For higher R0 = 6.828, the numbers of immune persons (Iy, Io, and I) increase from zero to,
respectively, 3.755× 107 (99.4%), 0.674× 107 (98.8%) and 4.429× 107 (99.3%), for young, elder
and total persons at t = 200 (figure not shown, see Figure 8(b) below). For lower R0 = 4.097,
the numbers of immune persons at t = 200 are 3.689 × 107 (97.7%), 0.668 × 107 (97.9%) and
4.357× 107 (97.7%), for young, elder and total persons, respectively. The percentage between
parentheses is the ratio I/S(0). The value of R0 does not matter in the number of immune
persons.

Remembering that human population is varying due to the additional mortality (fatality)
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of severe CoViD-19, we have, at t = 0, N0y = 3.780 × 107, N0o = 0.680 × 107 and N0 =
N0y +N0o = 4.460× 107, and at t = 200, Ny = 3.774× 107 (0.16%), No = 0.667× 107 (1.91%)
and N = 4.441× 107 (0.43%) for the first estimation method, and Ny = 3.779× 107 (0.026%),
No = 0.674×107 (0.88%) and N = 4.453×107 (0.16%) for the second estimation method. The
percentage of deaths is the ratio (N0j −Nj) /N0j.

3.1.3 Estimation of the proportion of isolated persons

From Figures 4 and 5, as R0 decreases, the estimation of the additional mortality rates based
on a few initially collected data becomes more inaccurate, providing so much deaths in the
population. Hence, we choose βy = 0.75 and βo = 0.8775 (higher R0 = 6.828) and lower
estimates for the mortality rates, αy = 0.0018 and αo = 0.009 (all in days−1), to estimate
isolation (described by proportions ky and ko) of susceptible persons as control mechanism.
Isolation was introduced at t = 27 (March 24), and we will estimate taking into account the
confirmed cases from t = 27 to 55 (April 21), hence n = 29 observations.

Here, we estimate the control variables by varying ky and ko. The system of equations (2),
(3), and (4), with boundary conditions given by equations (8) and (9), is evaluated, and we
calculate the sum of square differences

n∑
i=1

{
Ωy (ti) + Ωo (ti)−

[
Dob

2y (ti) +Dob
2o (ti)

]}2
,

where t1 = 27 and t29 = 55. We assume k = ky = ko and varied k = 0, 0.4, 0.6, 0.7, and 0.8,
from which the better estimated value is k = 0.5 [1]. In this section, the isolation was initiated
at t = 27, and release is not initiated.

Figure 6(a) shows the estimated curve of D2 = D2y +D2o and the observed data, plus four
curves with lower and higher values of k than that estimated k = 0, 0.4, 0.6, 0.7 and 0.8. Figure
6(b) shows the curves of D2 for 6 different values of k, extended from t = 0 until 250. For
k = 0, 0.4, 0.5, 0.6, 0.7 and 0.8, the peaks are, respectively, 6.889× 105, 3.117× 105, 2.25× 105,
1.423× 105, 0.68× 105 and 0.137× 105, which decrease as k increases, and displace to right, to
t = 68, 82, 88, 99, 118 and 165.

Figure 7 shows the curves of Ωy, Ωo, and Ω = Ωy + Ωo (a) and Πy, Πo, and Π = Πy + Πo

(b) without (k = 0) and with isolation (k = 0.5). For k = 0.5, the curves Ωy, Ωo, and Ω attain
values at t = 250, respectively, 7.296×105, 2.09×105 and 9.382×105, and Πy, Πo and Π attain,
at t = 250, respectively, 1.29×104 (1.77%), 2.334×104 (11.17%) and 3.623×104 (3.86%). The
percentage between parentheses is the ratio Π/Ω.

Figure 8 shows the curves of Sy, So, and S = Sy + So (a) and Iy, Io, and I = Iy + Io (b)
without (k = 0) and with isolation (k = 0.5). The numbers of susceptible persons, Sy, So, and
S = Sy + So are, respectively, at t = 250 days, 9.948 × 105 (2.63%), 7.942 × 104 (1.17%) and
1.075×106 (2.41%), for k = 0.5. The percentage between parentheses is the ratio S(250)/S(0).
The number of immune persons (Iy, Io, and I) increases from zero to, respectively, 1.811× 107

(47.9%), 0.329 × 107 (48.4%) and 2.141 × 107 (48%), for k = 0.5. The percentage between
parentheses is the ratio I/S(0), and S(0) can be found in the foregoing section.

From foregoing section, we transport values for k = 0: for Ωy, Ωo, and Ω = Ωy + Ωo,
1.511 × 106, 0.426 × 106 and 1.937 × 106; for Πy, Πo and Π, 2.67 × 104 (1.77%), 4.767 × 104
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Figure 6: The estimated curve (for k = 0.5) of D2 and observed data, plus five curves with
lower and higher values of k than that estimated, k = 0, 0.4, 0.6, 0.7 and 0.8 (a), and curves of
D2 extended from t = 0 until 250 (b), from top to bottom as k increases.
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Figure 7: The curves of Ωy, Ωo and Ω = Ωy + Ωo (a) and Πy, Πo and Π = Πy + Πo (b) without
(k = 0, continuous curves) and with isolation proportion (k = 0.5, dashed curves), from top to
bottom for total, young and elder persons.

(11.19%) and 7.437×104 (3.84%), ratio is Π/Ω; Sy, So, and S = Sy+So (left behind at t = 200),
2.346× 105 (0.62%), 0.294× 104 (0.043%) and 2.376× 105 (0.53%), ratio is S(200)/S(0); and
for Iy, Io, and I, 3.755 × 107 (99.4%), 0.674 × 107 (98.8%) and 4.429 × 107 (99.3%), ratio is
I/S(0). At t = 0, for Sy, So, and S, we have 3.77762× 107, 0.68238× 107 and 4.46× 107. From
Figures 6-8, the peak of severe CoViD-19 cases decreases from 688.9 thousand to 225 thousand
and is delayed in 20 days, from 68 (May 4) to 88 (May 24).

As k increases to 0.6, 0.7, and 0.8, the peaks decrease to 142.3, 68, and 13.7 (thousand), and
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Figure 8: The curves of Sy, So and S = Sy + So (a) and Iy, Io and I = Iy + Io (b) without
(k = 0, continuous curves) and with isolation proportion (k = 0.5, dashed curves), from top to
bottom for total, young and elder persons.

are delayed in 31, 50, and 97 (days), occurring at 99 (June 4), 118 (June 23) and 165 (August
9). Severe CoViD-19 cases Ωy, Ωo, and Ω = Ωy + Ωo decreased to 51%, 49% and 48%, while
Πy, Πo, and Π, to 48%, 49% and 49%. Susceptible persons Sy, So, and S left behind increased
to 424%, 2, 701% and 453%, while Iy, Io, and I, decreased to 48%, 49% and 48%. During the
first wave, isolation decreased the number of severe cases and deaths around 50%, as well as
immune persons decreased in 50%. However, susceptible persons left behind increased around
5-times. These pictures show that the next second wave will occur earlier and more intense
when compared to k = 0.

Table 3 shows the values of Ω, Π, S, and I at t = 250, for k = 0.6, 0.7, and 0.8. Percentages
are calculated with respect to k = 0. As k increases, the numbers of severe CoViD-19 and deaths
decrease, which help in the hospital management and care system. However, the remaining
susceptible persons increase and less persons are immune, which indicates an anticipation of
the second wave. Especially among elder persons, where the number of susceptible persons is
so high. Notice that Figure 6 indicates that the number of susceptible persons did not reach
the plateau at t = 250 when k = 0.8.

Until now, we estimated the model parameters aiming understanding new coronavirus dy-
namics in the São Paulo State. Next, we evaluate the release of isolated persons, which will
occur on May 11.

3.2 Epidemiological scenarios considering unique isolation followed
by releases

To obtain epidemiological scenarios, we consider the higher R0 and the second method of
estimation for additional mortality rates. Additionally, we choose k = 0.5 for the proportion
of isolated persons in the São Paulo State. Hence, the fitted values βy = 0.75, βo = 0.8775,
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Table 3: The values of Ω, Π, S and I at t = 250, for k = 0.6, 0.7 and 0.8. y, o and Σ stand for,
respectively, young, elder and total persons.

k = 0.6 k = 0.7 k = 0.8
y o Σ y o Σ y o Σ

Ω (105) 5.582 1.615 7.197 3.719 1.099 4.818 1.432 0.442 1.874
Π 9866 18060 27926 6568 12270 18838 2451 4752 7203
S (106) 1.507 0.153 1.66 2.387 0.298 2.685 4.242 0.654 4.896
I (106) 13.86 2.55 16.41 9.238 1.735 10.973 3.495 0.683 4.178

Ω (%) 36.94 37.89 37.15 24.61 25.79 24.87 9.48 10.37 9.67
Π (%) 36.95 37.89 37.55 24.60 25.74 25.33 9.18 9.97 9.69
S (%) 477 5055 520 755 9845 841 1342 21606 1534
I (%) 36.98 37.82 37.11 24.65 25.73 24.81 9.32 10.13 9.45

αy = 0.0018, αo = 0.009 (days−1), and k = 0.5 are fixed hereafter, unless explicitly cited.
In this section, considering only one isolation occurred on March 24 (t = 27), we study

the epidemiological scenarios of release when this isolation will be ended on May 10 (t = 74).1

We stress the fact that the isolation of susceptible persons taken into account by the model
discriminates who has or do not have contact with the circulating new coronavirus. In the
absence of mass testing, it is expected that among isolated persons there will be who harbor
virus. We simulate the beginning of release occurring at t = 72, but also at t = 56 (April 22).2

We consider 3 strategies of release: all released at t = 72 (56) (strategy 1); two releases equally
distributed at t = 72 (56) and t = 79 (63) (strategy 2); and three releases equally distributed
at t = 72 (56), t = 79 (63) and t = 86 (70) (strategy 3). We also consider two regimes: equal
proportions of release for young and elder persons (regime 1), and different proportions (regime
2).

To obtain the scenarios, we solve numerically the system of equations (2), (3), and (4) with
initial conditions (t = 0) given by equation (7), the boundary conditions in isolation occurred
at t = 27 given by equations (8) and (9), and boundary conditions of releases with first one
occurring at t = 72 given by equations (10) and (11).

Aiming comparison with the absence of isolation, when k = 0, the peaks for young and elder
persons are 5.024 × 105 and 1.665 × 105, which occur at t = 68. When k = 0.5, the peaks for
young and elder persons are 1.667× 105 (33%) and 5.835× 104 (35%), which occur at t = 88.
Percentage is peak(k = 0.5)/peak(k = 0).

3.2.1 Regime 1 – Equal proportions of releasing young and elder persons

For strategy 1, we have a unique releases with l1j = 1, for strategy 2, two releases with l1j = 0.5
and l2j = 1, and for strategy 3, three releases with l1j = 0.33, l2j = 0.5 and l3j = 1, j = y, o.

Figure 9 shows the curves of D2 without (k = 0) and with (k = 0.5) isolation initiated at
t = 27, but released according to strategy 1. For release beginning at t = 56 for young (a)

1Initially, programmed to end on April 6, further extended to April 22, and postponed to May 10.
2Simulations were done on April 21. We anticipated the release to May 8 (May 10 is Mothers´ day).
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and elder (b) persons, the peaks are, respectively, 4.957 × 105 (99%) and 4.607 × 105 (92%),
with peak occurring at t = 82; and for release at t = 72, 1.641 × 105 (99%) and 1.529 × 105

(92%), with peak occurring at t = 92. The release in comparison with only isolation, peaks are
anticipated in 6 and delayed at 4 days, respectively, for young and elder persons.
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Figure 9: The curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated at
t = 27, but releasing according to strategy 1 beginning at t = 56 (dot and dashed) and 72
(dashed) for young (a) and elder (b) persons. Equal releasing of young and elder persons.

Figure 10 shows the curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated
at t = 27, but released according to strategy 2. For release beginning at t = 56 for young (a)
and elder (b) persons, the peaks are, respectively, 4.904 × 105 (98%) and 4.373 × 105 (87%),
with peak occurring at t = 84; and for release at t = 72, 1.624 × 105 (98%) and 1.455 × 105

(87%), with peak occurring at t = 94. The release in comparison with only isolation, peaks are
anticipated at 4 and delayed in 6 days, respectively, for young and elder persons.

Figure 11 shows the curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated
at t = 27, but release according to strategy 3. For release beginning at t = 56 for young (a)
and elder (b) persons, the peaks are, respectively, 4.777 × 105 (95%) and 3.97 × 105 (79%),
with peak occurring at t = 87; and for release at t = 72, 1.585 × 105 (95%) and 1.33 × 105

(80%), with peak occurring at t = 98. The release in comparison with only isolation, peaks are
anticipated at 1 and delayed in 10 days, respectively, for young and elder persons.

Table 4 shows the values of Ω, Π, S, and I at t = 250, for strategies 1, 2, and 3 for release
occurring at t = 72. Percentages are calculated with respect to k = 0. When young and elder
persons are released simultaneously, the numbers of severe CoViD-19 and deaths maintain
practically unchanged, as well as immune persons. However, the remaining susceptible persons
increase, which indicates that the second wave harm more elder persons. There is very tiny
difference among the three strategies.

Table 4 presents what happens at the end of the first wave, showing that there is not
a significant difference when release is done at t = 56 or 72, either for the three strategies.
However, during epidemics, release later (t = 72) is better, as well as the third strategy.
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Figure 10: The curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated at
t = 27, but releasing according to strategy 2 beginning at t = 56 (dot and dashed) and 72
(dashed) for young (a) and elder (b) persons. Equal releasing of young and elder persons.
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Figure 11: The curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated at
t = 27, but releasing according to strategy 3 beginning at t = 56 (dot and dashed) and 72
(dashed) for young (a) and elder (b) persons. Equal releasing of young and elder persons.

3.2.2 Regime 2 – Different proportions of releasing young and elder persons

Regime 2 deals with releasing young persons, but maintaining elder persons for a while and
releasing all them after young persons. This regime presents quite similar figures observed in
regime 1. Hence, we illustrate only one case.

Figure 12 shows the curves of D2 without isolation (k = 0), with isolation (k = 0.5)
initiated at t = 27, but release young persons according to strategy 3 beginning at t = 56 (dot
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Table 4: Regime 1: the values of Ω, Π, S and I at t = 250, for strategies 1, 2 and 3 for releasing
occurring at t = 72. Percentages are calculated with respect to k = 0.

Strategy 1 Strategy 2 Strategy 3
y o Σ y o Σ y o Σ

Ω (106) 1.51 0.4257 1.9357 1.509 0.4256 1.9346 1.508 0.4254 1.9334
Π 26690 47610 74300 26680 47600 74280 26660 47570 74230
S (105) 2.168 0.04416 2.21216 2.288 0.057 2.345 2.615 0.09075 2.70575
I (107) 3.757 0.6735 4.4305 3.756 0.6734 4.4294 3.752 0.673 4.425

Ω (%) 99.93 99.88 99.92 99.87 99.86 99.87 99.80 99.81 99.80
Π (%) 99.96 99.87 99.91 99.93 99.85 99.88 99.85 99.79 99.81
S (%) 92.41 150.20 93.13 97.53 193.88 98.72 111.47 308.67 113.91
I (%) 100.05 99.90 100.03 100.03 99.88 100.00 99.92 99.82 99.91

and dashed) and 72 (dashed) for young (a) and elder (b) persons. All elder persons are released
21 days after the beginning of releasing young persons, that is, at t = 77 and 95. For release
beginning at t = 56 for young (a) and elder (b) persons, the peaks are, respectively, 4.67× 105

(93%) and 3.867 × 105 (77%), which occur at t = 87 and 98; and release beginning at t = 72
for young (a) and elder (b) persons, 1.539 × 105 (92%) and 1.176 × 105 (71%), which occur
at t = 92 and 109. The release in comparison with only isolation, peaks are anticipated in 1
and delayed in 10 days (t = 77), respectively, for young and elder persons, and delayed in 4
and 21 days (t = 99) respectively, for young and elder persons. Comparing with Figure 11, the
epidemic is slightly mild, but elder persons are infected lately, which could be a desirable effect.
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Figure 12: The curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated at
t = 27, but releasing young persons according to strategy 3 beginning at t = 56 (dot and
dashed) and 72 (dashed) for young (a) and elder (b) persons. All elder persons are released 21
days after the beginning of release among young persons, that is, at t = 77 and 93.
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Now, we assess epidemiological scenarios when elder persons are maintained isolated until
end of the first wave t = 250, but young persons are released according to three strategies,
that is, for strategy 1, we have a unique l1y = 1, for strategy 2, l1y = 0.5 and l2y = 1, and for
strategy 3, l1y = 0.33, l2y = 0.5 and l3y = 1. Elder persons remain isolated, hence lio = 0, for
all i.

Figure 13 shows the curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated
at t = 27, but release according to strategy 1. For release beginning at t = 56 for young (a)
and elder (b) persons, the peaks are, respectively, 4.81 × 105 and 4.493 × 105, which occur at
t = 83 and 92; and for release at t = 72 for young (a) and elder (b) persons, 7.714 × 104 and
6.623× 104, which occur at t = 83 and 89. There is minor increasing in epidemic among elder
persons (peaks are anticipated) due to the increased number of susceptible young persons.
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Figure 13: The curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated at
t = 27, but releasing according to strategy 1 beginning at t = 56 (dot and dashed) and 72
(dashed) for young (a) and elder (b) persons. Releasing only young persons.

Figure 14 shows the curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated
at t = 27, but released according to strategy 2. For release beginning at t = 56 for young (a)
and elder (b) persons, the peaks are, respectively, 4.764× 105 and 4.261× 105, which occur at
t = 85 and 95; and released at t = 72 for young (a) and elder (b) persons, 7.532 × 104 and
6.3514.81× 104, which occur at t = 84 and 90. There is minor increasings in epidemic among
elder persons (peaks are anticipated) due to the increased number of susceptible young persons.

Figure 15 shows the curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated
at t = 27, but release according to strategy 3. For release beginning at t = 56 for young (a)
and elder (b) persons, the peaks are, respectively, 4.652× 105 and 3.865× 105, which occur at
t = 87 and 98; and for release at t = 72 for young (a) and elder (b) persons, 7.276 × 104 and
6.158 × 104, which occur at t = 86 and 89. There is minor increasings in the epidemic among
elder persons (peaks are anticipated) due to the increased number of susceptible young persons
released.

Table 5 shows the values of Ω, Π, S, and I at t = 250, for strategies 1, 2, and 3 for release
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Figure 14: The curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated at
t = 27, but releasing according to strategy 2 beginning at t = 56 (dot and dashed) and 72
(dashed) for young (a) and elder (b) persons. Releasing only young persons.
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Figure 15: The curves of D2 without isolation (k = 0), with isolation (k = 0.5) initiated at
t = 27, but releasing according to strategy 3 beginning at t = 56 (dot and dashed) and 72
(dashed) for young (a) and elder (b) persons. Releasing only young persons.

occurring at t = 72. Percentages are calculated with respect to k = 0. When young persons
are released while elder persons are maintained isolated, for young classes, the numbers of
severe CoViD-19 and deaths maintain practically unchanged, but there are slightly decreasing
in immune and increasing in susceptible persons. However, for elder persons there is huge
decreasing in the numbers of severe CoViD-19 and deaths, and overall decreasing in severe
cases and deaths. There is a tiny difference among the three strategies.

Comparing Tables 4 and 5, regime 2 shows an advantage with respect to regime 1 by
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Table 5: Regime 2: the values of Ω, Π, S and I at t = 250, for strategies 1, 2 and 3 for releasing
occurring at t = 72. Percentages are calculated with respect to k = 0.

Strategy 1 Strategy 2 Strategy 3
y o Σ y o Σ y o Σ

Ω (106) 1.508 0.2135 1.7215 1.507 0.2135 1.7205 1.505 0.2135 1.7185
Π 26660 23870 50530 26640 23870 50510 26600 23870 50470
S (105) 2.67 0.02795 2.69795 2.898 0.02823 2.92623 3.452 0.02887 3.48087
I (107) 3.752 0.3377 4.0897 3.75 0.3377 4.0877 3.744 0.3377 4.0817

Ω (%) 99.80 50.09 88.87 99.74 50.09 88.81 99.60 50.09 88.71
Π (%) 99.85 50.07 67.94 99.78 50.07 67.92 99.63 50.07 67.86
S (%) 113.81 95.07 113.58 123.53 96.02 123.19 147.14 98.20 146.54
I (%) 99.92 50.09 92.33 99.87 50.09 92.29 99.71 50.09 92.15

decreasing the number of severe cases and deaths, and, additionally, delaying the peak of
epidemics among elder persons. Instead of maintaining isolated indefinitely, we release all elder
persons at 4 different times. The first (t = 90) is just after the peak of epidemics without release,
the second (t = 120) when occurs inflexion, the third (t = 130) and the fourth (t = 140) when
epidemics are ending.

Figure 16 shows the curves of D2 for elder persons without isolation (k = 0), with isolation
(k = 0.5) initiated at t = 27, but release of young persons according to strategy 3 beginning
at t = 56 (dot and dashed) and 72 (dashed). Disregarding the beginning of release, all elder
persons are released at t = 90 (a), 120 (b), 130 (c), and 140 (d).

As elder persons are released lately, they are protected, and the peak decreases and moves
rightwardly with respect to young persons, making more easier the efforts of hospitals to face
the pandemic outbreaks. However, the second epidemics wave may occur earlier.

Figure 17 illustrates the pulse release of persons by regime 1 for young persons (a) and
regime 2 (b), taking into account strategy 3. Curves without (k = 0) and with (k = 0.5)
isolation are included to observe difference in the dynamics.

4 Discussion

The system of equations (2), (3), and (4) is simulated to provide epidemiological scenarios
using parameters estimated from data collected in the São Paulo State, daily released by the
Ministry of Health of Brazil. However, these scenarios are more reliable if based on credible
values assigned to the model parameters (see discussion in [21]). Here, when we used lower
estimated transmission rates, R0 = 4.097, to estimate lethality rates against the data, we
obtained αy = 0.08 and αo = 0.4 (days−1). Using these estimated fatality rates and lower R0,
at the end of the first wave of epidemics, we obtained an incredible 85% of deaths among elder
persons.

The substantial difference in the number of deaths relies on the fact that fatality rates are
per-capita. In another word, if the number of diseased persons is high, the small fatality rate
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Figure 16: The curves of D2 for elder persons without isolation (k = 0), with isolation (k = 0.5)
initiated at t = 27, but releasing of young persons according to strategy 3 beginning at t = 56
(dot and dashed) and 72 (dashed). Disregarding the beginning releasing time, all elder persons
are released at t = 90 (a), 120 (b), 130 (c) and 140 (d).

results in an elevate number of deaths in comparison with the small amount of population.
However, the transmission rate is not influenced by the phase of epidemic, due to the fact that
this rate multiplies susceptible and infectious individuals.

We assumed that elder persons are under higher risk of being infected by the new coronavirus
than young persons, which can be withdrawn if it does not match with actual evidences. Our
model did not take into account re-infection (or, maybe relapse), neither if the asymptomatic
persons will ultimately manifest symptoms. These unanswered questions do not affect the
dynamics during the first wave of epidemics (see [18] for a description of parameters influencing
short-term epidemics, and other parameters driving long-term).

Considering that 50% of persons were isolated at the simulation time t = 27 (March 27),
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Figure 17: Illustration of pulse release of persons by regime 1 for young persons (a) and regime
2 (b). We show the strategy 3 including curves without (k = 0) and with (k = 0.5) isolation.

but they will be released on May 8 (t = 72), we draw some epidemiological scenarios. We
analyzed three release strategies and concluded that there is little difference among them, but
the best scenario was obtained if we release young persons maintaining elder persons isolated.
In this case, the number of deaths due to CoViD-19 was reduced by half.

In all scenarios of release with k = 0.5, we observed the collapse of the health care system.
However, if we increase the proportion of isolated persons above 80%, then the health care
system can treat well all patients during the first wave. Let us evaluate the occupancy of
beds in hospitals and ICU, using equations (16) and (17). We let h1 = h1y = h1o = 1,
h = hy = ho = 0.3, ς1 = 1/14 (2 weeks of hospital care), and ς2 = 1/21 (3 weeks of ICU care)
[3].

Figure 18 shows the number of beds occupied in hospitals (a) and ICU (b) for k = 0.5 and
k = 0.7 (dashed curves), and beds occupied in hospitals (c) and ICU (d) for k = 0.8. For
k = 0.5, the peaks of occupied beds in hospitals and ICU (between parentheses) are 1.488×105

(8.226× 104), 4.86× 104 (2.216× 104) and 1.895× 105 (1.043× 105), occurring at t = 90 (92),
88 (90) and 90 (92), respectively for young, elder and total persons. For k = 0.7, the peaks of
occupied beds in hospitals and ICU (between parentheses) are, respectively, for young, elder,
and total persons, 4.646×104 (2.728×104), 1.29×104 (0.738×104) and 5.931×104 (3.462×104),
occurring at t = 121 (125), 118 (121) and 120 (124). For k = 0.8, the peaks of occupied beds in
hospitals and ICU (between parentheses) are 9, 495 (5, 879), 2, 674 (1, 597) and 12, 160 (7, 471),
occurring at t = 170 (176), 165 (169) and 169 (174), respectively for young, elder and total
persons.

For k = 0.5, the peaks of occupied beds by all persons in hospital and ICU are 189, 500 and
104, 300, occurring at t = 90 (May 26) and 92 (May 28). For k = 0.7, the peaks of occupied
beds by all persons in hospital and ICU are 59, 310 and 34, 620, occurring at t = 120 (June 25)
and 124 (June 29). For k = 0.8, the peaks of occupied beds by all persons in hospital and ICU
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Figure 18: The number of beds occupied in hospitals (a) and ICU (b) for k = 0.5 and k = 0.7
(dashed curves), and beds occupied in hospitals (c) and ICU (d) for k = 0.8.

are 12, 160 and 7, 471, occurring at t = 169 (August 13) and 174 (August 18). In this case,
From Figure 18, the peak of severe CoViD-19 cases is 13, 700 occurring at t = 165 (August 9).

As we have pointed above, when isolation is done lately, among isolated persons, there will
be persons harboring virus. Just after the beginning of isolation (t = τ is+), the number of
persons in each class, for k = 0.5, is

young

{
Sy = 1.8858× 107, Qy = 1.8858× 107, Ey = 3.1964× 104, Ay = 1.5348× 104,
D1y = 2.6464× 103, Q2y = 1.5877× 103 and D2y = 3.9479× 102

elder

{
So = 3.4056× 106, Qo = 3.4056× 106, Eo = 6.7545× 103, Ao = 3.1294× 103,
D1o = 6.9911× 102, Q2o = 4.0562× 102 and D2o = 1.3976× 102,

with Q1y = Q1o = 0 and I = 8.8376× 103. To estimate the circulation of virus among isolated
persons, we simulate the system of equations (2), (3), and (4) taking as initial conditions the
number of persons in each class, at t = τ is+: Sy = Qy = 1.8858× 107, So = Qo = 3.4056× 106,
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Qy = Qo = 0, and for all other variables, half of the corresponding values at t = τ is+. Figure
19 shows the curves of D2y, D2o, and D2 = D2y +D2o for β′y = βy/5 = 0.15, with R0 = 1.37 (a),
and β′′y = βy/10 = 0.075, with R0 = 0.68 (b), from t = 27 to 74, during the period of isolation.
At t = 72, the numbers of severe CoViD-19 cases are, 1, 597, 635 and 2, 231, respectively,
for young, elder, and total persons for R0 = 1.37; and 294, 129 and 423, for R0 = 0.68. For
k = 0.5 and R0 = 1.37, this 0.8% additional CoViD-19 cases compared to the peak is negligible,
however for k = 0.8, the 18% additional CoViD-19 cases are not negligible. Nevertheless, when
these isolated infectious individuals are released, they contribute to increase the velocity of
propagation.
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Figure 19: The curves of D2y, D2o and D2 = D2y + D2o for β′y = βy/5 = 0.15 (a) and
β′′y = βy/10 = 0.075 (b) from t = 27 to 74, during the period of isolation.

The virus should be circulating among isolated persons through restricted contact occurring
in the household and/or neighborhood. If symptomatic persons are transferred to hospital, then
removed from isolation, it is expected that asymptomatic persons are predominantly spreading
the new coronavirus. If we can assume that they are releasing a low amount of virus, it is
expected that more asymptomatic cases will arise than severe CoViD-19. Increasing immune
persons, they decrease susceptible persons, hence the effective reproduction number decreases,
which is a herd immunity phenomenon.

Let us discriminate the circulation of the new coronavirus in a community. Figure 20 shows
all persons harboring this virus (Ej, Aj, D1j, Q2j, and D2j), j = y, o, for young (a) and elder
(b) persons corresponding to Figure 6(b) with k = 0.5. There is little difference: exposed (E)
and pre-diseased (D1) persons are relatively higher among young persons.

In Figure 21 we show the ratio hidden:apparent based on Figure 20. Who harbor the
new coronavirus as exposed or who do not manifest symptoms are classified in the hidden
category, and in the apparent category, we include who manifests symptoms. Hence, the ratio
is calculated as (E + A + D1) : (Q2 + D2). At t = 0, the ratio is 10 : 1 for young and elder
persons due to initial conditions.

Comparing Figures 20 and 21, as the epidemics evolves, the ratio increases quickly in the
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Figure 20: The curves of all persons harboring this virus (Ej, Aj, D1j, Q2j and D2j), j = y, o,
for young (a) and elder (b) persons.
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Figure 21: The curves of ratio hidden:apparent for young, elder and total persons.

beginning, reaches a plateau during the increasing phase, and decreases during the declining
phase, finally reaching another plateau after the ending phase of the first wave. In the first
plateau, the ratios are 18 : 1, 26 : 1, and 24 : 1 for, respectively, elder, young, and total persons.
The second plateau (5 : 1) is reached when the first wave of epidemics is ending. Therefore,
during epidemics, there are much more hidden than apparent persons, which makes any control
mechanisms hard if mass testing could not be implemented. However, the estimation of the
ratio between hidden and apparent cases can be helpful in designing mass testing to isolated
asymptomatic persons.

In this paper, epidemiological scenarios were obtained aiming the evaluation of isolation
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and subsequent release. However, from Figure 6(a), we observed a lowering in severe CoViD-19
data with respect to the estimated curve. Hence, let us assume that at t = 45, 18 days after
the beginning of isolation, protection actions were adopted by persons (use of alcohol gel and
face mask) [6]. Figure 22(a) shows three curves of D2 = D2y + D2o and observed data, where
β′y = 0.7βy = 0.525, 0.5βy = 0.375, 0.45βy = 0.3375 and 0.4βy = 0.3. The better estimated is
β′y = 0.45βy = 0.3375. Figure 22(b) shows the curves of D2 for 4 different decreasing values of
transmission rates extended from t = 0 until 250. We stress the fact that this evidence must
be confronted with more data.
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Figure 22: Three curves of D2 = D2y + D2o and observed data, where β′y = 0.7βy = 0.525,
0.5βy = 0.375, 0.45βy = 0.3375 and 0.4βy = 0.3 (a). The better estimated is β′y = 0.45βy =
0.3375. Curves of D2 for 4 different decreasing values of transmission rates extended from t = 0
until 250 (b)

The question of using a face mask and constant hygiene (washing hands with alcohol and
gel and protection of the mouth, nose and eyes) to avoid infection is left to future work.

5 Conclusion

We formulated a mathematical model considering two subpopulations comprised by young and
elder persons to study CoViD-19 in São Paulo State, Brazil. The model considered pulses in
isolation and release. Briefly, the first CoViD-19 case was observed on February 26 (t = 0),
isolation were initiated on March 24 (t = 27), and the release will be implemented on May 8
(t = 72).

We estimated transmission rates, additional mortality (lethality) rates, and proportions iso-
lated from data collected in the São Paulo State. To estimate transmission rates and additional
mortality (lethality) rates, we used data collected from February 26 to April 5 (t = 39), and
data collected from March 24 to April 21 (t = 55), to estimate the proportion isolated. We esti-
mated high values for the basic reproduction number, R0 = 6.828, which is encountered among
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airborne viruses (see [14] for an estimation of R0 = 6.71 for rubella infection). Currently, some
authors found SARS-CoV-2 aerosol in some areas of the hospital environment, indicating the
possibility of infection through air [22].

Using the estimated parameters, the system of equations (2), (3), and (4) were simulated
to providing epidemiological scenarios when release will be implemented after initial isolation.
Using the estimated proportion k = 0.5 of isolated persons, we observed that in all three
strategies of releasing for regime 1 (equal release of young and elder persons), the severe CoViD-
19 cases approach those without isolation, but the peaks are delayed. However, for regime 2
(releasing young but maintaining elder persons), deaths due to CoViD-19 are reduced by half
among elder persons, and by 30% in all persons. Nevertheless, simulation showed that an
isolation of 80% is desirable aiming reduction in the severe CoViD-19 cases.

In our model, we did not allow severe CoViD-19 cases to transmit the infection, as well
as persons with mild symptoms also. This isolation assumption may have an indirect effect
on the transmission of disease by two hypotheses: (1) if a virulent strain is causing severe
cases, then their isolation must decrease its fitness, and (2) if severe cases release more amount
of virus, then their isolation may decrease the abundance of virus in the environment. As
a consequent, asymptomatic and mild cases of CoViD-19 can prevail as epidemics evolves.
However, immediate consequent will be infection with more virulent strain and more absorption
of the virus by heath care workers, which is a preeminent reason to provide them with extremely
secure equipment.

Finally, severe CoViD-19 data collected in the São Paulo State indicates that there is another
lowering in those cases besides the diminishing resulted from isolation. We hypothesize that
this decreasing could be due to protection actions, but more data are needed to confirm or deny
this hypothesis.
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A Trivial equilibrium and its stability

By the fact that N is varying, the system is non-autonomous non-linear differential equations.
To obtain autonomous system of equations we let kj = lij = 0, j = y, o, and use fractions of
individuals in each compartment, defined by, with j = y and o,

xj =
Xj

N
, where X = Sj, Qj, Ej, Aj, Q1j , D1j , Q2j , D2j , I,

resulting in

d

dt
xj ≡

d

dt

Xj

N
=

1

N

d

dt
Xj − xj

1

N

d

dt
N =

1

N

d

dt
Xj − x (φ− µ) + xj (αyd2y + αod2o) ,

using equation (5) for N . Hence, equations (2), (3) and (4) in terms of fractions become, for
susceptible persons,

d

dt
sy = φ− (ϕ+ φ) sy − λsy + sy (αyd2y + αod2o)

d

dt
so = ϕsy − φso − λψso + η3oqo + so (αyd2y + αod2o) ,

(A.1)

for infected persons,

d

dt
qj = η2jsj − φqj + qj (αyd2y + αod2o)

d

dt
ej = λ (δjy + ψδjo) sj − (σj + φ) ej + ej (αyd2y + αod2o)

d

dt
aj = pjσjej − (γj + ηj + χj + φ) aj + aj (αyd2y + αod2o)

d

dt
q1j = (ηj + χj) aj − (γj + φ) q1j + q1j (αyd2y + αod2o)

d

dt
d1j = (1− pj)σjej − (γ1j + η1j + φ) d1j + d1j (αyd2y + αod2o)

d

dt
q2j = (η1j +mjγ1j) d1j − (γj + ξj + φ) q2j + q2j (αyd2y + αod2o)

d

dt
d2j = (1−mj) γ1jd1j + ξjq2j − (γ2j + θj + φ+ αj) d2j + d2j (αyd2y + αod2o) ,

(A.2)

and for immune persons

d

dt
i = γyay + γyq1y + γyq2y + (γ2y + θy) d2y + γoao + γoq1o + γoq2o + (γ2o + θo) d2o − φi+

i (αyd2y + αod2o) ,
(A.3)
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where λ is the force of infection given by equation (1) re-written as

λ = β1yay + β2yd1y + β1oao + β2od1o,

and ∑
j=y,o

(sj + qj + ej + aj + q1j + d1j + q2j + d2j) + i = 1,

which is autonomous system of equations. We remember that all classes vary with time, however
their fractions attain steady state (the sum of derivatives of all classes is zero). This system
of equations is not easy to determine non-trivial (endemic) equilibrium point P ∗. Hence, we
restrict our analysis with respect to trivial (disease free) equilibrium point.

The trivial or disease free equilibrium P 0 is given by

P 0 =
(
s0j , q

0
j = 0, e0j = 0, a0j = 0, q01j = 0, d01j = 0, q02j = 0, d02j = 0, i0 = 0

)
,

for j = y and o, where 
s0y =

φ

φ+ ϕ

s0o =
ϕ

φ+ ϕ
,

(A.4)

with s0y + s0o = 1.
Due to 17 equations, we do not deal with characteristic equation corresponding to Jacobian

matrix evaluated at P 0, but we apply the next generation matrix theory [4].
The next generation matrix, evaluated at the trivial equilibrium P 0, is obtained considering

the vector of variables x = (ey, ay, d1y, eo, ao, d1o). We apply method proposed in [15] and proved
in [16]. There are control mechanisms (isolation), hence we obtain the reduced reproduction
number Rr by isolation.

In order to obtain the reduced reproduction number, diagonal matrix V is considered.
Hence, the vectors f and v are

fT =


λsy + ey (αyd2y + αod2o)

pyσyey + ay (αyd2y + αod2o)
(1− py)σyey + d1y (αyd2y + αod2o)

λψso + eo (αyd2y + αod2o)
poσoeo + ao (αyd2y + αod2o)

(1− po)σoeo + d1o (αyd2y + αod2o)

 (A.5)

and

vT =


(σy + φ) ey

(γy + ηy + χy + φ) ay
(γ1y + η1y + φ) d1y

(σo + φ) eo
(γo + ηo + χo + φ) ao

(γ1o + η1o + φ) d1o

 , (A.6)
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where the superscript T stands for the transposition of a matrix, from which we obtain the
matrices F and V (see [4]) evaluated at the trivial equilibrium P 0, which were omitted. The
next generation matrix FV −1 is

FV −1 =



0
β1ys0y

γy+ηy+χy+φ

β2ys0y
γ1y+η1y+φ

0
β1os0y

γo+ηo+χo+φ

β2os0y
γ1o+η1o+φ

pyσy
σy + φ

0 0 0 0 0

(1−py)σy
σy+φ

0 0 0 0 0

0 β1yψs0o
γy+ηy+χy+φ

β2yψs0o
γ1y+η1y+φ

0 β1oψs0o
γo+ηo+χo+φ

β2oψs0o
γ1o+η1o+φ

0 0 0 poσo
σo+φ

0 0

0 0 0 (1−po)σo
σo+φ

0 0


,

and the characteristic equation corresponding to FV −1 is

λ4
(
λ2 −R0

)
= 0, (A.7)

where the basic reproduction number R0 is

R0 = R0ys
0
y +R0os

0
o, where

{
R0y = pyR

1
0y + (1− py)R2

0y

R0o = [poR
1
0o + (1− po)R2

0o]ψ,
(A.8)

and R0y and R0o are the basic partial reproduction numbers defined by
R1

0y =
σy

σy + φ

β1y
γy + ηy + χy + φ

, and R2
0y =

σy
σy + φ

β2y
γ1y + η1y + φ

R1
0o =

σo
σo + φ

β1o
γo + ηo + χo + φ

, and R2
0o =

σo
σo + φ

β2o
γ1o + η1o + φ

.
(A.9)

Instead of using the spectral radius (ρ (FV −1) =
√
R0), we apply procedure in [15] (the

sum of coefficients of characteristic equation), resulting in a threshold R0. Hence, the trivial
equilibrium point P 0 is locally asymptotically stable (LAS) if R0 < 1.

In order to obtain the fractions of susceptible individuals, M must be the simplest (matrix
with least number of non-zeros). Hence, the vectors f and v are

fT =


λsy
0
0

λψso
0
0

 and vT =


(σy + φ) ey − ey (αyd2y + αod2o)

−pyσyey + (γy + ηy + χy + φ) ay − ay (αyd2y + αod2o)
− (1− py)σyey + (γ1y + η1y + φ) d1y − d1y (αyd2y + αod2o)

(σo + φ) eo − eo (αyd2y + αod2o)
−poσoeo + (γo + ηo + χo + φ) ao − ao (αyd2y + αod2o)

− (1− po)σoeo + (γ1o + γ3o + η1o + φ) d1o − d1o (αyd2y + αod2o)

 ,

where superscript T stands for the transposition of a matrix, from which we obtain the matrices
F and V evaluated at the trivial equilibrium P 0, which were omitted. The next generation
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matrix FV −1 is

FV −1 =



R0ys
0
y

β1ys0y
γy+ηy+χy+φ

β2ys0y
γ1y+η1y+φ

R0os
0
y

β1os0y
γo+ηo+χo+φ

β2os0y
γ1o+η1o+φ

0 0 0 0 0 0
0 0 0 0 0 0

R0yψs
0
o

β1yψs0o
γy+ηy+χy+φ

β2yψs0o
γ1y+η1y+φ

R0os
0
o

β1oψs0o
γo+ηo+χo+φ

β2oψs0o
γ1o+η1o+φ

0 0 0 0 0 0
0 0 0 0 0 0


,

and the characteristic equation corresponding to FV −1 is

λ5 (λ−R0) = 0.

The spectral radius is ρ (FV −1) = R0 = R0ys
0
y + R0os

0
o given by equation (A.8). Hence, the

trivial equilibrium point P 0 is LAS if ρ < 1.
Both procedures resulted in the same threshold, hence, according to [20], the inverse of

the reduced reproduction number R0 given by equation (A.8) is a function of the fraction of
susceptible individuals at endemic equilibrium s∗ through

f
(
s∗, s∗y, s

∗
o

)
=

1

R0

=
1

R0ys0y +R0os0o
, (A.10)

where s∗ = s∗y + s∗o (see [18] [20]). For this reason, the effective reproduction number Ref

[17], which varies with time, can not be defined neither by Ref = R0 (sy + so), nor Ref =
R0ysy + R0oso. The function f (κ) is determined by calculating the coordinates of the non-
trivial equilibrium point P ∗. For instance, for dengue transmission model, f (s∗1, s

∗
2) = s∗1 × s∗2,

where s∗1 and s∗2 are the fractions at equilibrium of, respectively, humans and mosquitoes [18].
For tuberculosis model considering drug-sensitive and resistant strains, there is not f (κ), but
s∗ is solution of a second degree polynomial [20].

From equation (A.10), let us assume that f
(
s∗, s∗y, s

∗
o

)
= s∗y + s∗o. Then, we can define the

approximated effective reproduction number Ref as

Ref = R0 (sy + so) , (A.11)

which depends on time, and when attains steady state (Ref = 1), we have s∗ = 1/R0.
The basic partial reproduction number R1

0ys
0
y (or R2

0ys
0
o) is the secondary cases produced by

one case of asymptomatic individual (or pre-diseased individual) in a completely susceptible
young persons without control; and the partial basic reproduction number R1

0os
0
o (or R2

0os
0
o) is

the secondary cases produced by one case of asymptomatic individual (or pre-diseased individ-
ual) in a completely susceptible elder persons without control. If all parameters are equal, and
ψ = 1, then

R0 =
[
pR1

0 + (1− p)R2
0

]
,

where R1
0 = R10ys

0
y +R1

0os
0
o and R2

0 = R2
0ys

0
y +R2

0os
0
o are the basic partial reproduction numbers

due to asymptomatic and pre-diseased persons.
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The global stability follows method proposed in [9]. Let the vector of variables be x =
(ey, ay, d1y, eo, ao, d1o), vectors f and v, by equations (A.5) and (A.6), and matrices F and V
evaluated from f and v at trivial equilibrium P 0 (omitted here). Vector g, constructed as

gT = (F − V )xT − fT − vT ,

results in

gT =


λ
(
s0y − sy

)
− ey (αyd2y + αod2o)

−ay (αyd2y + αod2o)
−d1y (αyd2y + αod2o)

λψ (s0o − so)− eo (αyd2y + αod2o)
−ao (αyd2y + αod2o)
−d1o (αyd2y + αod2o)

 ,

and gT ≥ 0 if s0y ≥ sy, s
0
o ≥ so and αy = αo = 0.

Let vl = (z1, z2, z3, z4, z5, z6) be the left eigenvector satisfying vlV
−1F = ρvl, where ρ =

√
R0,

and

V −1F =



0
β1ys0y
σy+φ

β2ys0y
σy+φ

0
β1os0y
σy+φ

β2os0y
σy+φ

pyσy
γy + ηy + χy + φ

0 0 0 0 0

(1−py)σy
γ1y+η1y+φ

0 0 0 0 0

0 β1ys0o
σo+φ

β2ys0o
σo+φ

0 β1oψs0o
σo+φ

β2oψs0o
σo+φ

0 0 0 poσo
γo+ηo+χo+φ

0 0

0 0 0 (1−po)σo
γ1o+η1o+φ

0 0


.

This vector is

vl =

(
σy + φ

ρβ2ys0y
R0y,

β1y
β2y

, 1,
σo + φ

ρβ2ys0oψ
R0o,

β1o
β2y

,
β2o
β2y

)
,

and Lyapunov function L, constructed as L = vlV
−1xT , is

L =
z1

σy + φ
ey +

z2
γy + ηy + χy + φ

ay +
1

γ1y + η1y + φ
d1y +

z4
σo + φ

eo+

z5
γo + ηo + χo + φ

ao +
z6

γ1o + η1o + φ
d1o ≥ 0

always, and

d
dt
L = − (1− ρ)

(
σy+φ

ρβ2ys0y
R0yey + σo+φ

ρβ2ys0oψ
R0oeo

)
− 1

ρβ2y
λ
[
R0y

s0y

(
s0y − ρsy

)
+ R0o

s0o
(s00 − ρs0)

]
+ey (αyd2y + αod2o) + ay (αyd2y + αod2o) + d1y (αyd2y + αod2o) +
eo (αyd2y + αod2o) + ao (αyd2y + αod2o) + d1o (αyd2y + αod2o) ≤ 0

only if ρ < 1, s0y ≥ sy, s
0
o ≥ so and αy = αo = 0.

Hence, the method proposed in [9] is valid only for αy = αo = 0, in which case P 0 is globally
stable if s0y ≥ sy, s

0
o ≥ so and ρ =

√
R0 ≤ 1.
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