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Abstract

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has
highlighted the need for the development of prompt mitigating responses under
conditions of high uncertainty. Fundamental to the design of rapid state reactions is the
ability to perform epidemiological model parameter inference for localised trajectory
predictions. In this work, we perform Bayesian parameter inference using Markov Chain
Monte Carlo (MCMC) methods on the Susceptible-Infected-Recovered (SIR) and
Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological models with
time-varying spreading rates for South Africa. The results find two change points in the
spreading rate of COVID-19 in South Africa as inferred from the confirmed cases. The
first change point coincides with state enactment of a travel ban and the resultant
containment of imported infections. The second change point coincides with the start of
a state-led mass screening and testing programme which has highlighted
community-level disease spread that was not well represented in the initial largely
traveller based and private laboratory dominated testing data. The results further
suggest that due to the likely effect of the national lockdown, community level
transmissions are slower than the original imported case driven spread of the disease.

Introduction

The novel coronavirus first manifested in the city of Wuhan, China in December 2019.
The disease has subsequently spread around the world, leading to the World Health
Organisation (WHO) declaring it a pandemic on 11 March 2020 [1]. In South Africa, by
26 April 2020, 4546 people had been confirmed to have been infected by the coronavirus
with 87 fatalities [2].

Governments around the globe, have embarked on numerous efforts to reduce the
number of COVID-19 cases [3, 4, 5]. These measures are centred around quarantine and
social distancing strategies that seek to separate the infectious population from the
susceptible population [5].

These initiatives aim to strategically reduce the increase in infections to a level
where their healthcare systems stand a chance of minimising the number fatalities[5].
Some of the key indicators for policymakers to plan appropriately include projections of
how much of the population will be affected, how many will require medical attention
and whether current containment measures are effective [5].
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As the pandemic develops in a rapid and varied manner in most countries,
calibration of epidemiological models based on available data can prove to be difficult
[6]. The difference between the “confirmed infected” and the “infected” populations
escalates this effect due to the high number of asymptomatic cases [1] and constrained
testing protocols.

A fundamental issue when calibrating localised models is inferring parameters of
compartmental models such as susceptible-infectious-recovered (SIR) and the
susceptible-exposed-infectious-recovered (SEIR) that are widely used in infectious
disease projections. In the view of public health policymakers, a critical aspect of
projecting infections is the inference of parameters that align with the underlying
trajectories in their jurisdictions. The spreading rate is a parameter of particular
interest which is subject to changes due to voluntary social distancing measures and
government-imposed contact bans.

The uncertainty in utilising these models is compounded by the limited data in the
initial phases and the rapidly changing dynamics due to rapid public policy changes.

To address these complexities, we utilise the Bayesian Framework for the inference of
epidemiological model parameters in South Africa. The Bayesian framework allows for
both incorporation of prior knowledge and principled embedding of uncertainty in
parameter estimation.

In this work we combine Bayesian inference with the compartmental SEIR and SIR
models to infer time varying spreading rates that allow for quantification of the impact
of government interventions in South Africa.

Methods

Epidemiological Modelling

Epidemiological Modelling of infectious diseases is dominated by compartmental models
which simulate the transition of individuals between various stages of illness [7, 8]. We
now introduce the Susceptible-Exposed-Infectious-Recovered (SEIR) and the related
Susceptible-Infectious-Recovered (SIR) compartmental models that have been dominant
in COVID-19 modelling literature [3, 4, 5, 9].

The Susceptible-Exposed-Infectious-Recovered Model

The SEIR is an established epidemiological model for the projection of infectious
disease. The SEIR models the transition of individuals between four stages of a
condition, namely:

• being susceptible to the condition,

• being infected and in incubation

• having the condition and being infectious to others and

• having recovered and built immunity for the disease.

The SEIR can be interpreted as a four-state Markov chain which is illustrated
diagrammatically in figure 1. The SEIR relies on solving the system of ordinary
differential equations below representing the analytic trajectory of the infectious disease
[5].
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Susceptible Exposed Infectious Recovered
λ σ μ

Fig 1. An Illustration of the underlying states of the
Susceptible-Exposed-Infectious-Recovered Model(SEIR)
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− σE (2)

dI

dt
= σE − µI (3)

dR

dt
= µI (4)

Where S is the susceptible population, I is the infected population, R is the
recovered population and N is the total population where N = S + E + I +R. λ is the
transmission rate, σ is the rate at which individuals in incubation become infectious,
and µ is the recovery rate. 1/σ and 1/µ therefore, become the incubation period and
contagious period respectively.

We also consider the Susceptible-Infectious-Recovered (SIR) model which is a
subclass of the SEIR model that assumes direct transition from the susceptible
compartment to the infected (and infectious) compartment. The SIR is represented by
three coupled ordinary differential equations rather than the four in the SEIR. Figure 2
depicts the three states of the SIR model.

Susceptible Infectious Recovered
λ μ

Fig 2. An Illustration of the underlying states of the
Susceptible-Infectious-Recovered Model(SIR)

The Basic Reproductive Number R0

The contagiousness of a disease is often measured using a metric called the basic
reproductive number (R0). R0 represents the mean number of additional infections
created by one infectious individual in a susceptible population. According to the latest
available literature, without accounting for any social distancing policies the R0 for
COVID-19 is between 2 and 3.5[1, 4, 9, 10]. R0 can be expressed in terms of λ and µ as:

R0 =
λ

µ
(5)

Extensions to the SEIR and SIR models

We use an extended version of the SEIR and SIR models of [4] that incorporates some
of the observed phenomena relating to COVID-19. First we include a delay D in
becoming infected (Inew) and being reported in the confirmed case statistics, such that
the confirmed reported cases CRt at some time t are in the form [4] :

CRt = Inewt−D (6)
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We further assume that the spreading rate λ is time-varying rather than constant
with change points that are affected by government interventions and voluntary social
distancing measures.

Bayesian Parameter Inference

We follow the framework of [4] to perform Bayesian inference for model parameters on
the South African COVID-19 data. The Bayesian framework allows for the posterior
inference of parameters which updates prior beliefs based on a data-driven likelihood.
The posterior inference is governed by Bayes theorem as follows:

P (W |D,M) =
P (D|W,M)P (W )

P (D)
(7)

Where P (W |D,M) is the posterior distribution of a vector of model parameters (W )
given the model(M) and observed data(D), P (D|W,M) is the data likelihood and P (D)
is the evidence.

The Likelihood

The Likelihood indicates the probability of observing the reported case data given the
assumed model. In our study, we adopt the Student-T distribution as the Likelihood as
suggested by [4]. Similar to a Gaussian likelihood, the Student-T likelihood allows for
parameter updates that minimise discrepancies between the predicted and observed
reported cases.

Priors

Parameter prior distributions encode some prior subject matter knowledge into
parameter estimation. In the case of epidemiological model parameters, priors
incorporate literature based expected values of parameters such as recovery rate(µ),
spreading rate(λ), change points based on policy interventions etc.

The prior settings for the model parameters are listed in table 1. We follow [4] by
selecting LogNormal distributions for λ and σ such that the initial mean basic
reproductive number is 3.2 which is consistent with literature [1, 3, 4, 9, 11]. We set a
LogNormal prior for the σ such that the mean incubation period is five days. We use
the history of government interventions to set priors on change points in the spreading
rate. The priors on change-points include 19/03/2020 when a travel ban and school
closures were announced, and 28/03/2020 when a national lockdown was enforced. We
assume apriori that each intervention reduces the mean spread rates from the
Lognormal distributions. Similar to[4] we adopt “weakly-informative” Half-Cauchy
priors for the initial conditions for the infected and exposed populations.

.

Markov Chain Monte Carlo (MCMC)

Given that the closed-form inference of the posterior distributions on the parameters
listed in table 1 is infeasible, we make use of Markov Chain Monte Carlo to sample from
the posterior. Monte Carlo methods approximate solutions to complex numerical
problems by simulating a random process. MCMC uses a Markov Chain to sample from
the posterior distribution, where a Markov Chain is a sequence of random variables Wt

such that:
P (Wt+1|W1, ...,Wt) = P (Wt+1|Wt)
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Table 1. Prior distribution settings for SEIR and SIR model parameters.

Parameter Prior Distribution

Spreading rate λ0 LogNormal(log(0.4),0.5)
Spreading rate λ1 LogNormal(log(0.2),0.5)
Spreading rate λ2 LogNormal(log(1/8),0.2)
Incubation to infectious rate σ LogNormal(log(1/5),0.5)
Recovery rate µ LogNormal(log(1/8),0.2)
Reporting Delay D LogNormal(log(8),0.2)
Initial Infectious I0 Half-Cauchy(20)
Initial Exposed E0 Half-Cauchy(20)
Change Point t1 Normal(2020/03/18,1)
Change Point t2 Normal(2020/03/28,1)

MCMC techniques have been widely used in COVID-19 parameter inference [4, 9].
In this work, we explore inference using Metropolis-Hastings (MH), Slice Sampling and
No-U-Turn Sampler (NUTS).

Metropolis Hastings (MH)

MH is one of the simplest algorithms for generating a Markov Chain which converges to
the correct stationary distribution. The MH generates proposed samples using a
proposal distribution. A new parameter state Wt∗ is accepted or rejected
probabilistically based on the posterior likelihood ratio:

P
(
accept

(
Wt∗

))
= min

(
1,

P (Wt∗|D,M)

P (W t−1|D,M)

)
(8)

A common proposal distribution is a symmetric random walk obtained by adding
Gaussian noise to a previously accepted parameter state. Random walk behaviour of
such a proposal typically results in low sample acceptance rates.

Slice Sampling

Slice sampling facilitates sampling from the posterior distribution P (W |D,M) by
adding an auxiliary variable u such that the joint posterior distribution becomes:

P (W,u|D,M) =

{
1
Z 0 ≤ U ≤ P (W |D,M)

0 Otherwise
(9)

Where Z =
∫
P (W |D,M)dW which is a normalisation constant. Marginal samples for

the parameters W can then be obtained by ignoring u samples from the joint samples.
This process corresponds to sampling above the slice of the posterior density function
around a predefined window. Figure 3 shows an illustration of slice sampling.

While sample acceptance is guaranteed with slice sampling, a large slice window can
lead to computationally inefficient sampling while a small window can lead to poor
mixing.

Hybrid Monte Carlo (HMC) and the No-U-Turn Sampler (NUTS)

Metropolis-Hastings (MH) and slice sampling suffer from excessive random walk
behaviour - where the next state of the Markov Chain is randomly proposed from a
proposal distribution [12, 13]. This results in inefficient sampling with low acceptance
rates and small effective sample sizes.
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Fig 3. An illustration of slice sampling, moving from a parameter sample
w(i) to w(i+1) via auxiliary variable sample u(i+1)

[14] proposed HMC, which suppresses random walk behaviour by augmenting the
parameter space with auxiliary momentum variables. HMC uses the gradient
information of the posterior distribution to create a vector field around the current
state, giving it a trajectory towards a high probability next state. The dynamical
system formed by the model parameters W and the auxiliary momentum variables p is
represented by the Hamiltonian H(W,p) written as follows [14]:

H(W,p) =M(W ) +K(p) (10)

Where M(W ) is the negative log-likelihood of the posterior distribution in equation 7,
also referred to as the potential energy. K(p) is the kinetic energy defined by the kernel
of a Gaussian with a covariance matrix M [15]:

K(p) =
pTM−1p

2
(11)

.
The trajectory vector field is defined by considering the parameter space as a

physical system that follows Hamiltonian Dynamics. The dynamical equations
governing the trajectory of the chain are then defined by Hamiltonian equations at a
fictitious time t as follows [14]:

∂wi
∂t

=
∂H

∂pi
(12)

∂pi
∂t

= − ∂H
∂wi

(13)

In practical terms, the dynamical trajectory is discretised using the leapfrog
integrator. In the leapfrog integrator to reach the next point in the path, we take half a
step in the momentum direction, followed by a full step in the direction of the model
parameters - then ending with another half step in the momentum direction.

Finally due to the discretising errors that arise from the leapfrog integrator a
Metropolis acceptance step is performed in order to accept or reject the new sample
proposed by the trajectory[16]. In the Metropolis step the parameters proposed by the
HMC trajectory w∗ are accepted with the probability [14]:

P (accept) = min

(
1,
P (w∗|D,α, β,H)

P (w|D,α, β,H)

)
(14)
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Algorithm 1 shows the pseudo-code for the HMC where ε is a discretisation stepsize.
The leapfrog steps are repeated until the maximum trajectory length L is reached.

Algorithm 1: Hybrid Monte Carlo Algorithm

Data: Confirmed Cases dataset {C(t)}
Result: N Samples of model parameters W
for n← 1 to N do

w0 ← winit

sample the auxiliary momentum variables p
p∼ N (0,M)
Use leapfrog steps to generate proposals for w
for t← 1 to L do

p(t+ ε/2)← p(t) + (ε/2)∂H∂w

(
w(t)

)
w(t+ ε)← w(t) + εp(t+ε/2)M

p(t+ ε)← p(t) + ε/2) + (ε/2)∂H∂w

(
w(t+ ε)

)
end
Metropolis Update step:
(p, w)n ← (p(L), w(L)) with probability:

min

(
1, P (wt∗|D,M)

P (w|D,M)

)
end

The HMC algorithm has multiple parameters that require tuning for efficient
sampling, such as the step size and the trajectory length. In terms of trajectory length,
a trajectory length that is too short leads to random walk behaviour similar to MH.
While a trajectory length that is too long results in a trajectory that inefficiently traces
back.

The stepsize is also a critical parameter for sampling, small stepsizes are
computationally inefficient leading to correlated samples and poor mixing while large
stepsizes compound discretisation errors leading to low acceptance rates. Tuning these
parameters requires multiple time consuming trial runs.

NUTS automates the tuning of the leapfrog stepsize and trajectory length. In NUTS
the stepsize is tuned during an initial burn-in phase by targeting particular levels of
sample acceptance. The trajectory length is tuned by iteratively adding steps until
either the chain starts to trace back (U-turn) or the Hamiltonian explodes (becomes
infinite).
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Results

SIR and SEIR model parameter inference was performed using confirmed cases data
upto and including 20 April 2020 and MCMC samplers described in the methodology
section. Each of the samplers are run such that 2000 samples are drawn with 500
burn-in and tuning steps. We use leave-one-out(LOO) cross-validation error of [17] to
evaluate the goodness of fit of each model and inference method pair.

Table 2 shows the LOO validation errors of the various models. It can be seen that
the SIR model with two change points inferred by Slice Sampling displays the best
model fit with the lowest mean LOO of 446.77. The SEIR model with two change points
inferred using the NUTS showed a mean LOO of 454.06. We note that[4] similarly finds
that the SIR model displayed superior goodness of fit to the SEIR on German data.

We now further present detailed results of the best performing SIR Slice sampling
model and SEIR with NUTS, the traceplots from these models indicating stationarity in
the sampling chains are provided in appendix figures 11 and 12.

Table 2. Leave-one out (LOO) Statistics comparing SEIR and SIR models
with different number of change points using various samplers.

Sampler Model Change Points Rank LOO Effective Parameters

SLICE SIR 2 0 446.77 9.81
NUTS SIR 2 1 447.04 9.916
NUTS SEIR 1 2 452.97 11.99
NUTS SEIR 2 3 454.06 12.02
NUTS SEIR 0 4 455.16 16.06
NUTS SIR 1 5 462.37 7.66
SLICE SIR 1 6 462.57 7.74
MH SIR 2 7 475.78 20.52
MH SEIR 2 8 476.41 10.93
MH SEIR 1 9 494.17 11.41

Posterior Parameter Distributions

Figure 4 shows the posterior distributions of the SIR model parameters. The parameter
estimates are λ0 ≈ 0.479 (CI[0.416, 0.554]) ,λ1 ≈ 0.094 (CI[0.016, 0.127]) ,λ2 ≈ 0.177
(CI[0.13, 0.231]) ,µ ≈ 0.136 (CI[0.096, 0.181]) and reporting delay (D) ≈ 6.254
(CI[4.622, 8.07]). This corresponds to R0 values of 3.522 (CI[3.06, 4.07]), 0.691
(CI[0.45, 0.93]) and 1.301 (CI[0.96, 1.70]) at the respective change points.

Time-varying spread rates allow for inference of the impact of various state and
societal interventions on the spreading rate. Figure 5 shows the fit and projections based
on SIR models with zero, one and two change points. As can be seen from the plot the
two change point model best captures the trajectory in the development of new cases
relative to the zero and one change point models. The superior goodness of fit of the
two change point model is also illustrated in table 2. The fit and projections showing
similar behaviour on the SEIR model with various change points are shown in figure 6.

Reporting Delays, Incubation and Infectious period

The mean reporting delay time in days was found to be 6.254 (CI[4.622, 8.07]), literature
suggests this delay includes both the incubation period and the test reporting lags. The
posterior distribution incubation period from the SEIR model in figure 7 yields a median
incubation period of 3.446 days (CI[1.401, 5.63]). Thus suggesting a mean laboratory
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Fig 4. Posterior Parameter distributions for the SIR model with two
change points.

reporting delay of approximately 2.8 days. A mean recovery rate µ ≈ 0.136 implies
mean infectious period of 7.36 days which is in line with related literature [1, 4, 9].

Timing and impact of interventions

Figure 8 depicts the posterior distributions of the spreading rates and times
corresponding to each change point. We observe that the first change point is on a
mean date of 18 March 2020 (CI:[16/03/2020, 20/03/2020]). This date is consistent
with the travel ban, school closures and social distancing recommendations. This change
point resulted in a substantial decrease in the spreading rate (80%) primarily due to the
reduction in imported infections.

The second change point is observed on 28 March 2020 (CI:[26/03/2020,
30/03/2020]). This time point coincides with the announcement of mass screening and
testing by the government on 30 March 2020. The resulting mean R0 of 1.30 implies a
60% decrease from the initial value.

The inference of parameters is dependent on the underlying testing processes that
generate the confirmed case data. The effect of the mass screening and testing
campaign was to change the underlying confirmed case data generating process by
widening the criteria of those eligible for testing. While initial testing focused on
individuals that either had exposure to known cases or travelled to known COVID-19
affected countries, mass screening and testing further introduced detection of
community level transmissions which may contain undocumented contact and exposure
to COVID-19 positive individuals.

April 28, 2020 9/17

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.28.20083873doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.28.20083873
http://creativecommons.org/licenses/by-nd/4.0/


03/08 03/22 04/05 04/19 05/03
Date

0

200

400

600

Ne
w 

co
nf

irm
ed

 c
as

es
in

 S
ou

th
 A

fri
ca

Confirmed new cases
Forecast: 
  zero change points
  one change point
  two change points

03/08 03/22 04/05 04/19 05/03
Date

0 k

2 k

4 k

6 k

To
ta

l c
on

fir
m

ed
 c

as
es

in
 S

ou
th

 A
fri

ca

Confirmed cases
Forecast: 
  zero change points
  one change point
  two change points

Fig 5. Predictions and actual data(until 20 April 2020) based on SIR
models with various change points. The top plot indicates the actual and
projected new cases while the bottom plot shows the actual and projected cumulative
cases.

Discussion

We have performed Bayesian parameter inference of the SIR and SEIR models using
MCMC and publicly available data as at 20 April 2020. The resulting parameter
estimates fall in-line with the existing literature in-terms of mean baseline R0 (before
government action), mean incubation time and mean infectious period[1, 3, 4, 9].

We find that initial government action that mainly included a travel ban, school
closures and stay-home orders resulted in a mean decline of 80% in the spreading rate.
Further government action through mass screening and testing campaigns resulted in a
second trajectory change point. This latter change point is mainly driven by the
widening of the population eligible for testing, from travellers (and their known
contacts) to include the generalised community who would have probably not afforded
private lab testing which dominated the initial data. This resulted in an increase of R0

to 1.301. The effect of mass screening and testing can also be seen in figure 9 indicating
a mean increase in daily tests preformed from 1639 to 4374.

The second change point illustrates the possible existence of “multiple pandemics”,
as suggested by [18]. Thus testing after 28 March is more indicative of community-level
transmissions that were possibly not as well documented in-terms of contact tracing and
isolation relative to the initial imported infection driven pandemic. This is also
supported by the documented increase in public laboratory testing (relative to private)
past this change point, suggesting health care access might also play a role in the
detection of community-level infections[19].
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Fig 6. Predictions and actual data(until 20 April 2020) based on SEIR
models with various change points. The top plot indicates the actual and
projected new cases while the bottom plot shows the actual and projected cumulative
cases.
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Conclusion

We have utilised a Bayesian inference framework to infer time-varying spreading rates of
COVID-19 in South Africa. The time-varying spreading rates allow us to estimate the
effects of government actions on the dynamics of the pandemic.

The results indicate a decrease in the mean spreading rate of 60%, which mainly
coincides with the containment of imported infections, school closures and stay at home
orders.

The results also indicate the emergence of community-level infections which are
increasingly being highlighted by the mass screening and testing campaign. The
development of the community level transmissions (R0 ≈ 1.301 (CI[0.96, 1.70])) of the
pandemic at the time of publication appears to be slower than that of the initial
traveller based pandemic (R0 ≈ 3.5221 (CI[3.06, 4.07])).

A future improvement to this work could include extensions to regional and
provincial studies as current data suggests varied spreading rates both regionally and
provincially. As more government interventions come to play priors on more change
points might also be necessary.
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Fig 10. Two dimensional heat maps of the posterior distributions of the
spreading rate(λ) and the recovery rate(µ) at various change points of the
SIR model. The high joint density areas (in yellow) indicate likely values
of R0. The baseline mean R0 estimate in 10(a) is 3.522, the first change point estimate
in figure 10(b) is 0.691 while the second change point in figure 10(c) has resulted in a
mean R0 estimate of 1.301.
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Fig 11. Trace plots from four concurrent chains of of the SIR model
parameters inferred by Slice sampling.
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Fig 12. Trace plots from four concurrent chains of of the SEIR model
parameters inferred by NUTS.

April 28, 2020 17/17

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.28.20083873doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.28.20083873
http://creativecommons.org/licenses/by-nd/4.0/

