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Abstract. We propose an algebraic-type formula that describes
with high accuracy the total number of detected infections for the
Covid-19 pandemic in many countries. Our 2-phase formula can
be used as a powerful forecasting tool. It is based on a new theory
of momentum management of epidemics; Bessel functions are em-
ployed. Its parameters are the initial transmission rate, reflecting
the viral fitness and ”normal” frequency of contacts in the infected
areas, and the intensity of prevention measures. Austria, Ger-
many, Japan, Israel, Italy, the Netherlands, Sweden, Switzerland,
UK, and the USA are considered. As for the latter, we provide the
results of auto-processing individually the data for the 50 states.

1. Our approach and main findings. A surprising 2-phase formula
describing very well the total number of detected infections of Covid-19
during practically the whole period of the spread in many countries is
the main result. We model the momentum management of epidemics ,
which can be defined as a system of measures of any nature aimed
at reducing the epidemic spread by regulating the intensity of these
measures on the basis of the latest total detected numbers of infec-
tions. The ”hard measures”, such as detection and prompt isolation
of infected people and closing the places where the spread is the most
likely, combined with the most aggressive response ensure a relatively
fast saturation. Assuming that the saturation is reached, the second
phase is when the hard measures are reduced. The accuracy of our
formula is even more surprising for this phase, since many political,
economic and other factor are involved. The readers mostly interested
in the final formulas and applications in particular countries can go
directly to the figures from Section 5. Our approach is of behavioral
and sociological nature; its precision seems a real discovery.

Focus on risk-management. We attribute the surprising similarity of
the curves of the total numbers of detected cases in many countries
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2 IVAN CHEREDNIK

to the uniformity of the measures employed and the ways we react to
the data. These numbers mostly reflect symptomatic cases and can be
underreported. However, as far as they influence the decisions of the
authorities in charge and our own behavior, they can be used.

We see 3 basic types of management. The countries in the first group
are determined to reach ”double digit numbers” of new daily infections.
The second group is when the reduction of hard measures begins upon
the first signs of the stabilization of the daily numbers, which can be
still very high; this is the switch to the (AB)–mode or (B)-mode in
our model. The third group of countries is where ”hard” measures are
not employed systematically, which can be due to a variety of reasons,
including insufficient capacities or political decisions. Some measures
are always in place, for instance, self-isolation of those who think that
they can be infected. Their prompt requests for medical help can work
well in the countries with solid health-care systems, like Sweden. Also,
travel restrictions, common everywhere, definitely reduce the spread.

The general theory remains essentially unchanged from its first posted
variant (April 13). However only now all its main features are con-
firmed to occur practically. For instance, both Bessel-type solutions
appeared really necessary to model the spread in Italy, Germany, Japan
and other countries. Also, the log(t)–saturation of solutions of type (B)
appeared the key during the second phase.

Power law of epidemics. The simplest equation for the spread of
communicable diseases results in exponential growth of the number of
infections, which is mostly applicable to the initial stages of epidemics.
See e.g. [1, 2, 3, 4] here and below and [5] about some perspectives
with Covid-19. We focus on the middle stages, where the growth is no
greater than some power functions in time, which requires a different
approach and different equations.

The equally classical logistic models of the spread, as well as the
SIR, SID generalizations, assume that the number of infections is com-
parable with the whole population, which we do not impose. Many
epidemics were not really of this kind during the last 100 years, mostly
due to better disease control worldwide and general life improvements.

The reality now is the power-type growth of total number of infec-
tions U(t) after a possible short period of exponential growth, Covid-19
included. Our approach is based on this assumption.

Generally, dU(t)/dt, the rate of change of the total number of in-
fections U(t) is proportional to U(t)−U(t−p), where p is the period
when the infected people spread the virus in the most intensive way.
Assuming that U(t) = tα, one has: dU(t)/dt = αtα−1 and the leading
term of U(t)− U(t−p) is pαtα−1 = pαU(t)/t, i.e. essentially propor-
tional to dU(t)/dt. However, if α > 1, there will be other terms in the
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SPREAD OF COVID-19 MATHEMATICALLY 3

expansion of U(t)−U(t−p) and the proportionality with U(t)/t can be
only if either the virus transmission strength diminishes or we reduce
our contacts over time. We stick to the latter reason in this work.

Let us try to clarify this. If the total number of cases growths linearly,
i.e. when the number of new daily infections is constant, this is not
really a ”trigger” for us psychologically. However, we react strongly if
the growth is parabolic or so. With Covid-19, sociological factors alone
seem quite sufficient to result in the power growth. This is different
from other power laws for infectious diseases; compare e.g. with [3].

Practically speaking, if someone wants to ”see” the current trend of
the epidemic using only the total number of infections to date, then
U(t)/t is the best way of course. Anyway, the corresponding differential
equation dU(t)/dt = c U(t)/t immediately gives that U(t) = Ctc for
some constant C, i.e. results in the power growth. Such ”sociological
approach” to the epidemic spread is quite natural in our work: the
active managements of epidemics is clearly of sociological nature.

This is what we do even before any protection measures; the initial
c is about 2 in many countries for Covid-19. After the management
began, U(t) is not ∼ tc anymore; Bessel functions come into play till
the ”technical saturation”, provided that the measures are as ”hard”
as possible. The measures can soften after the turning point, or what
looks like a turning point. We can model this too; our formula describes
the second phase with very high accuracy.

Some details. The full theory is presented in [6]. If the number of
new infections is proportional to the current number of those infected,
then the exponential growth of the spread is granted. By analogy with
news impact over time from [7], it is quite likely that the number of
such contacts is proportional to the current total number of the de-
tected infections to date divided by the time to date . The coefficient
of proportionality is the intensity of the spread. The ”news impact” is
absolutely relevant here: the discussion of the epidemic by the author-
ities in charge and everywhere is one of the key factors influencing our
understanding the situation and the reduction of our contacts. The
active prevention measures are the main factor, but they begin later.

Starting with the equation dU(t)/dt = c U(t)/t for the total number
of infections U(t), the coefficient of proportionality, the basic transmis-
sion rate c, is therefore a combination of the transmission strength of
the virus and the ”normal” frequency of the contacts in the infected
place. There can be other mechanisms for the ”power law”, including
the biological ones. Self-isolation of infected species is common ... un-
less for rabies ; it can grow over time and can depend on the intensity of
the spread. The replication processes for viruses is another reduction
mechanism, but this is well beyond this article.
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4 IVAN CHEREDNIK

The coefficient c is one of the two main mathematical parameters of
our theory. It can be qualitatively seen as follows.

Before the prevention measures are implemented, approximately it
reveals itself in the growth ∼ tc of the total number of detected infec-

tions, where t is time. Mostly, c ≈ 2.2
.
– 2.6 for Covid-19. This is after a

short period of the exponential growth. Upon the active management,
the growth quickly drops to tc/2, i.e. becomes essentially linear, which
is part of our theory in [6]. Importantly our u(t) and w(t) behave as
∼ tc for relatively small t, so Bessel functions can be used very well to
model the initial stages, not only the middle period.

Ending epidemics. The ”power law” is only a starting point of our
analysis. The main problem is of course to ”add” here some mecha-
nisms ending epidemics and those preventing their possible recurrence.
These are major challenges, biologically, psychologically, sociologically
and mathematically. One can expect this megaproblem to be well be-
yond the power law itself, but we demonstrate that mathematically
there is a path based on Bessel functions. The power growth alone
does not lead to any saturation, the Bessel functions are needed.

We are of course fully aware of the statistical nature of the problem,
but the formula for the growth of the total number of infections we
propose works almost with an accuracy of physics laws. This is very
surprising for such stochastic processes as epidemics.

An important outcome of our modeling is that the measures of ”hard
type”, like detecting and isolating infected people and closing the places
where the spread is almost inevitable, are the key for ending an epi-
demic. The most aggressive ”hard way” is to employ such measures
strictly proportionally to the current total numbers of detected infec-
tions, not to its derivative of any kind.

For instance, if the number of infections doubles during some period,
then testing-detection must be increased 4–fold. Similarly, when we
approach the saturation, where the number of new detected infections
becomes close to zero, the ”hard response” is to continue testing linearly
for some time, i.e. performing the same number of tests every day in
spite of almost zero number of new infections.

By contrast, the ”soft response” is as follows. We react to the average
number instead of the absolute number of infections. For instance,
testing and other measures will practically stop when there are no
new ”cases”. If this is coupled with ”soft” measures (see below), then
mathematically the epidemic will never reach the saturation. However
coupling the ”soft response” with ”hard” measures does result in the
saturation, though it will take longer.
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SPREAD OF COVID-19 MATHEMATICALLY 5

The u,w–formulas. Upon composing the corresponding differential
equations and integrating them we obtain the following. The function
u(t) = C t(c+1)/2Jc/2−1/2(

√
at) for the Bessel function Jα(x) of the first

kind models the growth of the total number of infections, where C is the
scaling parameter. Here and below time t is normalized days/10 for the
number of days from the beginning of the period of the intense growth
of the epidemic. Under ”soft response” it is w(t) = D t(c+1)/2Jc−1(2

√
bt)

for the same c but different D, b. We will mostly discuss u(t), which
work with high accuracy till the late stages. Both are ∼ tc for small
t. Thus both cover well the period of initial, essentially quadratic,
growth of the number of detected infections. The parameters a, b give
the intensity of ”hard” measures correspondingly for u(t) and w(t).

For the u–function, a, the intensity (A)–measures, is 0.2 for the USA,
UK, Italy and the Netherlands. It is 0.3−0.35 for Israel, Austria, Japan,
Germany; 0.1 for Sweden. The parameter c, the initial transmission
rate, is 2.2 for the USA, 2.4 for UK, Austria, Sweden, the Netherlands,
2.6 for Italy, Germany, Japan. Here c can be clearly seen at early
stages; a depends on the management, but it is stable and uniform
during the middle stages in quite a few countries.

Limitations. Of course there can be other reasons for our 2-phase
solution to ”serve” epidemics so well, not only due to the aggressive
management. It is not impossible that there are connections with the
replication process of viruses, but this we do not touch upon. As in
any models, there are limitations, which we will address now.

First and foremost, the available infection numbers are for the de-
tected cases, which are mostly symptomatic. However this is not of
much concern to us. We understand managing epidemics from the
viewpoint of the management. Infected people who are detected mostly
have symptoms, but the change of the number of detected cases gener-
ally reflects well the ”trend”, which is sufficient to properly adjust the
intensity of the measures. So de facto focusing on symptomatic cases is
basically sufficient for the management (and for our approach). No as-
sumptions on asymptomatic cases are necessary to obtain our formulas.
We of course understand that when the number of new reported infec-
tions drops to zero, there can be many non-detected asymptomatic
cases, which can potentially lead to the recurrence of the epidemic.
Such a saturation is only a technical end of the epidemic.

The second reservation concerns newly emerged clusters of infec-
tions , testing in new areas, and the countries where the spread is on
the rise. The u,w–formulas can be used, but significant fluctuations
can be expected. Also the usage of both Bessel-type solutions of our
equations appeared necessary to address the ”bents” of the curves in
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6 IVAN CHEREDNIK

quite a few countries. Anyway, the parameters and predictions must
be constantly updated.

The third reservation is related to the management of the epidemic.
Not all countries employ the protection measures in similar ways, but
this is not a problem to us. The problem is if the intensity of the mea-
sures and the criteria are changed in some irregular ways. Diminishing
the ”hard” measures too early or even dropping them completely at
later stages is of this kind; this is where w(t) comes into play.

Last but not the least is the data quality . Changing frequently the
ways they are collected and the criteria makes such data useless for us.
Though, if the number of detected infections is underreported in some
regular ways, whatever the reasons, such data can be generally used.
Thus, this is sufficiently relaxed, but the data for several countries, not
too many, are not suitable for the usage of our ”forecasting tool”.

Forecasting the spread. With these reservations, the first point of
maximum ttop of u(t) is a good estimate for the duration of the epidemic
when the ”hard” measures are used and the response is ”hard”. If
the response to total number of infections is ”soft”, the w–function is
supposed to be used. This is assuming that the measures are systematic
and the focus is on the detection and isolation of infected people.

We note that the approximate reflection symmetry of du(t)/dt for the
u(t) in the range from t = 0 to ttop can be interpreted as Farr’s law of
epidemics under aggressive management. Generally, the portions of the
corresponding graph before and after the turning point are supposed
to be essentially symmetric to each other. This is not exactly true for
du(t)/dt, the first half is a bit shorter than the second. See Figure 2
and the others; the turning point is at max{du(t)/dt}. For w(t), the
period after the turning point is somewhat longer than that before.

After the saturation is reached, the second phase begins. The for-
mula is Ctc/2 cos(d log(t)), where t is time, d reflects the intensity of
”soft” measures, and c is the initial transmission rate. Here c/2 ≈ 1,
so the number of new daily detected cases is essentially constant. If
it is small enough, the spread can be controlled: new clusters of the
disease can be then promptly detected, an so on. Also, asymptomatic
(mild) cases begin to dominate at the second phase, which is a posi-
tive development too. Mathematically, the first phase based on ”hard”
measures is necessary for phase 2.

As any model, our one is based on various simplifications. We assume
that the number of people perceptive to the virus is unlimited, i.e. we
do not consider epidemics with the number infections comparable with
the whole population. Also, we do not take into consideration the
average durations of the disease the quarantine periods in our model.
The total number of detected infections is what we are going to model,
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SPREAD OF COVID-19 MATHEMATICALLY 7

which is commonly used and systematically reported. In spite of all
these simplifications, our 2-phase formula works very well.

We mention here a strong connections with behavioral finance : mo-
mentum risk-taking from [7]. Practically the same u(t) as above serves
”profit taking” in stock markets. The initial polynomial growth of u(t)
is parallel to the ”power law” for share prices; w(t) and our solution
for the phase 2 occurred there as well

2. Two kinds of management. There is a long history and many
aspects of mathematical modeling epidemic spread; see e.g. [1] for a
review. We restrict ourselves only with the dynamic of momentum
managing epidemics , naturally mostly focusing on the middle stages,
when our actions must be as precise as possible. The two basic modes
we consider are essentially as follows:

(A) aggressive enforcement of the measures of immediate impact,
where testing-detection-isolation is the key, reacting to the current ab-
solute numbers of detected infections, i.e. in the hardest possible way;

(B) a more balanced and more defensive approach when mathemat-
ically we react to the average numbers of infections to date and the
employed measures are of more indirect and palliative nature.

Hard and soft measures. The main examples of (A)–type measures are
prompt detection and isolation of infected people and those of high risk
to be infected, and closing places where the spread is the most likely.
Actually the primary measure here is testing ; the number of tests is
what we can really implement and control. The detection of infected
people is its main purpose, but the number of tests is obviously not
directly related to the number of detections, i.e. to the number of
positive tests . The efficiency of testing requires solid priorities, focus
on the groups with main risks, and solving quite a few problems.

Even simple mentioning problems with testing, detection and iso-
lation is well beyond our article. However, numerically we can use
the following. During the epidemics, essentially during the stages of
linear growth, which are the key for us, the number of positive tests
can be mostly assumed a stable fraction of the total number of tests.
This is demonstrated in Figure 1. Such proportionality can be seen
approximately from March 16 in this figure.

The measures like wearing protective masks, social distancing, rec-
ommended self-isolation, restricting the size of events are typical for
(B). They are aimed at reducing c, which heavily impacted the dif-
ferential equations we obtained in [6]. However the main difference
between the modes, (A) vs. (B), is the way the number of infections
is treated: the absolute number of infections is the trigger for (A),
whereas the average number of infections to date is what we monitor
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8 IVAN CHEREDNIK

Figure 1. Daily testing vs. new daily cases for USA

under (B). The mode (AB) from [6], a combination of ”hard” measures
with ”soft response”, is important at later stages of Covid-19.

Hard measures are the key. Generally, the (A)–type approach pro-
vides the fastest and hardest response to the changes with the number
of infections. We somewhat postpone with our actions until the aver-
ages reach proper levels under (B), and the measures we implement are
”softer”. Mathematically, the (B)-mode is better protected against sto-
chastic fluctuations, but it is slower and generally cannot alone lead to
the termination of the epidemic, which we justify within our approach.

The main objective of any managing epidemics is to end them quickly.
However the excessive usage of hard measures can lead to the recur-
rence of the epidemic, some kind of ”cost” of our aggressive interference
in a natural process. Unless herd immunity is a possibility, this can
be avoided only if we stick to the prevention measures as much as pos-
sible even when the number of new infections goes down significantly.
Reducing them too much on the first signs of improvement is a way to
the recurrence of the epidemic, which we can see mathematically.

Some biological aspects. The viral fitness is an obvious component
of the transmission rate c. Its diminishing over time can be expected,
but this is involved. This can happen because of the virus replication
errors. The RNA viruses, Covid-19 included, replicate with fidelity
that is close to error catastrophe. See e.g. [8] for some review and
predictions. Such matters are well beyond this paper, but one biological
aspect must be mentioned, concerning the asymptomatic cases.

The viruses mutate at very high rates. They can ”soften” over time
to better coexist with the hosts, though fast and efficient spread is of
course the ”prime objective” of any virus. Such softening can result in
an increase of asymptomatic cases, difficult to detect. So this can con-
tribute to diminishing c we observe, though not because of the actual
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SPREAD OF COVID-19 MATHEMATICALLY 9

decrease of the spread of the disease. We model the available (posted)
numbers of total infections, which mostly reflect the symptomatic cases.

To summarize, it is not impossible that the replication errors and
”softening the virus” may result in diminishing c at later stages of the
epidemic, but we think that the reduction of the contacts of infected
people with the others dominates here, which is directly linked to be-
havioral science, sociology and psychology.

3. The Bessel-type formulas. We will need the definition of the
Bessel functions of the first kind:

Jα(x) =
∞∑

m=0

(−1)m(x/2)2m+α

m!Γ(m+ α + 1)
.

See [9] (Ch.3, S 3.1). Practically, use BesselJ[α, x] in Mathematica.

The key point is that measures of type (A) have ”ramified” conse-
quences, in some contrast to (B). Namely, isolated infected individuals
will not transmit the virus to many people, they will not infect many
others and so on; thus the number of those protected due to a single
isolation grows over time. Combining this with our approach to the
power law of epidemics, we arrive at the differential equation for the
total number of detected infections u(t), w(t):

du(t)

dt
= c

u(t)

t
− 1

a

∫ t

0

u(s)ds,
dw(t)

dt
= c

w(t)

t
− 1

b

∫ t

0

w(s)

s
ds,

which can be solved in terms of Bessel functions. The dominant solu-
tions are u(t) = Ct(c+1)/2Jc/2−1/2(

√
at), w(t) = Dt(c+1)/2Jc−1(2

√
bt) for

some constants C,D. Note that both are ∼ tc for small t.

There is a surprisingly perfect match of the total number of infec-
tions for Covid-19 during the initial and middle stages with our u(t),
from the moment when these numbers begin to grow ”significantly”
and during some time after the ”turning point”. In the USA and UK,
at least from March 15 till April 15 at least. Epidemics are very sto-
chastic processes, so such a precision is unexpected. If not u(t), then
presumably w(t) can be employed for the later stages.

Let us mention that https://ourworldindata.org/coronavirus
is mostly used for the data, updated at 11:30 London time. We always
set x = days/10 in this article.

The USA data. The scaling coefficient 1.7 in Figure 2 is adjusted to
match the real numbers. For the USA, we set y = infections/100K,
and take March 17 the beginning of the period of ”significant growth”.
The parameters are c = 2.2, a = 0.2.
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10 IVAN CHEREDNIK

The red dots show the corresponding actual total numbers of in-
fections. They perfectly match u(t) = 1.7t1.1J0.6(t

√
0.2) in Figure 2,

which results in the following: the number of cases in the USA was
expected to reach its preliminary saturation at ttop = 4.85 (48.5 days
from 03/17 to May 5) with utop = 10.3482, i.e. with 1034820 infections
(it was 609516 at 04/15). This is of course a lower bond: about 1M of
total cases at the u–saturation point ttop near May 5.

The black dots show the test period, till May 5. The ”expectation”, a
lower bound for the ”saturation” to be exact, was based on the assump-
tion that the intensity of hard measures continues to be proportional to
the total number of detected infections to date . It was clearly the case
for the red dots , but there were several significant jumps and even pe-
riods of significant growth during the test period (black dots). This
could be due to new clusters of infections or diminishing the intensity
of hard measures. Such fluctuations are not unusual and do not influ-
ence too much the match with u(t) if they readily trigger additional
protection measures, which is not always the case. If u(t) (upon some
shifts) seems not applicable at the later stages, as happened for the
USA and UK, w(t) is supposed to be used according to [6].

0 1 2 3 4 5

2

4

6

8

10

12

Red dots are USA

data: 03/17- 04/15 

top=4.85 (May 5)

u=10.3482 (1.03M)
Black dots:  

control period 

04/16-05/05

du(t)/dt

Figure 2. u(t)=1.7 t(c+1)/2J(c−1)/2(
√
at) for c=2.2, a=0.2

Obviously t = ttop cannot be the end of the epidemic. The data
from South Korea, the countries considered at the end, and those from
other countries that went through the ”saturation”, demonstrate that
a linear growth of the total number of cases can be expected around
and after ttop. More exactly, it is proportional to tc/2 cos(d log(t)); see
below.
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SPREAD OF COVID-19 MATHEMATICALLY 11

The obvious reasons are: (a) reducing the ”hard” and ”soft” mea-
sures, (b) no country is isolated from infections from other places, (c)
continued testing can result in finding more asymptomatic cases, (d)
new clusters of disease are always possible. Anyway, the u–formula is
mostly applicable to the period when the protection measures, espe-
cially ”hard” ones, are applied in a hard and regular manner.

Covid-19 in UK. The data will be from 03/16 till 04/15; add 18 to
our ”red dots”, the initial number at 03/16, to match the actual total
numbers. The black dots constitute the control period: 04/16-05/05.

0 1 2 3 4 5

5

10

15

20

Black dots:

control period

04/16-05/05

Figure 3. u(t)=2.2 t(c+1)/2J(c−1)/2(
√
at) for c=2.4, a=0.2

Now c = 2.4, a = 0.2 work fine, and the scaling coefficient is 2.2. The
total number of cases is divided by 10K, not by 100K as for the USA.
The ”u–saturation moment” was 5.17, i.e about 51 days after March
16, somewhere around May 6. The estimate for corresponding number
of infections was about 170000, with all ifs. It was assuming that the
”hard” measures would be employed at the same pace as before April
15, i.e. following mode (A), which is the most aggressive approach.

Sweden 03/07-04/23. This is an example of the country that remains
essentially ”open”. Actually, they actively do testing of infected peo-
ple, the key ”hard” measure from our perspective. Also, the strength
of the health-care in this country must be taken into consideration,
and that Sweden is surrounded by the countries that fight Covid-17
aggressively. The growth of the total number of cases was essentially
quadratic for a relatively long period, which is what ”power law” states
for the epidemics with minimal ”intervention”. By now, the growth is

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2020. ; https://doi.org/10.1101/2020.04.29.20084483doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20084483
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 IVAN CHEREDNIK

linear; a reduction from tc to tc/2 follows from the theory. Mathemati-
cally, our u– formula is applicable, but for the record low a = 0.1; it is
a = 0.15 for ”the world”. Here y is the total number of cases divided
by 1000 ; add 137, the initial value, to our ”dots”. The projected u–
saturation was around May 17, with standard reservations; see Figure
4. We think w(t) can do better, but with the countries that do not
employ real hard measures, the usage of u,w is questionable.

1 2 3 4 5 6 7

5

10

15

20

Figure 4. u(t)=1.7 t(c+1)/2J(c−1)/2(
√
at) for c=2.4, a=0.1

Israel: ”saturation”. The last example we provide is what can be ex-
pected when the country went through the ”saturation”. Israeli pop-
ulation is diverse, which has a potential of significant fluctuations of
the number of cases and various clusters of infection. However its solid
response to Covid-19 and good overall health-system, made the growth
of the spread sufficiently predictable. We divide the total number of
cases by 1000, as for Sweden; see Figure 5.

The red dots began March 13, when the total number of detected in-
fections was 96, and stopped April 17; the remaining period till May 5,
shown by the black dots, was the ”control one”. The saturation forecast
went through almost perfectly, but there were significant fluctuations
in process. After April 26, the predicted moment of the saturation, the
growth of the total number of (known) infections is supposed to be mild
linear. The parameters are: a = 0.3, i.e. the intensity of hard measures
is better than with the USA, UK, and c = 2.6. The latter means that
the initial transmission coefficient was somewhat worse than c = 2.4
in the USA, UK, possibly due to the greater number of ”normal” con-
tacts. Recall that a, c are parameters of our theory, related to but not
immediately connected with the real factors.
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Figure 5. u(t)=2.2 t(c+1)/2J(c−1)/2(
√
at) for c=2.6, a=0.3

4. Forecasting cones. Our function u(t) models well the period of
intensive growth when the hard measures are coupled with the most
aggressive respond to the current number of total cases. It seems es-
sentially sufficient for forecasting if the (A)–mode is used all the way
until the number of new detected infections drop almost to zero. Then
ttop, the first zero of du(t)/dt is a reasonable estimate for the ”technical
end of epidemics”. South Korea, Austria, Israel and quite a few others
did exactly this. Some linear growth can be expected after ttop, but
this moment is really a saturation.

However growing number of countries begin reducing hard measures
(if any) almost after the turning point, or after what looks like a turning
point. The growth can be expected linear then, but the number of daily
new infections can be very high. From our perspective, this means a
switch from mode (A) to mode (B). We need to be more exact here.
The hard measures are still obviously present, but the response becomes
softer, of type B.

For instance, if the number of new cases is essentially a constant, even
uncomfortably high, the (B)–response is to keep the testing-detection
constant too. Furthermore, counting on the improvements with test-
ing and better capacities for isolation and treatment, many places with
potentially high risks of the spread of Covid-19 can be allowed to re-
open. An argument in favor of such an approach is that people who
suspect that they are infected begin more actively request help at this
stage. This works in the same direction as any ”hard” measures; some
countries, like Sweden, count on this.

Possibly no further modeling is needed for the countries that reached
stable relatively small numbers of new daily infections. This is with
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14 IVAN CHEREDNIK

usual reservations concerning new clusters of infections and similar de-
velopments. However if the new daily cases are constant but high, a
different kind of modeling is required, which is (AB).

Our theory provides this. The assumption is that the hard mea-
sures are still in place, but the response to the current total number
of detected infections is via U(t)/t instead of U(t); see Section 2. The
saturation will occur significantly later.

This model, called (AB)–mode here and in [6], is governed by w(t).
The point twtop where the (first) maximum of w(t) occurs seems a reason-
able upper bound for the ”technical saturation”. The prior tutop = ttop
then is a lower bound; we obtain some forecast cone .

Actually even relatively minor deviations with a, c can lead to sig-
nificant changes of u(t) over time, so we have some ”cones”. However,
we have something more fundamental here. The switch to w(t) is due
to a different kind of management.

When the daily numbers of new cases are high, there are significant
chances of new clusters and fluctuations of the data of all kinds. So we
need to model a process with many uncertainties. However, we think
that this is basically no different from what we did for the middle
stages, where u(t) was surprisingly efficient.

Recall that u(t) = Ct
c+1
2 J(c−1)/2(t

√
a), w(t) = Dt

c+1
2 Jc−1(2

√
tb).

Blue dots:

05/06-05/27

Figure 6. USA: c=2.2, a=0.2, C=1.7; b=0.35, D=1.9.

The cone for the USA. The prior ttop = tutop for u(t) was May 5, with
a, c, C calculated on the bases of the data till April 16. It was under
the expectations that the ”hard” measures would applied as in (A) (as
before April 16). However the presence of 3 major spikes in the daily
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cases and other factors like de facto relaxing hard measures obviously
delayed the saturation.

Whatever the reasons, the switch to the (AB)-mode and w(t) was a
natural adjustment. However, it appeared insufficient for the USA. We
provide the blue dots , obtained after the forecast cone was determined.
For Sweden, the cone was not expected to work, but the dots for the
USA appeared following a similar ”Sweden pattern”.

The cone is defined as the area between u(t) extended by a constant
u(ttop) for t > tutop and the graph of w(u) till twtop, which is approximately
May 30, 2020. The parameters b,D of w(t) are calculated to ensure
good match with red dots; c, the initial transmission rate, is the same
for u(t) and w(t). The graphs of u(t) and w(t) are very close to each
other in the range of red dots. The above relation for C/D holds with
the accuracy about 20%.

We mostly monitor the trend , the ”derivative” of the graph of black
dots, which is supposed to be close to the derivative of w(t) or u(t).
See Figure 6. Some spikes with number of cases are inevitable; it is
acceptable if the dots continue to be parallel to u(t) or w(t) (or in
between).
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Blue dots:

05/06-05/27

Figure 7. UK: c=2.4, a=0.2, C=2.2; b=0.35, D=2.5.

UK: June 10? The graphs of u(t), w(t) with all red-black-blue dots
available by now are in Figure 7. The expected twtop is around June 9.
The total number of detected infections is expected 330K. These ”pre-
dictions” will of course depend on many developments. However, there
is an important argument in favor of the stability of our model: any
spikes with the numbers of infections are supposed to trigger actions of
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16 IVAN CHEREDNIK

authorities in charge and influence of own protection measures. This
is a rationale for relatively uniform patterns of the spread of Covid-19.

Sweden: anti-forecast. The total number of infections in Sweden was
actually not supposed to follow our u,w–curves, because this country
does not follow hard ways with fighting Covid-19. Though Figure 8 is
instructional.
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35

Blue dots:

05/06-05/27

Figure 8. w(t)=2.1t(c+1)/2Jc−1(2
√
bt); b=0.3, c=2.4.

5. Two-phase solution. Let us provide a two-phase model for the
number of total infections: from the beginning of the intensive growth
through the saturation ttop of the (A)–phase and till the ”final satu-
ration” of the (B)–phase. It works surprisingly well for the countries
that reached reasonably small numbers of new daily infections during
the first phase, what we call ”technical saturation”, so the (AB)–mode
is mostly unnecessary for them.

The corresponding solution for phase 2 is in Section 6 from [6]. It is

uB(t) = CB tc/2 cos(d log(Max(1, t))),

where c must be the one we used in u(t) = C t(c+1)/2J(c−1)/2(
√
at), We

determined the parameters a, c, d, and the scaling coefficients C,CB ,
using the whole period till May 22 (2020), unless for Israel, where a, c, C
were found in the middle of April.

Here Max(1, t) is to avoid some ambiguity at t = 0; and we use uB

anyway for t > 1. Importantly, we start uB at t = 0, not at some
intermediate point. Practically, this means that we fine type (B) for-
mula that provide the correct saturation point ttop and the rest of the
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SPREAD OF COVID-19 MATHEMATICALLY 17

curve. Thus, some sharp usage of ”soft” measures can be mathemat-
ically sufficient to end the epidemic, but d can be determined only in
the vicinity of ttop, if it is reached.

The epidemic is of course far from over, but the first cycle hopefully
approaches the end in these countries; so no test periods, ”black dots”,
seem necessary. Recall that the parameters a, c, C for the first phase
are mostly obtained on the basis of the period before or around the
”turning points”; the same c, the initial transmission coefficient, is
supposed to be used for both, (A) and (B), according to our theory.

Israel: 03/13-05/22. Here c = 2.6, a = 0.3, d = 0.6. The scaling
coefficients are C = 2.2, CB = 3.4. So u(t) = 2.2 t1.8J0.8(t

√
0.3).

0 1 2 3 4 5 6 7

5
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15

du(t)/dt

Figure 9. Israel: c=2.6, a=0.3, d=0.6
.

Italy: 2/22-5/22. See Figure 10. The starting point is 2/12, when
the total number of infections was 17; in this paper, we always subtract
this initial value when calculating our dots. One has:

u1,2(t) = 0.8 t(c+1)/2J± c−1
2
(
√
at), u(t) = u1(t)− u2(t), and

uB(t) =2.85 tc/2 cos(d log(Max(1, t))), c=2.6, a=0.2, d=0.5.

Here we use the second, non-dominant, solution u2 of our equation.
For t ≈ 0, it is approximately ∼ t, i.e. smaller than ∼ tc for the
dominating solution u2, and the maxu2(t) occurs significantly earlier.
This maximum is the reason for a well-visible bent in the middle of the
sequence of red dots. Actually, we can see some kind of the bent for
Israel too, but it was short-lived and did not prevented us from using
u1 only. The coefficient of u2 is not always −1.
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18 IVAN CHEREDNIK

Figure 10. Italy: c=2.6, a=0.2, d=0.5
.

Germany: 3/07-5/22. See Figure 11. We begin here with the initial
number of total infections 684, which must be subtracted when calcu-
lating the red dots. This is the moment when the curve began to look
stable, i.e. a systematic management began. One has:

u1,2(t) =1.3 t(c+1)/2J± c−1
2
(
√
at), u(t) = u1(t)− 0.7u2(t), and

uB(t) =2.95 tc/2 cos(d log(Max(1, t))), c=2.6, a=0.35, d=0.56.

Japan: 3/20- 5/22. See Figure 12. It was a sort of the second wave
in Japan, with already 950 total infections on March 20. The curve is
discontinuous, but manageable by our 2-phase solution :

u1,2(t) =1.5 t(c+1)/2J± c−1
2
(
√
at), u(t) = u1(t)− 0.4u2(t), and

uB(t) =3.15 tc/2 cos(d log(Max(1, t))), c=2.6, a=0.3, d=0.6.

The Netherlands: 03/13-5/22. Figure 13. The response to Covid-19
was relatively late in the Netherlands; the number of the total case was
383 on 3/13, the beginning of intensive spread from our perspective.
However, the country perfectly reached the saturation at ttop with a
single u(t) = u1(t), and then smoothly switched to phase 2:

u(t) = 0.5 t(c+1)/2 J c−1
2
(
√
at), c=2.4, a=0.2,

uB(t) =0.86 tc/2 cos(d log(Max(1, t))), d=0.54.
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Figure 11. Germany: c=2.6, a=0.35, d=0.56
.
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Figure 12. Japan: u = 1.5t1.8(J0.8 − 0.4J−0.8)(t
√
0.3).

To finalize, the best ways to use our curves seem as follows:

(1): determine a, c, C when the spread looks essentially linear;
(2): update them constantly till the turning point and beyond;
(3): expect the ”bents” to appear and add the u2(t) if needed;
(4): try to adjust the intensity of the measures to match u(t) ;
(5): at the turning point, determine b,D and the bound w(t);
(6): after the saturation at ttop, find d and switch to phase 2 ,
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Figure 13. The Netherlands: u = 0.5t1.7J0.7(t
√
0.2).

(7): ”detection - isolation” must be continued after saturation.

6. Automated forecasting. Generally, our two-phase solution can
be served the best as a forecasting tool if the data and the measures are
as uniform and ”stable” as possible. Then underreporting the number
of infections, focusing on symptomatic cases, and inevitable fluctua-
tions with the data may not influence too much the applicability of the
u,w–curves and uB.
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Figure 14. USA, the total of the curves for individual states.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2020. ; https://doi.org/10.1101/2020.04.29.20084483doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20084483
http://creativecommons.org/licenses/by-nc-nd/4.0/


SPREAD OF COVID-19 MATHEMATICALLY 21

0 2 4 6 8 10

2

4

6

8

10

12 processing curves

 

, found 

. Red dots: the total

number of cases for 03/17-05/27 

  22 such states (05/27):

Figure 15. Only for the states reached 2nd stage on 05/27.

Let us show how our fully automated program works, which au-
tomatically finds, the corresponding curve determine the phase, and
provide the current forecast, which can be ”linear” if the country/area
has not reach the second phase. The main challenge among the coun-
tries considered above was the USA. Here it is necessary to obtain the
forecasts automatically for 50 states and consider then the total sum
of the resulting curves.

The period was taken 03/17-05/27 for all states. We use the data
from https://github.com/nytimes/covid-19-data . Our program
naturally focuses on the later stages, especially the last 20 days; how-
ever, the match with the total number of detected infections almost
from 03/17 appeared perfect; Figure 14 Each and every state was pro-
cessed individually. The red dots are the total numbers of detected
cases, as above.

The states that reached the 2nd phase were automatically deter-
mined; Figure 15 provides the sum of these curves extended till 07/07
only for these states. The total number of infections is y ∗ 100K;
x =days/10. The states are Alaska, Colorado, Connecticut, Delaware,
Hawaii, Idaho, Kansas, Kentucky, Louisiana, Massachusetts, Michi-
gan, Missouri, Montana, New Jersey, New York, Oregon, Pennsylvania,
Rhode Island, Vermont, Washington, West Virginia, Wyoming as for
05/28. Obviously the situation with these and other states is fluid, and
any forecasts can be only conditional. The end of this graph, x = 11,
corresponds to day 110 from March 17, about July 7. Let us note that
by allowing our curves in the 22 states reached phase 2 to go through
their saturation and then diminish , we obtain that the epidemics may
reach the saturation in the whole USA about August 25. This makes
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sense, since any states (and countries) benefit from the improvements
with the epidemic in their neighbors. We omit the corresponding curve.

Our program was tested for automated modeling and forecasting with
many countries. The author considers making the code publicly avail-
able. The possibility of fully automated processing the data is a clear
confirmation of the potential of our 2-phase solution . At least, this
completely addresses concerns, quite common for the programs used
for forecasting (stock markets included), that the corresponding ma-
chinery cannot be fully formalized.

We did our best to provide ample test periods, and will continue to
do this. There are of course many new factors that can emerge. With
the USA, it will take some time to evaluate the impact of opening the
country, and there are quite a few states that are still in phase one.
However as far as the policies of those in charge and our own way to
react are sufficiently stable, forecasting seems doable.
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