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Abstract 
Background:  N-of-1 trials have been proposed as an approach to identify the optimal individual treatment 
for patients with a number of recurrent medical conditions, including chronic pain and mental health.  
When inserted into mHealth applications, this approach holds great promise to provide an automated, 
efficient method to individualize patient care; however, prior to implementation, an understanding of the 
properties of the recurrent condition needed to draw conclusions with sufficient power is needed. 
Methods: We applied simulation studies and power calculations to determine statistical properties of the 
N-of-1 approach employed by an mHealth application for self-management of chronic recurrent medical 
conditions called the iMTracker.   
Results: In 1000 simulated patients with a single recurrent medical condition and 5 possible associated 
conditions, we found that ~90 days of data collection was sufficient to identify associated risk factors 
with odds ratio (OR > 5.0) at power ≥ 80%, with an absolute event rate of 50% being optimal.   Power 
calculations based on Fisher’s Exact test showed that 90 days was also sufficient to detect a decrease of 
20% in the rate of the primary outcome after an intervention, but that shorter data periods could be used to 
identify stronger effect sizes, down to 15 days with a 90% reduction in rate.   Repeat analysis with 
Bayesian models did not significantly change power calculations, but did allow for a flexible approach 
that we leveraged to create a web-based tool to allow users to perform power calculations prior to using 
the iMTracker for self-management.   
Conclusions: We found that the N-of-1 approach employed in the iMTracker app for self-management of 
recurrent medical conditions is statistically feasible, given the right conditions. More work is needed to 
examine the impact of autocorrelation, seasonality, and trends in data, on statistical validity and power 
calculations.  
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Background 
Management of chronic recurrent medical conditions, such as low back pain or migraine headaches, 
presents a major challenge for the current time-constrained healthcare system.  Although evidence-based 
guidelines have been developed for management of these conditions across entire populations1-5, 
application to individual patients is often much more challenging.  For example, sleep changes have been 
described in ~50% of patients with migraine headaches, although 75% of patients also chose to sleep due 
to the migraine headache itself6.  In general, the approach to management of most patients with these 
conditions involves the patient providing a hand-written journal or log of the daily presence of 
recurrences at the time of a 20-30 minute clinic visit; a terse, qualitative review of the pattern by the 
provider searching for obvious patterns; a brief discussion of possible triggers, suppressors, or response to 
treatment using subjective language (e.g., ‘Does caffeine help/hurt?’); and a nonsystematic plan to make a 
series of uncoordinated changes in lifestyle or medications, followed by scheduling of a follow-up visit at 
some arbitrary timepoint to assess the impact.  The motivated patient may continue to log the recurrences 
until follow-up, at which time the exercise is repeated, generally with subjective assessments of results.   
 
The motivation for N-of-1 clinical trials is to develop a methodology for systematic comparison of 
treatments or exposures on an outcome at the individual patient level.  The N-of-1 approach has been 
applied to study various interventions for pain7-11, depression12-14, anxiety15, 16, and migraine headaches17-

19, as well as countless applications within the clinical realm that are unreported in the literature due to the 
challenges with extrapolation to the greater body of evidence20.  Noteworthy, and perhaps characteristic, 
of many N-of-1 trials is that they are generally are limited to only a few patients—from one to tens of 
patients, reflective of the practical demands of manual data collection and analysis on a per-person basis.  
To date, no large clinical trial has been performed using the N-of-1 approach that has demonstrated an 
improvement in clinical outcomes, which highlights both the challenges and opportunities to apply 
technology innovations toward patient care.  
 
The possibility that technology could improve individualized patient care, with or without the specific N-
of-1 approach, has been raised by providers and innovators alike.  Patients are motivated, and will often 
seek advice or guidance outside the realm of expert clinicians.  As a result, the market for so-called self-
management applications and nonstandard care approaches is flooded with untested and unvalidated 
smartphone apps and clinics that promise patients the opportunity to self-manage their conditions.  Like 
many technology innovations, the companies providing these solutions often focus more on 
commercialization and marketing rather than scientific assessment of their applications21-26, leaving both 
providers and patients skeptical about incorporation into clinical care.  
 
To meet this emerging need, our team of clinicians, statisticians, and investigators have developed an iOS 
application called the iMTracker, which is currently available for nonmedical use on the iTunes store27. 
Starting with a broad approach focused on the identification of lifestyle factors (e.g., caffeine) that could 
be associated with recurrence of a chronic condition (e.g., migraines), our approach includes a process to 
test any intervention (e.g., drink less caffeine) that the user would like to test on the recurrence pattern of 
the outcome. Through iteration between hypothesis generation (i.e., ‘is there an association between risk 
factor A and occurrence of my condition?’) and hypothesis testing (i.e., ‘does changing risk factor A 
improve the rate of occurrence of my condition?’), the user is able to self-manage his or her condition 
towards an overall goal of reducing recurrence.   
 
However, before such an approach can be examined in large clinical trials, there are key questions about 
the statistical validity of this process to identify triggers and/or suppressors for a given patient’s recurrent 
condition.  Specifically, how much data are needed—how often and for how long does the patient need to 
collect data—in order to draw inferences with sufficient statistical power to guide care decisions?  In this 
study, we examined the impact of changes in the recurrence rate of the primary condition, the rate of 
possible triggers or suppressors, and the strength of association between these factors, on the statistical 
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power of this approach to guide care decisions.  We start with an assessment of the approach of collecting 
data on possible associations to identify possible triggers or suppressors, for future interventions, and then 
examined the amount of data to determine the effect of a chosen intervention on the recurrence rate of the 
outcome of interest.  Throughout, we make the assumption that simpler statistical models that can be 
easily programmed into a mobile device (without need to transfer data to a separate server) will be 
preferred over more complex approaches that would require greater computing power or incorporation of 
data from other users.   
 
Methods 
N-of-1 Paradigm 
The N-of-1 paradigm used in this 
investigation is shown in Figure 1. 
Essentially, the patient is prompted to 
enter the presence or absence of a 
given condition, as well as a selected 
number of possible triggers or 
suppressors (Factor X, Fig. 1), on 
each day for the duration of the data 
collection period.  After a determined 
data collection period (N days), the 
association between the possible 
trigger or suppressor is calculated as 
the odds ratio of the association, 
which is reported back to the patient 
along with the strength of the 
association.  Based on the strength of 
the association, the patient would be 
advised to either 1) avoid the factor 
(OR > 1, indicating a possible trigger), 2) seek out the factor (OR < 1, indicating a possible suppressor), 
3) select alternative possible factors due to a sufficiently powered lack of effect (OR ~1, power > 0.8), or 
4) continue to collect data due to lack of power to make a determination (Power < 0.8).   
 
Simulation Parameters 
Based on the above model paradigm, we identified the following parameters to examine using simulation: 
 N = Number of days to collect data 
 Power = 1 – false negative probability (probability of a false null association) 
 P(Event) = Probability of having the recurrent event 
 P(Factor) = Probability of exposure to the factor 
 P(Factor|Event) = Probability of having the factor present on the day of a recurrent event 
 P(Factor| No event) = Probability of having the factor present on a day without the recurrent 
event 
 OR = Odds ratio between factor and recurrent event 
 
Simulation Model 
 The simulation approach employed was guided by the principle that patients will prefer to collect data for 
the minimum amount of time needed to draw an association with sufficient statistical power to identify a 
‘positive’ (OR ≠ 1) association or ‘null’ (OR = 1) association.   Simulation studies were therefore used to 
evaluate the power or type I error rate for alternative (i.e., ‘positive’) or null scenarios, respectively. The 
existing simulation studies are all completed in R (version …) with 1000 simulated people experiencing 5 
independent triggers with different probabilities of the triggers.  
 

Figure 1. Outline of the process of self-management used by 
the iMTracker. 
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 We simulated a total of 180 days of data with no missed entries assumed (i.e., the participant always 
enters their data to the iMTracker app). Summaries are provided for statistical properties at days 7, 14, 28, 
60, 90, 120, and 180. 
The current scenarios 
examined include 
assuming a 20%, 
50%, and 80% event 
rate for the following 
probabilities of 
trigger exposure 
(Table 1). To 
examine the role that 
more permissive 
statistical criteria for 
possible associations 
could be identified 
by relaxing the Type 
I error rate (alpha, 
significance 
threshold), we also 
repeated simulations 
using an alpha cut-off (probability of falsely rejecting null hypothesis) of 0.05.  We then examined the 
role of time of data collection using the log of the odds ratio, as early simulations found that it better 
represented the estimates. Negative values indicate OR<1 and positive values indicate OR>1. Estimates 
of OR=0 or OR=infinity were excluded to avoid calculation issues, and were denoted as “Conditional 
ORs”. 
 
Intervention Effect Analysis 
Once a hypothesized association has been identified, the critical step is to then test whether the 
intervention provided a statistically significant change in the outcome of interest.  Such an assessment 
requires a minimal amount of data to be collected before and after the intervention, which depends on the 
size of the effect of the intervention on frequency of the recurrent outcome.  To examine the amount of 
data needed, we performed power calculations using Fisher’s Exact test of proportions (Stata, IC., version 
15, StataCorp, Inc., College Station, TX, USA).  We examined data collection periods from 10 to 100 
days (pre-intervention), with the goal of identifying interventions resulting in a decrease in the frequency 
of the recurrent event at significance level (alpha) of ≤ 0.05 and power ≥ 0.8.   
 
In appreciation that real-time use of the iMTracker would entail online analysis during data collection,  
we also compared use of a Bayesian model based on a Beta distribution for the distribution of the 
proportion of events/total days as such: Pr(y) ~ Beta(a, b), where a = # of events + 1 and b = total days – # 
of events + 1.   
 
This Bayesian tool was then coded into a web-based analytical tool using dash v1.4.1 
(https://dash.plotly.com), hosted on Heroku (https://heroku.com).  The analysis was performed using 
Python, v 3.7.4, including scipy.stats.beta (v1.4.1), numpy v1.18.1, Flask v1.1.2, matplotlib v 3.1.3 (see 
Supplemental material for source code). 
 
Results 
We first verified that the simulation was insensitive to null scenarios, OR = 1.0, and that the type 1 error 
rate was maintained across all null scenarios with all event rates, never exceeding 5% in any case and 
being lower with fewer days of data, at all event probabilities (Supplemental Fig. 1A-1C).   We then 

Scenario Type P(Trigger|Event) P(Trigger|No 
Event) 

Odds Ratio 

Null Scenarios 
(Scenarios with 
OR=1) 

0.20 0.20 1.0 
0.35 0.35 1.0 
0.50 0.50 1.0 
0.65 0.65 1.0 
0.80 0.80 1.0 

Alternative #1 
(Scenarios with 
OR>1; Trigger is 
Harmful) 

0.25 0.20 1.3 
0.40 2.7 
0.55 4.9 
0.70 9.3 
0.90 36.0 

Alternative #2 
(Scenarios with 
OR<1; Trigger is 
Protective) 

0.20 0.25 0.75 
0.40 0.38 
0.55 0.20 
0.70 0.11 
0.90 0.03 

Table 1. Simulation Parameters 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.28.20082339doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.28.20082339


 5

modeled simulations for various event probabilities, based on different probabilities for no event vs. event 
(see Table 1 for details), and found that as the OR increases, the power increases for a given number of 
days. We found that for a very low OR, where the trigger is only marginally higher for the event vs. non-
event days (i.e., 25% vs. 20%), we never achieved power above ~7% at 180 Days. Further, we found that 
an event rate of 50% was optimal to maximize power, because it maximizes our information about event 
and non-event days and if the trigger is experienced (Figures 2A-C).   

 
 
To validate that effects could be detected in both directions (both triggers and suppressor associations), 
we repeated this analysis by keeping P(trigger|event) at 0.2, and increasing the P(no trigger|event), which 
also showed that P(event) of 50% was optimal, and that OR < 0.4 could not be detected with 80% power 
at any time period of collection (Supplemental Fig. 2A-2C).   Relaxation of the significance threshold of 
events to alpha = 0.2 had a minor effect on power (Supplemental Fig. 3A-3C), although less than 
increasing duration of data collection.  This characteristic was validated in additional null simulations, 
which found that in general, the mean log(OR) converges quickly to a value of 0 (i.e., the null). 
Noteworthy, we found that between 76.6% to 91.3% of estimated OR are 0 or infinity at day 7, between 
41.5% to 66.6% at day 14, between 9.9% to 35.5% at day 28, and still occurring intermittently by chance 
at later days (Supplemental Fig. 4A-4C). By excluding OR estimates of 0 or infinity, we found that the 
remaining estimates converged to the true mean log(OR) value, although these estimates generally 
underestimated the true log(OR) at smaller numbers of days. However, they generally converge to the 
estimated OR near day 28 and more definitively at day 60.   By day 60, the mean was fairly consistent, 
with fewer numbers of days having underestimates of the relationship (Supplemental Figs. 5 and 6).  
Broadly, these results demonstrated that the most stable estimates of effect required at least 60 days of 
data collection, but that 90 days of data collection provided the optimal duration to identify most 
associations with OR > 5.0, and that even 180 days of data collection could not identify lower ORs, with 
the exception of an event rate (P(event)) of 50%.    

 
We then examined the impact of the amount of data collection (days) before and after the intervention in 
order to detect a significant change in frequency of the recurrent event using Fisher’s exact test.  
Assuming equal periods of time before and after the intervention, we found that regardless of the event 
frequency, no significant change could be detected with data collection under 15 days.  As shown in 
Figure 3, for increasing numbers of days with data collected, the proportion of days with events and the 
relative reduction in frequency of events decreases to detect a significant change as a result of an 
intervention.  For example, with only 15 days of data collected, an event would need to occur on 
minimum of  55% of days (~8 events) and have a reduction of at least 90% (~1 events) after the 

Figure 2. Simulation Results for Possible Triggers (i.e., OR>1) with P(event) = 0.2 (A), 0.5 
(B), and 0.8 (C). 
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intervention, or an event could occur on 90% of days (~13 events) with a decrease of 60% (~8 events).  
However, with longer data collection, less 
frequent events and lower proportionate 
reduction can be detected.   
 
Finally, to examine the use of Bayesian 
statistics to compare interventions, we 
compared several effect rates over varying 
data collection periods and found that for 
event rates < 20%, only very high effect 
sizes could be detected with probability of 
95% (Figure 4, Supplemental Figs. 6 and 
7).  To allow potential app users to examine 
their own data requirements, we developed 
a web-based app that is available at 
https://imtracker-power-
calc.herokuapp.com (Supplemental Fig. 8).  
 
 
Discussion 
In this simulation study of the N-of-1 approach used by the iMTracker mHealth application to guide self-
management of recurrent medical conditions, we identified several important characteristics about the  
duration of data collection needed, the association of possible risk factors (triggers or suppressors) for a 
given outcome, and the potential of an intervention to reduce the rate of recurrence of the primary 
outcome.  First, we found that in terms of identifying associations between triggers or suppressors and a 
recurrent outcome, an outcome that occurred with probability of 50% was optimal for identification of 
associated factors, and that most associations of sufficient effect size to be identified with 80% power 
were seen by 90 days, indicating that there is little evidence for extending the data collection period 
beyond 90 days, at least for the purposes of identification of possible associations for intervention.  In 
terms of testing interventions, we found that there was an inverse relationship between the intervention 

Figure 4. Bayesian effect calculations. Based on 90 days of data collection during the ‘control’ period, 
with rate of 33% (30 events).  Comparisons include interventions with effect size ranging from 16.1% to 
80.7%.  Probability based on overlap of 95% credible intervals for the probability distribution of each 
group. 

Figure 3. Intervention Effect. Red labels indicate 
the proportionate decrease in events after the 
intervention, compared with prior to intervention.   
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effect and the number of days needed to collect and test data to compare, with 90 days again being 
optimal in terms of providing sufficient power to detect an effect as low as 20%, albeit with an increased 
number of events needed during the data collection period.   
 
These results have implications both for the specific usability of the iMTracker as a self-management app, 
as well as the world of N-of-1 studies broadly.  For one, our study provides a general timeline for data 
collection of 90 days, during which the app can both identify possible associated risk factors for 
modification, as well as establish a baseline event rate for evaluation of future interventions.  We note that 
event rates down to 20% can be reasonably quantified during this time period, acknowledging that any 
intervention would need to have relatively a strong association/effect to detect an improvement if targeted 
as an intervention.  We found that fairly large odds ratios (~5) are needed to identify an association with 
sufficient statistical power, and little is gained by lowering the significance threshold needed to identify 
associations compared with increasing duration of data collection.  
 
To guide this process, we also released an online, web-based power calculator that patients and providers 
can apply prior to use of the iMTracker to determine if the frequency of the event, and planned data 
collection period, will be sufficient to identify a change from the intervention with sufficient probability.  
Such information is valuable, as it can directly inform patients that an event that is uncommon, or for 
which proposed interventions would be inferred to have mild effects, is unlikely to meet criteria for use of 
the iMTracker in self-management.  In contrast, for patients with frequent events, patients and providers 
would have the opportunity to develop a specific data collection plan, with details about exactly how long 
the app will need to be used.    
 
Compared with standard clinical approaches, in which population-level data can be analyzed for the 
average treatment effect, N-of-1 medicine requires a highly automated process to scale, an area uniquely 
suited for advances in mHealth technologies. There is early evidence that an individualized approach to 
self-management of CRMCs using mHealth applications has potential to improve clinical outcomes for 
CRMCs.  Kravitz et al., examined an mHealth-supported N-of-1 trial vs usual care in 215 patients with 
chronic musculoskeletal pain over 2 years, and found that 88% of those in the N-of-1 group affirmed that 
the mHealth app could potentially help manage their pain28, although the trial outcome found no 
significant difference between groups.  Pumbo et al., examined 50 studies of mobile apps for pain 
management, and found data to be as accurate and feasible as pen-and-paper methods for symptom 
tracking, but noted that data integration presented a critical barrier to development and application of 
these approaches25.   
 
We developed the iMTracker app out of frustration over the lack of an established quantitative 
methodology for assessment of patterns of recurrence of recurrent medical conditions, and response to 
treatment.   In exploring N-of-1 approaches it became evident that to study the broader clinical impact of 
such an approach using randomized controlled trials would require a level of scale that was not feasible 
with manual application.  Through use of an automated, algorithmic approach to management of recurrent 
medical conditions, we have identified both great potential and challenges.  One particular challenge was 
concerns over data security and loss of privacy31, 32  that come with storing and analyzing data on a server, 
which can be compromised.  In contrast, we designed the iMTracker based on the goal of using edge 
computing29, 30 strategies that run on the mobile device itself, in order to allow complete usage of the 
iMTracker without need for transfer or storage of data on a server. Although such features are desirable 
from a user perspective, there are challenges in attempting to move the entire data analysis platform to the 
edge, rather than maintaining data and data analysis on a server platform.  For one, more advanced data 
analysis techniques, such as those integrating probabilistic programming like Markov chain Monte Carlo 
sampling for more advanced Bayesian analysis, are highly limited due to the memory requirements.  Our 
Bayesian model employs the conjugate priors of the Beta distribution to allow quick analysis without 
complex computing.  However, there are multiple simplifying assumptions in these analyses that could 
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hold prominent effects in real world applications.  Most specifically, these methods assume independence 
of events, and do not account for the dynamic, temporal nature of data collection, which includes both 
seasonal/trend effects, as well as intra-individual correlation (autocorrelation).  These attributes can be 
modeled using more advanced approaches, such as using hidden Markov models, although at the expense 
of increased computational demands.  Additional approaches, using federated learning to allow one user’s 
data to inform another are also possible, although these require more advanced networking technologies, 
an area of active research by our team.   
 
In conclusion, we found that in general, event rates of 20% with data collection period of 90 days 
provides adequate power to identify possible associated risk factors, and test the impact of interventions.  
We provide an online power calculator for users to conduct their own power calculations, which through 
use of conjugate priors allow small computational demands as can eventually be included in the app logic 
itself.  Future work on edge-based computing and federated learning is likely needed to improve the 
ability of these models to account for time-series features, such as autocorrelation and seasonality and 
trends.   
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