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One Sentence Summary: Incorporating both gut microbiome and host immune marker data into 25 
classification models can better distinguish CDI from other groups than can either type of data 26 
alone. 27 
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Abstract: Exposure to Clostridioides difficile can result in asymptomatic carriage or infection 37 
with symptoms ranging from mild diarrhea to fulminant pseudomembranous colitis. A reliable 38 
diagnostic approach for C. difficile infection (CDI) remains controversial. Accurate diagnosis is 39 
paramount not only for patient management but also for epidemiology and disease research. 40 
Here, we characterized gut microbial compositions and a broad panel of innate and adaptive 41 
immunological markers in 243 well-characterized human subjects, who were divided into four 42 
phenotype groups: CDI, Asymptomatic Carriage, Non-CDI Diarrhea, and Control. We found that 43 
CDI is associated with alteration of many different aspects of the gut microbiota, including 44 
overall microbial diversity and microbial association networks. We demonstrated that 45 
incorporating both gut microbiome and host immune marker data into classification models can 46 
better distinguish CDI from other groups than can either type of data alone. Our classification 47 
models display robust diagnostic performance to differentiate CDI from Asymptomatic carriage 48 
(AUC~0.916), Non-CDI Diarrhea (AUC~0.917), or Non-CDI that combines all other three 49 
groups (AUC~0.929). Finally, we performed symbolic classification using selected features to 50 
derive simple mathematic formulas for highly accurate CDI diagnosis. Overall, this study 51 
provides evidence supporting important roles of gut microbiota and host immune markers in CDI 52 
diagnosis, which may also inform the design of future therapeutic strategies. 53 
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INTRODUCTION 73 
Clostridioides difficile infection (CDI) is the most common cause of healthcare–associated 74 
infection and an important cause of morbidity and mortality among hospitalized patients1-3. 75 
Current treatment strategies for CDI, including vancomycin, metronidazole and fidaxomicin, 76 
have inconsistent cure rates and treatment failure or CDI recurrence may occur in approximately 77 
one third of cases4,5. Antibiotic exposure is considered the most important factor predisposing 78 
patients to CDI6,7. In fact, treatments with antibiotics have a tremendous impact on the 79 
composition and functionality of the gut microbiota, and accordingly are associated with reduced 80 
colonization resistance against pathogens such as C. difficile8-10. A distinct microbial community 81 
structure has been reported to be associated with CDI in human cohorts and animal models11,12. 82 
Characterization of the microbial features in individuals with different C. difficile 83 
infection/colonization status is an essential step in understanding the role of the gut microbiome 84 
in the development of CDI. 85 

The pathophysiology of CDI is mainly associated with the production of two exotoxins, 86 
toxin A (TcdA) and toxin B (TcdB)13. TcdA and TcdB act on intestinal epithelial cells, inducing 87 
pro-inflammatory cytokines, loss of tight junctions, cell detachment and an impaired mucosal 88 
barrier14-16. The innate and adaptive immune responses to CDI play crucial roles in disease onset, 89 
expression, severity, progression, and overall prognosis17,18. The innate immune defense 90 
mechanisms against C. difficile and its toxins include the commensal intestinal flora, mucosal 91 
barrier, intestinal epithelial cells, and mucosal immune system19,20. TcdA and TcdB have 92 
multiple effects on the innate immune system, including inducing expression of numerous pro-93 
inflammatory mediators (e.g., cytokines, chemokines and neuroimmune peptides) and the 94 
recruitment and activation of a variety of innate immune cells21,22. Adaptive immunity is also 95 
sufficient to provide some protection from CDI, likely via antibody-mediated neutralization of 96 
TcdA and TcdB23-26. These immune markers also have the potential to act as clinically useful 97 
diagnostic markers of CDI. 98 

Exposure to toxinogenic C. difficile can lead to a range of clinical outcomes ranging from 99 
asymptomatic colonization to mild diarrhea and more severe disease syndromes such as 100 
pseudomembranous colitis, toxic megacolon, bowel perforation, sepsis, and death27,28. 101 
Asymptomatic C. difficile carriage is characterized by C. difficile colonization in the absence of 102 
symptoms of infection. Previous studies suggest that C. difficile asymptomatic carriers have the 103 
potential to contribute to C. difficile transmission and hospital-onset CDI in inpatient facilities, as 104 
carriers can shed spores into the hospital environment29,30.  105 

The diagnosis of CDI is based on clinical signs and symptoms in combination with 106 
laboratory testing. Several diagnostic laboratory tests are available including enzyme 107 
immunoassays (EIA) for TcdA and TcdB, nucleic acid amplification tests (NAAT), selective 108 
toxinogenic culture, cell cytotoxicity neutralization assay, and glutamate dehydrogenase EIA31-33. 109 
However, currently available approaches do not accurately differentiate CDI from diarrhea with 110 
another cause in a patient colonized with toxinogenic C. difficile. Over-diagnosis of disease 111 
could result in overtreatment of CDI, delayed recognition of other causes of illness, and 112 
unnecessary antibiotic exposures34. 113 
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Machine learning has a great impact in many areas of medical research, as it offers a 114 
principled approach for developing sophisticated, automatic, and objective algorithms for 115 
analysis of complex data. Indeed, previous studies indicate that supervised learning can be 116 
successfully employed for clinical disease assessment for diverse disorders including Parkinson’s 117 
disease35, diabetes36, inflammatory bowel disease37 and glaucoma38. In our previous work, we 118 
found that specific immune markers, particularly G-CSF, can be used to distinguish adults with 119 
CDI from other groups including asymptomatic carriers and NAAT-negative patients with and 120 
without diarrhea39. Here, we integrate the host immune marker data and newly obtained gut 121 
microbiome data from subjects of the same cohort to build classification models to optimally 122 
distinguish CDI from other groups. Our aim is to identify consistent biological signatures for 123 
highly accurate diagnosis of CDI.  124 
 125 

RESULTS  126 
Baseline demographic and clinical characteristics of participants 127 
Our clinical cohort consists of 243 well-characterized recruited participants, who were divided 128 
into four groups (see Materials and Methods)39: (1) Control: subjects without diarrhea and with 129 
NAAT-negative stool (n=47); (2) Non-CDI Diarrhea: subjects with diarrhea but NAAT-negative 130 
stool (n=44); (3) Asymptomatic Carriage: subjects without diarrhea but with NAAT-positive 131 
stool (n=40); (4) CDI: subjects with diarrhea and NAAT-positive stool (n=112). The first three 132 
groups can be combined as the Non-CDI group. The entire clinical cohort had a mean ± SD age 133 
of 63.66 ± 14.85 year and was 48.15% female. Demographic data of the cohort are summarized 134 
in Table 1. In total, 187 participants (76.95%) had both gut microbiome and immune marker data 135 
available (see Table S1). 136 
 137 
Microbial community structure 138 
To compare the overall microbial community structure of the four groups, we first calculated the 139 
alpha diversity (i.e., the within-sample taxonomic diversity) of each sample at the genus level 140 
using four different measures: taxa richness (the observed number of different taxa present in the 141 
sample), Chao1 (abundance-based estimator of taxa richness), Evenness (the uniformity of the 142 
population size of each taxa present in the sample), and  Shannon diversity index (estimator of 143 
taxa richness and evenness: more weight on richness). (See Materials and Methods for detailed 144 
definitions of those alpha diversity measures.) As shown in Fig.1, We found that richness indices 145 
(taxa richness and Chao1) did not differ significantly among these groups. The gut microbiota of 146 
Non-CDI Diarrhea subjects showed lower evenness than that of the Control group. Shannon 147 
diversity was significantly lower in the Non-CDI Diarrhea and CDI groups than in the Control 148 
group.  149 

To determine whether the gut microbial compositions of participants are affected by C. 150 
difficile infection/colonization status, we performed Principal Coordinates Analysis (PCoA) at 151 
the genus level using Bray-Curtis dissimilarity (which is a beta diversity measure to quantify the 152 
between-sample compositional dissimilarity). We found no distinct clusters corresponding to the 153 
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four different phenotype groups, implying that the gut microbial compositions of participants 154 
from the four groups are not significantly different (Fig. 2A). Interestingly, by directly 155 
comparing the beta diversity of each group, we did find that the CDI group displays higher beta 156 
diversity than other groups (Fig. 2B), indicating that the microbial compositions of participants 157 
within the CDI group vary more prominently than other groups. Permutational multivariate 158 
analysis of variance (PERMANOVA) showed that the overall bacterial composition differed 159 
significantly among different groups based on the CDI status (P < 0.001; Table S2), whereas 160 
other host factors such as age, sex, race and ethnicity had no significant effect on the microbiome 161 
composition. 162 

To identify microbiome markers (i.e., certain taxa with very high discriminatory ability) 163 
to differentiate those different phenotype groups, we performed differential abundance analysis. 164 
In particular, we used ANCOM40 (analysis of composition of microbiomes) with a Benjamini-165 
Hochberg correction, and adjusted for age and sex. We found that the abundances of 15 genera 166 
were significantly different between CDI and Asymptomatic Carriage groups (Fig. 3A and Table 167 
S3). Among the 15 genera, 4 of them (Veillonella, Enterobacter, Granulicatella and Dialister) of 168 
these genera were enriched in the CDI group, while the other 11 genera (Lactococcus, Dorea, 169 
Moryella, [Ruminococcus]_gauvreauii_group, Stenotrophomonas, Agathobacter, Blautia, 170 
Sellimonas, Eggerthella, Faecalitalea and Lachnospiraceae UCG-008) were enriched in the 171 
Asymptomatic Carriage group. We also found 16 differentially abundant genera between the 172 
Non-CDI Diarrhea group and the CDI group (Fig. 3B and Table S4). Of these, 10 genera 173 
(Clostridioides, Enterobacter, Epulopiscium, Escherichia-Shigella, Eisenbergiella, Dialister, 174 
Ruminiclostridium, Fusobacterium, Klebsiella and Veillonella) were enriched in the CDI group, 175 
and the other 6 genera ([Eubacterium]_hallii_group, Collinsella, Agathobacter, Dorea, 176 
Stenotrophomonas and Streptococcus) were enriched in the Non-CDI Diarrhea group.  ANCOM 177 
analysis also enabled us to identify 40 genera (including Clostridioides and Veillonella) that have 178 
significant differential abundances between the CDI group and the whole Non-CDI group (Fig. 179 
3C and Table S5). Note that a total of 6 differentially abundant genera were identified from all 180 
the three comparisons: CDI vs. Asymptomatic Carriage; CDI vs. Non-CDI Diarrhea; CDI vs. 181 
Non-CDI. Among them, Veillonella, Enterobacter and Dialister were enriched in the CDI group, 182 
while Dorea, Stenotrophomonas and Agathobacter were depleted in the CDI group.  183 
 184 
Microbial correlation networks 185 
To compare the microbial communities of the four groups at the network-level, we constructed 186 
the genus-level microbial correlation network for each group using SparCC41 (sparse correlations 187 
for compositional data). We found that the microbial correlation network of the CDI group has 188 
quite different structure compared to other groups (Fig. 4). In order to quantify the difference of 189 
the network structure, we calculated the number of nodes, number of edges, average degree (the 190 
average number of connections per node), graph density (measure of how close the network is to 191 
a complete graph), clustering coefficient (measure of how complete the neighborhood of a node 192 
is) and modularity (measure of how well a network decomposes into modular communities) 193 
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(Table S6). In general, compared with the networks of other groups, the network of the CDI 194 
group has fewer nodes and edges, lower average degree, but higher modularity. These indicate 195 
that the overall microbial correlations in the CDI group are much weaker than those in other 196 
groups.  197 

To analyze these patterns in more detail, we used NetShift42 to identify potentially 198 
important “driver” taxa responsible for the change of microbial correlations. This analysis 199 
revealed 24 potential driver taxa linked with the change of microbial correlations between CDI 200 
and Asymptomatic Carriage groups (Fig. S1). The top driver taxa were Alistipes, Clostridioides, 201 
Desulfovibrio, Eggerthella, Erysipelatoclostridium, Klebsiella, Odoribacter Proteus, 202 
[Ruminococcus]_torques_group, Streptococcus, Vagococcus and Veillonella. We then identified 203 
24 genera as potential driver taxa underlying the change of microbial correlations between CDI 204 
and Non-CDI Diarrhea groups (Fig. S2). The top driver taxa were Alistipes, Buttiauxella, 205 
Citrobacter, Clostridium_sensu_stricto_13, Desulfovibrio, Klebsiella, Oscillibacter, 206 
Phascolarctobacterium, Streptococcus and Veillonella. Finally, Netshift analysis revealed 38 207 
potential driver taxa underlying the change of microbial correlations between CDI and Non-CDI 208 
groups.  The top driver taxa were Bifidobacterium, Clostridioides, Klebsiella, Oscillibacter, 209 
Streptococcus and Veillonella (Fig. S3). Together, these results suggested that certain bacterial 210 
taxa (e.g., Clostridioides, Klebsiella, Streptococcus and Veillonella) could play an important role 211 
in driving the changes of microbial correlations in subjects with different C. difficile 212 
infection/colonization status. 213 

 214 
Host immune markers and CDI 215 
To determine the systemic levels of proinflammatory cytokines in CDI, we measured the 216 
circulating levels of granulocyte-colony stimulating factor (G-CSF), interleukin-1β (IL-1β), IL-2, 217 
IL-4, IL-6, IL-8, IL-10, IL-13, IL-15, monocyte chemoattractant protein-1 (MCP-1), vascular 218 
endothelial growth factor-A (VEGF-A), and tumor necrosis factor-alpha (TNF-α) as previously 219 
reported39. Serum concentrations of immunoglobulin A (IgA), IgG, and IgM antibodies against 220 
C. difficile toxin A and toxin B were measured by semi-quantitative enzyme-linked 221 
immunosorbent assay (ELISA). We previously demonstrated specific markers of these innate 222 
and adaptive immunity that can distinguish CDI from each of the other three groups39. In the 223 
current study, we are particularly interested in comparing the CDI group and the combined Non-224 
CDI group. Based on the Mann-Whitney U test, we identified in total 11 immune markers that 225 
displayed significantly different concentrations in these two groups, including G-CSF, IL-4, IL-226 
6, IL-8, IL-10, IL-15, TNF-α, MCP1, IgA anti-toxin A and B, and IgG anti-toxin A in blood 227 
(Table S7). All of these immune markers had higher concentrations in the CDI group than in the 228 
Non-CDI group. Host immune marker variations between samples were evaluated using the 229 
Principal Component Analysis (PCA) (Fig. 2C). PCA plot showed no clear clustering of those 230 
subjects based on immune marker concentrations. However, boxplot of Euclidean distance of 231 
immune marker profiles from CDI patients showed higher within-group variation than that in all 232 
the other three groups (Fig. 2D). PERMANOVA analysis indicated that the immune homeostasis 233 
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was significantly different among different groups based on the CDI status (P = 0.016; Table 234 
S2). But age, gender, race and ethnicity did not have significant effects on the host immune 235 
marker levels.  236 

 237 
Interplay between gut microbiome and host immune markers 238 
To reveal the interplay between the gut microbiome and the host immune system, we calculated 239 
the correlations between microbial compositions (at the genus level) and the circulating levels of 240 
host immune markers for each of the four groups (Spearman correlation with Benjamini-241 
Hochberg correction). The results are shown in Fig. 5 and Fig. S4. For the Control group, the 242 
most significant associations were identified as Chiristensenellaceae R-7 group negatively 243 
associated with TNFa, Bifidobacterium positively associated with VEGFA and IL-13, Rothia 244 
positively associated with IL-15, and Veillonella positively related with IL-4 (Fig.5A and Fig. 245 
S4).  For the Non-CDI Diarrhea group, Ruminococcaceae UCG-011 was negatively correlated 246 
with IL-8 and IL-6, Defluviitaleaceae UCG-011 was positively correlated with IL-1b, and 247 
Blautia was negatively correlated with MCP1 levels (Fig. 5B). For the Asymptomatic Carriage 248 
group, we found that Lactobacillus was negatively associated with VEGFA, Akkermansia was 249 
positively associated with IL-6, and Enterococcus was positively related to TNFa (Fig. 5C). For 250 
the CDI group, negative associations involved Akkermansia and IL-10, Lactococcus and G-CSF, 251 
while positive associations involved Lactobacillus and IgG and IgA anti-toxin B (Fig. 5D). 252 
Interestingly, none of these most significant associations was universally present across different 253 
groups. This indicated that the interactions between gut microbiota and host immunological 254 
markers can be very sensitive to the status of C. difficile colonization and infection. More 255 
importantly, this result implies that the integration of gut microbiota and host immune markers 256 
might be quite useful for highly accurate diagnosis of CDI. 257 
 258 
Diagnostic accuracy for CDI classification based on host immune markers and gut 259 
microbiota 260 
To determine whether host immune markers or gut microbiota could serve as biomarkers to 261 
classify subjects into different groups, we constructed a multi-class classifier based on random 262 
forests (RF). One of the most popular performance metrics of a classifier is the Area Under the 263 
receiver operating characteristic Curve (AUC). The performance of a multi-class classifier is 264 
measured by both micro-average and macro-average AUCs. (For micro-average AUC, we 265 
calculated the AUC from the individual true positive rates and false positive rates of the multi-266 
class model. For the macro-average AUC, we calculated the AUC independently for each class 267 
and then took the average.) We considered three different feature types: (1) host immune maker 268 
concentrations alone; (2) gut microbial compositions alone; and (3) the integration of (1) and (2) 269 
in our classification analysis. To eliminate confounding effects, we excluded the genus 270 
Clostridioides from our classification analysis. The immune marker-based classifier achieved 271 
macro-average AUC ~ 0.827 and micro-average AUC ~ 0.828 (Fig. S5A), which are quite 272 
comparable to the performance of microbiota-based classifier (Fig. S5B). Interestingly, 273 
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integrating immune marker with gut microbiota showed much better classification performance 274 
(macro-average AUC ~ 0.926 and micro-average AUC ~ 0.869) (Fig. S5C).  275 

We further performed binary classifications to distinguish CDI subjects from 276 
Asymptomatic Carriage, Non-CDI Diarrhea, and Non-CDI subjects, using different feature types 277 
(Fig. 6). The goal of this analysis was to assess whether any single taxon or immune marker 278 
could reliably differentiate CDI status. The importance of each feature was quantified by the 279 
Mean Decrease in Accuracy (MDA) of the classifier due to the exclusion (or permutation) of this 280 
feature. The more the accuracy of the classifier decreases due to the exclusion (or permutation) 281 
of a single feature, the more important that feature is deemed for classification of the data. 282 

In the classification of CDI vs. Asymptomatic Carriage, we found that G-CSF and 283 
Moryella were the most important immune and microbial features, respectively (Fig. S6:A-B). 284 
But the classification based on G-CSF (or Moryella) alone did not yield very high performance: 285 
mean AUC ~ 0.817 (or 0.701), respectively (Fig. 6:A1-A2). When we used all the immune 286 
markers (or all the genera) as features, we achieved mean AUC ~ 0.867 (or 0.805), respectively 287 
(Fig. 6:A3-A4). Interestingly, when we integrated all the host immune markers and gut microbial 288 
composition data together, we achieved a much higher performance with mean AUC ~ 0.900 289 
(Fig. 6:A5). In order to select a subset of features that is as discriminatory as the whole set of 290 
features, we followed the “1-SE” rule (i.e., one chooses the model with fewest features such that 291 
its classification performance is less than one standard error away from that of the model with all 292 
the features), and selected the following 4 features: 2 bacterial genera (Moryella and Veillonella) 293 
and 2 immune markers (G-CSF and IL-6) in classifying CDI and Asymptomatic Carriage groups 294 
(Fig. S6:G-J). The RF classifier with those selected features displayed an outstanding 295 
classification performance, with mean AUC ~ 0.916 (Fig. 6:A6). Note that a significant negative 296 
correlation between Moryella and G-CSF was found in the Asymptomatic Carriage group (Fig. 297 
5C), which might contribute to the outstanding performance of the RF classifier with Moryella 298 
and G-CSF as selected features.  299 

In the classification of CDI vs. Non-CDI Diarrhea groups, we found that G-CSF and 300 
[Eubacterium]_hallii_group are the top immune and microbial features, respectively (Fig. S6:C-301 
D). But the classification based on G-CSF (or [Eubacterium]_hallii_group) alone did not 302 
perform very well: mean AUC ~ 0.747 (or ~ 0.630), respectively (Fig. 6:B1-B2). When we used 303 
all the immune marker (or all the microbial genera) as features, we achieved mean AUC ~ 0.851 304 
(or ~ 0.884), respectively (Fig. 6:B3-B4). By integrating all features from both host immune 305 
marker and gut microbial genera, we further improved the classification performance to mean 306 
AUC ~ 0.918 (Fig. 6:B5). Following the “1-SE” rule, we selected the following 5 features: 3 307 
genera: Enterococcus, Epulopiscium and [Eubacterium]_hallii_group; and 2 immune markers: 308 
G-CSF and IgA anti-toxin A (Fig. S6:H-K). The RF classifier with those selected features 309 
achieved mean AUC ~ 0.917 (Fig. 6:B6), which is quite comparable to that of using all the 310 
features. Note that Enterococcus was found to be significantly associated with G-CSF in the 311 
Non-CDI Diarrhea group (Fig. 5B). This might partially explain the outstanding performance of 312 
the RF classifier with Enterococcus and G-CSF as selected features.   313 
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In the classification of CDI vs. Non-CDI groups, we found that G-CSF and Curvibacter 314 
are the top immune and microbial features, respectively (Fig. S6:E-F). Classification based on G-315 
CSF (or Curvibacter) alone achieved mean AUC ~ 0.802 (or ~ 0.683), respectively (Fig. 6:C1-316 
C2). When we used all the immune marker (or all the microbial genera) as features, we achieved 317 
mean AUC ~ 0.878 (or ~ 0.903), respectively (Fig. 6:C3-C4). Integrating all features from both 318 
host immune marker and gut microbial genera, we further improved the classification 319 
performance to mean AUC ~ 0.941 (Fig. 6:C5). Following the “1-SE” rule, we selected the 320 
following 10 features: 6 genera: Stenotrophomonas, Curvibacter, Enterobacter, Anaerobacillus, 321 
Fusobacterium and Veillonella; and 4 immune markers: G-CSF, IL-6, TNF-α and IgA anti-toxin 322 
B (Fig. S6:I-L). Classification with those well selected features achieved mean AUC ~ 0.929 323 
(Fig. 6:C6).  324 
 325 
Using symbolic classification to derive diagnostic scores.  326 
The outstanding classification results based on well-selected features prompt us to derive simple 327 
mathematical models for CDI diagnosis. To achieve that, we leveraged symbolic classification 328 
(SC)43,44, a genetic programming technique that automatically searches the space of 329 
mathematical expressions to find the model that best fits a given dataset. The fitness function in 330 
SC is a maximization function, and the number of generations is chosen based on the saturation 331 
of the fitness score (Fig. S7). Using the same set of selected features and trained with the entire 332 
dataset, the SC model outperformed logistic regression (LR) in differentiating CDI from 333 
Asymptomatic Carriage (or Non-CDI Diarrhea, or Non-CDI), based on various performance 334 
metrics: Accuracy, Precision, Recall and F1-score (see Table 2).  335 

Indeed, as shown in Table 2, we derived a simple SC model with selected features, 336 
reaching a very high accuracy (0.896) in distinguishing CDI subjects from Asymptomatic 337 
Carriage. Basically, for each subject 𝑖, we calculate the diagnostic score 𝑓(𝑖) that will be used 338 
for CDI diagnosis: the class of subject 𝑖 is CDI if 𝑓(𝑖) > 0; Asymptomatic Carriage, if 𝑓(𝑖) ≤ 0. 339 
Here, 340 
    𝑓(𝑖) = 𝑥!"#$ ∗ 𝑥%&'(()*&((++𝑥!"#$, − 0.2 ∗ 𝑥-)./&((+ + 0.41 + 1.1 ∗ 𝑥!"#$ − 0.1 ∗ 𝑥012 −341 
																		18.25,                                                                                                                            (1)  342 
with 𝑥+ representing the abundance or concentration of feature-a in subject-𝑖. Similarly, we 343 
derived a SC model with accuracy of 0.900 in distinguishing CDI (if 𝑓(𝑖) > 0) from Non-CDI 344 
Diarrhea (if 𝑓(𝑖) ≤ 0) with the diagnostic score  345 
     𝑓(𝑖) = 𝑥3*4&.)5)5567 ∗ 𝑥089_;<=9+0.5 ∗ 𝑥3>6()>'75'6? − 11 + 𝑥[36A+54&.'6?]_C+((''_D.)6>(0.02 ∗346 

																			−𝑥!"#$) + 𝑥089_;<=9 71 −
EF

G!"#$
8 − F.FF,

G%&'()*+*++,-
.                                                          (2)                                                                  347 

Finally, we derived a SC model with accuracy of 0.882 in distinguishing CDI (if 𝑓(𝑖) > 0) from 348 
Non-CDI (if 𝑓(𝑖) ≤ 0) with the diagnostic score 349 
𝑓(𝑖) = 𝑥!"#$ ∗ 𝑥089_;<=I+0.2 ∗ 𝑥J*+&.)A+5'((67 ∗ 𝑥!"#$ ∗ 𝑥K4&*)4.)>C)?)*+7 ∗ 𝑥LM$a + 0.04 ∗350 

													𝑥N6.O'A+54&. ∗ 𝑥!"#$ + 0.3 ∗ 𝑥3*4&.)A+54&.P ∗ 𝑥!"#$ ∗ 𝑥%&'(()*&((+1 + 𝑥Q67)A+54&.'6? ∗351 
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											𝑥!"#$+0.5 ∗ 𝑥N6.O'A+54&. + 𝑥!"#$ ∗ 𝑥K4&*)4.)>C)?)*+71 + 𝑥N6.O'A+54&.(0.1 ∗ 𝑥012 −352 
																		𝑥J*+&.)A+5'((67) + 𝑥K4&*)4.)>C)?)*+7+𝑥K4&*)4.)>C)?)*+7 − 21.                                    (3) 353 

To ensure the SC models learned from the entire dataset are not overfitting, we 354 
performed cross-validation by randomly splitting the dataset to form a training set (80% of the 355 
data) and a held-out test set (20% of the data) in 10 different ways. Each time, for each 356 
classification task, we learned the SC model from the training dataset and evaluated it on the test 357 
dataset. Due to the different training sets, SC will derive different mathematical formulas (i.e., 358 
diagnostic scores). However, those SC models learned from different training datasets 359 
demonstrated quite robust performance in terms of Accuracy, Precision, Recall and F1-score (see 360 
Table S8). More importantly, even trained with less data, the SC models still outperformed LR 361 
models learned from the entire dataset.  362 

These SC models consisted of explicit mathematical equations, which are more 363 
transparent than black-box classifiers such as RF. At the same time, the SC models are also more 364 
accurate than traditional classifiers (such as LR). The transparency and high accuracy highlight 365 
the importance of SC models in the clinical diagnosis of CDI.  366 
 367 
DISCUSSION 368 
Current methods for CDI diagnosis are unable to combine high sensitivity and high clinical 369 
specificity, which can result in either underdiagnosis or overdiagnosis of CDI45. A more accurate 370 
diagnostic approach for CDI could optimize therapeutic decision-making and reduce 371 
transmission. Here, we employed 16S rRNA gene sequencing to profile the gut microbial 372 
compositions and combined the gut microbiome data with data from a broad panel of innate and 373 
adaptive host immune response markers to investigate the potential roles of these markers in the 374 
diagnosis of CDI. We demonstrated that the combination of host immune markers and gut 375 
microbial data can provide a potential route to optimize CDI diagnosis. Importantly, this work 376 
derived specific diagnostic models (in terms of mathematic equations) that yielded robust 377 
accuracy in differentiating CDI subjects from Asymptomatic Carriage, Non-CDI Diarrhea and 378 
Non-CDI groups.  379 

Taxonomic diversity is a fundamental property of ecological systems. It is generally 380 
believed to be an important determinant of the structure and functioning of ecological 381 
communities46,47. Diversity indices have been routinely calculated in the study of human 382 
microbiome48. Consistent with previous studies49-52, we found that the gut microbiomes of CDI 383 
patients were characterized by lower Shannon diversity than that of the Control group. 384 
Interestingly, we observed an increased variation of both immune markers and gut microbial 385 
compositions in the CDI group with respective to other studied groups. This suggests that CDI is 386 
characterized by a significantly less stable microbiome and immune homeostasis. Our findings 387 
are in line with the Anna Karenina principle, which suggests that CDI linked changes in the 388 
microbiome and immune homeostasis are likely stochastic, leading to community instability53-55.  389 

We were able to identify several candidate driver taxa (e.g., Desulfovibrio, Klebsiella, 390 
Streptococcus and Veillonella) that played a key role in driving the changes of microbial 391 
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correlation networks between CDI and Asymptomatic Carriage (or Non-CDI Diarrhea, Non-392 
CDI) groups. Among those driver taxa, Desulfovibrio has previously been shown to have a 393 
pathogenic role in ulcerative colitis due to its ability to generate sulfides56. Streptococcus has 394 
previously been shown to produce lactate thus impacting C. difficile TcdA production and tcdA 395 
expression to alleviate CDI57. Klebsiella is a Gram-negative bacterium that cause different types 396 
of healthcare-associated infections including pneumonia, bloodstream infections, and 397 
meningitis58. Klebsiella bacteria have been increasingly shown to develop antimicrobial 398 
resistance, most recently to the class of antibiotics known as carbapenems59,60. It is thus possible 399 
that the CDI pathogenesis is further enforced by the enrichment of antagonistic bacteria present 400 
in the gut microbiome of CDI subjects. In addition, our analysis demonstrated that the 401 
associations between host immunological markers and gut microbial compositions in the CDI 402 
group were dramatically different from those in other groups. However, further investigations are 403 
needed to determine whether these alterations are integral to the CDI pathogenesis. 404 

The diagnosis of CDI remains challenging, especially the ability to distinguish CDI and 405 
C. difficile colonization61-63. To address this issue, we developed classification models aimed at 406 
differentiating CDI status based on host immune markers and gut microbiome data. We excluded 407 
the genus Clostridioides in further classification analysis to eliminate confounding effects. 408 
Evaluating the classification performance of host immune markers or/and microbiome data in 409 
multi-class models, it appears that a combination of host immune markers and gut microbiome 410 
data can further improve the accuracy of classification. More specifically, we were able to 411 
identify specific immune and microbial features that could accurately distinguish CDI subjects 412 
from Asymptomatic Carriage, Non-CDI Diarrhea, and Non-CDI subjects. In addition, most of 413 
the selected features identified by feature selection were also differentially abundant genera and 414 
differentially expressed immune markers.  415 

From the classification of CDI and Asymptomatic Carriage, we were able to select a few 416 
features with outstanding discriminability, including Veillonella and Moryella.  Interestingly, a 417 
positive relationship between Veillonella and CDI has been identified in recent studies64-67. An 418 
important role for Veillonella in CDI is supported by the fact that Veillonella species were 419 
associated with low coprostanol levels that correlated strongly with CDI64. A similar negative 420 
relationship between Moryella species and CDI has previously been observed68. Enterococcus, a 421 
feature selected from the classification of CDI vs. Non-CDI Diarrhea, has been reported to be 422 
associated with CDI due to vancomycin resistance69. Consistent with the findings from previous 423 
reports70,71, Epulopiscium was significantly enriched in the CDI group and played an important 424 
role in differentiating this comparison. Among those features selected from the classification of 425 
CDI and Non-CDI groups, Enterobacter and Fusobacterium have been considered as 426 
opportunistic pathogens involved in multiple diseases72,73.  427 

Machine learning method has the potential to identify biomarkers and aid in the diagnosis 428 
of many diseases. However, the learnt relationships between predictors and outcome are 429 
typically non-transparent, especially non-linear methods (i.e., decision tree learning). Previous 430 
study has shown that an interpretable trees framework can extract, measure, prune, select, and 431 
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summarize rules from a tree ensemble, and calculates frequent variable interactions74.  However, 432 
these rules from tree ensembles are still too complicated to be clinically meaningful. Classical 433 
logistic regression, is one of the most common machine learning models in medicine75. The main 434 
drawback of LR is its failure to solve non-linear problems and it underperforms where there are 435 
multiple or non-linear decision boundaries76. Furthermore, the log odds scale in LR is hard to 436 
interpret77. Symbolic classification based on genetic programming is an automated technique to 437 
derive formulas from features for classification purpose78. Using the selected integrated features 438 
from the random forests model, we demonstrated that the mathematical formulas automatically 439 
derived from symbolic classification have robust diagnostic accuracy to differentiate CDI 440 
patients from Asymptomatic Carriage (or Non-CDI Diarrhea, and Non-CDI groups). 441 
Specifically, symbolic classification provides explicit mathematic formulas as its output, which 442 
significantly improves the transparency of the learned relationship between predictors and 443 
outcomes. These results hold translational promise in clinical diagnosis of CDI. Further external 444 
validation of the derived formulas will require a different cohort with the same inclusion criteria 445 
as ours. This is beyond the scope of the current work. 446 

We previously demonstrated the potential clinical utility of a specific immunological 447 
biomarker (G-CSF) for CDI diagnosis39. This study leverages the newly obtained gut 448 
microbiome data from the same unique and well-characterized study cohort, allowing us to study 449 
integrated host immune marker and gut microbiome signatures. The fundamental differences 450 
between this study and our previous one are the clinical utilization of integrated immune and 451 
microbiome signatures to distinguish CDI patients from Asymptomatic Carriage, Non-CDI 452 
Diarrhea, and Non-CDI groups, and to derive diagnostic scores for CDI diagnosis. We believe 453 
that this study sets the stage to explore the potential role of an immune and microbiome-based 454 
test for CDI diagnosis. Of course, observed associations and selected features do not offer any 455 
causal relationships. Prospective studies are needed to validate the mechanism underlying the 456 
relationship between these selected features/biomarkers and the CDI infection/colonization 457 
status. The 16S rRNA sequencing may not have captured additional insights associated with the 458 
disease status available at the species or strain level.  Further studies are needed to validate the 459 
clinical utility of the proposed biomarkers by metagenomics sequencing as well as 460 
metatranscriptomics, metaproteomics and metabolomics. 461 

In summary, leveraging a well-characterized clinical cohort, we provided strong evidence 462 
that integrating gut microbiome and host immune signatures can significantly improve the CDI 463 
diagnosis. In particular, these results demonstrate that knowledge of gut microbial compositions 464 
in combination with host immune markers is beneficial in generating clinically relevant machine 465 
learning models for disease diagnosis. Indeed, the machine learning models show high diagnostic 466 
accuracy in differentiating true CDI from asymptomatic carriage of C. difficile and from non-C. 467 
difficile diarrhea, which are areas where current laboratory testing for CDI lacks adequate 468 
clinical specificity.  469 
 470 
 471 
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MATERIALS AND METHODS 472 
Study cohort 473 
The background and design of this cohort has been described in details previously62.  Concisely, 474 
we have four groups associated with different C. difficile infection/colonization statuses: (1) 475 
Control: subjects without diarrhea who had screened as eligible for the asymptomatic carriage 476 
group (see below) but were NAAT-negative on research stool testing; (2) Non-CDI Diarrhea: 477 
subjects with diarrhea but NAAT-negative stool on clinical testing; (3) Asymptomatic Carriage: 478 
subjects were admitted for at least 72 hours, had received at least one dose of an antibiotic within 479 
the past 7 days, did not have diarrhea in the 48 hours prior to stool sample collection, had 480 
positive NAAT results on research stool testing and were not treated for CDI; (4) CDI: inpatients 481 
with positive clinical stool NAAT result, diarrhea, and a decision to treat for CDI.  All subjects 482 
were adults (age ³ 18 years old). Clinical serum samples were collected as discards within 24 483 
hours of stool sample collection. In our previous study39, the four groups were named as (1) “no 484 
Diarrhea NAAT-Negative” = Control; (2) diarrhea NAAT-negative = Non-CDI Diarrhea; (3) 485 
Carrier-NAAT = Asymptomatic Carriage and (4) CDI-NAAT = CDI. In this work, for simplicity 486 
we used the simpler and more clearly descriptive titles.  487 
 488 
Serum immune marker measurement 489 
The measurement of host serum cytokines concentrations of IL-2, IL-4, IL-6, IL-8, IL-10, IL-13, 490 
IL-15, IL-1β, G-CSF, IL-1β, MCP-1, VEGF-A, and TNF-α was performed using a Milliplex 491 
magnetic bead kit and Luminex analyzer (MAGPIX) (Millipore Sigma, Inc., Burlington, MA) as 492 
per the manufacturer’s instructions. Purified toxin A and B were separately prepared from C. 493 
difficile strain VPI 10463 (American Type Culture Collection 43255-FZ, Manassas, VA).  Serum 494 
antibody (IgA, IgG, and IgM) levels against C. difficile toxins A and B were measured by semi-495 
quantitative enzyme-linked immunosorbent assay (ELISA). All the experimental details have 496 
been reported previously39,62. 497 
 498 
Fecal DNA extraction and bacterial 16S rRNA sequencing data analysis 499 
Stool DNA was extracted using the DNeasy PowerSoil Pro Kit (Qiagen, cat# 12888-100) in a 500 
QiaCube automated DNA extraction system (Qiagen) according to instructions. Briefly, 250mg 501 
stool was transferred into a PowerBead Pro Tube provided with the kit and 200 ug RNaseA and 502 
800 μl of CD1 solution were added. Tubes were vortexed briefly, transferred into an adapter, and 503 
then vortexed at maximum speed for 10 min. Tubes were centrifuged at 15,000 x g for 1 min and 504 
about 500–600 μl supernatant was used for DNA extraction according to instructions. DNA were 505 
eluted in 70 μl elution solution C6 and stored at -800C until use. 16S rRNA microbiome 506 
characterization was performed by sequencing the V4 region of the 16S rRNA gene using the 507 
Illumina MiSeq.79  Each sample was amplified using a barcoded primer, which yielded a unique 508 
sequence identifier tagged onto each individual sample library. Illumina-based sequencing 509 
yielded greater than 15,000 reads per sample. CLC Genomics Workbench version 12 (Qiagen) 510 
was used for OTU clustering and generation of abundance tables.  Analyses were performed 511 
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using the tutorial “OTU Clustering Step by Step” updated September 2, 2019 and available on 512 
the Qiagen website: 513 
https://resources.qiagenbioinformatics.com/tutorials/OTU_Clustering_Steps.pdf 514 
 515 
Microbial diversity and differential abundance analysis 516 
Both alpha and beta diversity measures were calculated at the genus level using the vegan: 517 
Community Ecology Package in R (https://CRAN.R-project.org/package=vegan). Measures of 518 
alpha diversity included: the richness 𝑆 (the number of taxa present in the community/sample), 519 

Chao 1 index 𝑆5C+)E = 𝑆 + Q.(Q.SE)
U(Q/VE)

, Shannon index 𝐻 = −∑ 𝑝' 	log	𝑝'K
'WE , and evenness 𝐽 =520 

𝐻/log𝑆. Here, 𝐹E and 𝐹U are the count of singletons and doubletons, respectively, and pi is the 521 
relative abundance of taxon-𝑖 in the community. For beta diversity, we used the Bray-Curtis 522 
dissimilarity measure, which was also used in the Principal Coordinates Analysis (PCoA). We 523 
applied principal component analysis (PCA) on the expression levels of all immune markers 524 
based on the Euclidean distance.  525 

Difference in microbiome compositions and immune expression levels by CDI status 526 
(i.e., different groups) and other covariates (i.e., age, sex, race and ethnicity) were tested by the 527 
permutational multivariate analysis of variance (PERMANOVA) using the “adonis” function in 528 
the vegan R package. All PERMANOVA tests were performed with the default 999 529 
permutations based on the Bray-Curtis dissimilarity and Euclidean distance for microbial 530 
composition and immune marker data, respectively. Note that in the PERMANOVA tests, we 531 
only included subjects with known information of age, sex, race and ethnicity. 532 

For differential abundance analysis, we used ANCOM40 (analysis of composition of 533 
microbiomes), with a Benjamini–Hochberg correction at 5% level of significance, and adjusted 534 
for age and sex. The Mann–Whitney U test was used to compare the difference of immune 535 
marker levels between different groups. 536 
 537 
Microbial correlation network analysis 538 
The microbial correlation networks were constructed using SparCC 41 (sparse correlations for 539 
compositional data, https://github.com/luispedro/sparcc). Significant interactions were 540 
determined by the bootstrapped results (𝑁 = 100) using the script PseudoPvals in SparCC. 541 
Significant correlations with absolute sparse correlations ≥	0.3 were visualized using Gephi 542 
(https://gephi.org/). We also used the NetShift42 (https://web.rniapps.net/netshift) to identify 543 
potential “driver” taxa underlying the differences of microbial correlation networks associated 544 
with CDI and Asymptomatic Carriage (or Non-CDI Diarrhea, and Non-CDI). The key driver 545 
taxa were identified based on the neighbor shift (NESH) score, Jaccard Index and delta 546 
betweenness (DB)42.  547 
 548 
Microbiome-Immune marker association analysis 549 
Associations between the gut microbiota and host immune markers were quantified by Spearman 550 
correlation coefficients in combination with Benjamini-Hochberg FDR correction to account for 551 
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multiple hypothesis testing (significance threshold a £ 0.05). All included genera were required 552 
to be detected in ³50% of all samples in each group. 553 
 554 
Classification with Random Forests model 555 
To build a classification model capable of testing the overall contribution of immunological or 556 
microbial data in distinguishing the CDI status, we developed a multi-class random forests (RF) 557 
classifier. The data is split into a training set and a test set, with 70% of the data forming the 558 
training data and the remaining 30% forming the test set. The performance of the multi-class 559 
model was measured by micro-average and macro-average AUC. A macro-average score 560 
computed the metric independently for each group and then was averaged across all levels 561 
regardless of the number of samples in each group, whereas a micro-average will aggregate the 562 
contributions of all groups to compute the average metric.  563 

To determine whether more specific host immune markers or gut microbial taxa could 564 
differentiate CDI subjects from Asymptomatic Carriage, Non-CDI Diarrhea and Non-CDI 565 
groups, we constructed the binary classifiers based on RF models with integrated immune 566 
markers and microbiome data. The performance of the classifiers were evaluated by a 5-fold 567 
cross validation. In order to reduce computation complexity and feature redundancy, a feature 568 
selection procedure was performed as follows. We first ranked all the features based on their 569 
mean decrease accuracy (MDA). Then we followed the “1-SE strategy” to select the minimum 570 
set of top features whose mean AUC is within one standard error of the mean AUC from the 571 
model with all of the features.  572 
 573 
Symbolic classification with genetic programming 574 
Genetic programming (GP) is a genetic algorithm that searches the space of mathematical 575 
equations without any constraints on their forms80. GP involves reproduction, random mutation, 576 
crossover, a fitness function, and multiple generations of evolution of a population of computer 577 
programs to resolve a given task. GP is commonly used to investigate a functional relationship 578 
(i.e., a mathematical formula) between features in data (symbolic regression: SR) or to group 579 
data into categories (symbolic classification: SC). We employed Karoo GP81, a genetic 580 
programming application suite written in Python that support both SR and SC analysis, to derive 581 
simple formulas for CDI diagnosis. We performed a random data-split to create a training set 582 
(80% of the data) and a held-out test set (20% of the data) for ten times, which were used to 583 
evaluate the SC performance. Due to the different training sets, SC will derive different 584 
formulas, but their classification performances (in terms of Accuracy, Precision, Recall, F1-585 
score) are quite comparable (Table S8). The formulas shown in Table 2 were derived based on 586 
the whole dataset. The Karoo GP was used with the following settings: (1) the fitness function 587 
(Kernel) is c (representing “classification”); (2) the type of tree is r (ramped half/half); (3) the 588 
maximum tree depth for the initial population is 6; (4) the number of trees per generation is 100; 589 
(5) the maximum number of generations is 190 (based on the converging results shown in Fig. 590 
S7); (6) constants include 0.1, 0.2, 0.3, 0.4 and 0.5; and (7) all other parameters are set as default 591 
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values. The fitness function in SC is a maximization function, which will seek the highest fitness 592 
score among the trees in each generation. The sign of the final formula 𝑓(𝑖) will be used for CDI 593 
diagnosis: the class of subject 𝑖 is CDI if 𝑓(𝑖) > 0; or Asymptomatic Carriage (or Non-CDI 594 
Diarrhea, Non-CDI) if 𝑓(𝑖) ≤ 0. 595 

To demonstrate the advantage of SC, for each classification task (i.e., CDI vs. 596 
Asymptomatic Carriage, CDI vs. Non-CDI Diarrhea, and CDI vs. Non-CDI), we also performed 597 
logistic regression (LR) using the same set of selected features as used in SC (Table 2). The LR 598 
models were constructed using the glm() function in R. The class of subject 𝑖 is CDI if 599 
𝑝(𝑖)	³	0.5; or Asymptomatic Carriage (or Non-CDI Diarrhea, Non-CDI) if 𝑝(𝑖)	<	0.5. 600 
 601 
 602 
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Figures 895 

 896 
Fig. 1. Comparing the alpha diversity of the gut microbiota of subjects with different C. 897 
difficile infection/colonization statuses (Control, Non-CDI Diarrhea, Asymptomatic 898 
Carriage, and CDI) using different alpha diversity measures. (A) Taxa richness. (B) Chao1. 899 
(C) Evenness. (D) Shannon index. Each dot represents the alpha diversity value of a particular 900 
subject’s gut microbiota. Statistical significance was determined by Mann–Whitney test, 901 
*P < 0.05. 902 
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 904 
Fig. 2. Ordination analysis and beta diversity comparison of the gut microbiota (and host 905 
immune markers) for subjects with different C. difficile infection/colonization statuses 906 
(Control, Non-CDI Diarrhea, Asymptomatic Carriage, and CDI). (A) Principal Coordinates 907 
Analysis (PCoA) plot based on Bray–Curtis dissimilarities of microbial compositions. (B) 908 
Boxplot of the gut microbiome Bray–Curtis dissimilarity between subjects within each group. 909 
(C) Principle component analysis (PCA) plot of host immune marker concentrations. (D) 910 
Boxplot of the Euclidean distance for the host immune markers of subjects within each group. 911 
Statistical significance was determined by Mann–Whitney test, *P < 0.05, **P < 0.01, 912 
***P < 0.001. 913 
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 915 
Fig. 3. Relative abundances of differentially abundant genera identified by ANCOM in 916 
comparing different groups. (A) CDI vs. Asymptomatic Carriage. (B) CDI vs. Non-CDI 917 
Diarrhea. (C) CDI vs. Non-CDI. The top differentially abundant taxa were ranked based on their 918 
W statistics (from left to right). The relative abundance (%) are plotted on log10 scale. The 919 
notches in the boxplots show the 95% confidence interval around the median.  920 
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 923 
Fig. 4. Microbial correlation networks of different groups. (A) Control. (B) Non-CDI 924 
Diarrhea. (C) Asymptomatic Carriage. (D) CDI. Nodes represent genera and are colored based 925 
on their phylum. Edges represent microbial correlations: green/red means positive/negative 926 
correlations, respectively. Edge thickness indicates correlation strength, and only the high-927 
confidence interactions (p-value < 0.05) with high absolute correlation coefficients (> 0.3) were 928 
presented.  For each group, we further identified the top-three most connected genera/nodes. 929 
They are Ruminococcus_1, Roseburia and Lachnospiraceae_UCG-008 for the Control group, 930 
[Ruminococcus]_torques_group, [Eubacterium]_hallii_group and Blautia for the Non-CDI 931 
Diarrhea group, Ruminiclostridium_5, Enterococcus and Lachnospiraceae_UCG_008 for the 932 
Asymptomatic Carriage group, and Alistipes, Ruminiclostridium_5 and Lachnoclostridium for 933 
the CDI group. 934 
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 935 
Fig. 5. Correlations between gut microbial abundances and host immune markers in 936 
different groups, quantified by Spearman correlation with Benjamini-Hochberg correction. 937 
(A) Control. (B) Non-CDI Diarrhea. (C) Asymptomatic Carriage. (D) CDI. Rows represent 938 
genera; columns represent immune markers. The layout of the heatmap is followed the 939 
hierarchical clustering results of Control cohort (see Fig.S4). Red/blue represents 940 
positive/negative correlation, respectively. The intensity of the colors denotes the strength of the 941 
correlation. *a < 0.05, **a < 0.01, ***a < 0.001. 942 
 943 
 944 
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 945 
Fig. 6. The performance of RF-based classification models based on various types of 946 
features in differentiating CDI from other groups. (A) CDI vs. Asymptomatic Carriage. (B) 947 
CDI vs. Non-CDI Diarrhea. (C) CDI vs. Non-CDI. For each classification task, we used different 948 
types of features: (1) the top-1 immune marker feature (based on mean decrease accuracy); (2) 949 
the top-1 genus feature; (3) all immune markers; (4) all genera; (5) integration of all immune 950 
markers and genera; (6) selected features from the set of all immune markers and genera. Error 951 
bars represent the standard errors of the means (SEM).  952 
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Table 1. Demographic characteristics of the enrolled subjects.  972 
  973 
 NAAT negative NAAT positive 

Characteristics Control 
(n=47) 

Non-CDI 
Diarrhea (n=44) 

Asymptomatic 
Carriage (n=40) CDI (n=112) 

Sex      
    Female 14 (29.79%) 22 (50.00%) 20 (50.00%) 61 (54.46%) 
    Male 33 (70.21%) 22 (50.00%) 20 (50.00%) 51 (45.54%) 
Age, Avg  ± SD 62.40 ± 12.33 63.07 ± 13.15 62.15 ± 17.25 64.99 ± 15.62 
Ethnicity     
    Hispanic 1 (2.13%) 3 (6.82%) 1 (2.50%) 6 (5.36%) 
    Non-Hispanic 38 (80.85%) 37 (84.09%) 31 (77.50%) 96 (85.71%) 
    Unknown 8 (17.02%) 4 (9.09%) 8 (20.00%) 10 (8.93%) 
Race     
    White 33 (70.21%) 28 (63.64%) 28 (70.00%) 89 (79.46%) 
    Other 4 (8.51%) 10 (22.73%) 3 (7.50%) 23 (20.54%) 
    Unknown 10 (21.28%) 6 (13.64%) 9 (22.50%) 0 (0.00%) 
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 30 

Table 2. Diagnostic scores derived from symbolic classification (SC) and logistic regression 997 
(LR). For each subject 𝑖, we calculate his/her diagnostic score 𝑓(𝑖) (or 𝑝(𝑖)) based on one of the 998 
following formulas derived from SC (or LR), respectively. For SC, the class of subject 𝑖 is CDI 999 
if 𝑓(𝑖) > 0; or Asymptomatic Carriage (or Non-CDI Diarrhea, Non-CDI) if 𝑓(𝑖) ≤ 0. For LR, 1000 
the class of subject 𝑖 is CDI if 𝑝(𝑖)	³	0.5; or Asymptomatic Carriage (or Non-CDI Diarrhea, 1001 
Non-CDI) if 𝑝(𝑖)	<	0.5. Here, both 𝑓(𝑖) and 𝑝(𝑖) were learned from the entire dataset. Features 1002 
used here include: 𝑥E: GCSF; 𝑥U: IgA_toxA;	𝑥,: IgA_toxB;  𝑥P: IL6; 𝑥X: TNFa; 𝑥2: 1003 
Anaerobacillus; 𝑥Y: Curvibacter; 𝑥Z: Enterobacter; 𝑥[: Enterococcus; 𝑥EF: Epulopiscium; 𝑥EE: 1004 
[Eubacterium]_haillii_group; 𝑥EU: Fusobacterium; 𝑥E,: Moryella; 𝑥EP: Stenotrophomonas; 𝑥EX: 1005 
Veillonella. In particular, for each classification task (regardless of using SC or LR), the 1006 
following selected features were:  (1) CDI vs. Asymptomatic Carriage: 𝑥E,	𝑥P, 𝑥E, and 𝑥EX; (2) 1007 
CDI vs. Non-CDI Diarrhea: 𝑥E, 𝑥U, 𝑥[, 𝑥EF, and 𝑥EE; (3) CDI vs. Non-CDI: 𝑥E, 𝑥,, 𝑥P, 𝑥X, 𝑥2, 𝑥Y, 1008 
𝑥Z, 𝑥EU, 𝑥EP and 𝑥EX. Note that in the calculation of precision, recall and F1-score, we can treat 1009 
either CDI (or Asymptomatic Carriage, Non-CDI Diarrhea, Non-CDI) as the true positive. 1010 
Results shown in the parenthesis represent the latter case.   1011 
 1012 

Model Diagnostic Formula Accur
acy 

Precision Recall F1-
score 

SC 

CDI vs. 
Asymptomatic 
Carriage 

𝑓(𝑖) = 𝑥0 ∗ 𝑥01(𝑥02 − 0.2 ∗ 𝑥02 + 0.4) + 1.1 ∗ 𝑥0 − 0.1
∗ 𝑥3 − 18.25 0.896 0.914 

(0.840) 
0.949 
(0.75) 

0.931 
(0.792) 

CDI vs. Non-
CDI Diarrhea 

𝑓(𝑖) = 𝑥4 ∗ 𝑥5(0.5 ∗ 𝑥06 − 1) + 𝑥00(0.02 ∗ 𝑥00 − 𝑥0)

+ 𝑥5 11 −
10
𝑥0
2 −

0.003
𝑥4

 0.900 0.946 
(0.826) 

0.897 
(0.905) 

0.921 
(0.864) 

CDI vs. Non-
CDI 

𝑓(𝑖) = 𝑥0 ∗ 𝑥2(0.2 ∗ 𝑥0 ∗ 𝑥1 ∗ 𝑥7 ∗ 𝑥03 + 0.04 ∗ 𝑥0 ∗ 𝑥8
+ 0.3 ∗ 𝑥0 ∗ 𝑥01 ∗ 𝑥93 + 𝑥0
∗ 𝑥05(0.5 ∗ 𝑥8 + 𝑥0 ∗ 𝑥03)
+ 𝑥8(0.1 ∗ 𝑥3 − 𝑥7) + 𝑥03(𝑥03 − 2) 

0.882 0.889 
(0.878) 

0.821 
(0.927) 

0.853 
(0.902) 

LR 

CDI vs. 
Asymptomatic 
Carriage 

log 1
𝑝(𝑖)

1 − 𝑝(𝑖)2 = 0.66725 − 0.04442 ∗ 𝑥0 + 0.01022

∗ 𝑥3 + 7.51484 ∗ 𝑥02 − 85.00213 ∗ 𝑥01 
0.830 0.895 

(0.667) 
0.872 
(0.714) 

0.883 
(0.690) 

CDI vs. Non-
CDI Diarrhea 

log 1
𝑝(𝑖)

1 − 𝑝(𝑖)2 = 0.01974 − 0.002084 ∗ 𝑥0 − 0.02391

∗ 𝑥5 + 1.895 ∗ 𝑥4 − 12740 ∗ 𝑥06
+ 163.9 ∗ 𝑥00 

0.800 0.814 
(0.765) 

0.897 
(0.619) 

0.854 
(0.684) 

CDI vs. Non-
CDI 

log 1
𝑝(𝑖)

1 − 𝑝(𝑖)2 = 2.122 − 0.01002 ∗ 𝑥0 + 0.01833 ∗ 𝑥2
− 0.006334 ∗ 𝑥3 − 0.009566 ∗ 𝑥1
− 4609 ∗ 𝑥7 − 8576 ∗ 𝑥8 − 40.75 ∗ 𝑥9
− 101.1 ∗ 𝑥05 + 32.84 ∗ 𝑥03 − 43.4
∗ 𝑥01 

0.813 0.841 
(0.798) 

0.679 
(0.908) 

0.752 
(0.850) 
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 1048 
Fig. S1. The “driver” taxa responsible for the change of microbial correlations between 1049 
CDI and Asymptomatic Carriage. Node sizes are proportional to their scaled neighbor shift 1050 
(NESH) score (i.e., a score identifying important microbial taxa of microbial association 1051 
networks) and a node is colored red if its betweenness increases when comparing microbial 1052 
correlation networks of CDI with that of Asymptomatic Carriage. All taxa belonging to same 1053 
community (common sub-network) are randomly assigned a color to their labels. Red (or green) 1054 
edges represent microbial correlations that are only present in the CDI (or Asymptomatic 1055 
Carriage) network, respectively. Blue edges present common microbial correlations that are 1056 
present in both networks. 1057 
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 1058 
Fig. S2. The “driver” taxa responsible for the change of microbial correlations between 1059 
CDI and Non-CDI Diarrhea. Node sizes are proportional to their scaled NESH score and a 1060 
node is colored red if its betweenness increases when comparing microbial correlation networks 1061 
of CDI with that of Non-CDI Diarrhea. All taxa belonging to same community (common sub-1062 
network) are randomly assigned a color to their labels. Red (or green) edges represent microbial 1063 
correlations that are only present in the CDI (or Non-CDI Diarrhea) network, respectively. Blue 1064 
edges present common microbial correlations that are present in both networks. 1065 
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 1068 
Fig. S3. The potential “driver taxa” responsible for the change of microbial correlations 1069 
between CDI and Non-CDI. Node sizes are proportional to their scaled NESH score and a node 1070 
is colored red if its betweenness increases when comparing microbial correlation networks of 1071 
CDI with that of Non-CDI. All taxa belonging to same community (common sub-network) are 1072 
randomly assigned a color to their labels. Red (or green) edges represent microbial correlations 1073 
that are only present in the CDI (or Non-CDI) network, respectively. Blue edges present 1074 
common microbial correlations that are present in both networks. 1075 
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 1079 
Fig. S4. Significant correlations between gut microbial abundances and host immune 1080 
markers in the Control group. Gut microbial compositions and host immune markers were 1081 
clustered through hierarchical clustering. Rows correspond to bacterial taxa at genus level; 1082 
columns correspond to host immune markers. Red/blue represents positive/negative association, 1083 
respectively. The intensity of the colors denotes the strength of correlation between the genus 1084 
abundance and the immunological expression level. 1085 
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 1093 
Fig. S5. Gut microbiota and host immune markers can accurately differentiate different 1094 
groups in multi-class classification models. (A) Use host immune markers alone. (B) Use gut 1095 
microbiota data (at genus level) alone. (C) The integration of host immune markers and 1096 
microbial data. The performance of each classifier is measured by the macro-average and micro-1097 
average AUCs. 1098 
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 1107 
 1108 
Fig. S6. Using the mean decrease accuracy (MDA) ranking and the 1-SE rule to select 1109 
features to distinguish CDI from other groups. The most important features of cytokine data, 1110 
microbiome data, and the integration of cytokines and microbiome data in classifying CDI vs. 1111 
Asymptomatic Carriage (A, B and G), CDI vs. Non-CDI Diarrhea (C, D and H) and CDI vs. 1112 
Non-CDI (E, F and I). The performance of classifiers using different sets of integrated features: 1113 
selected based on MDA or randomly selected in CDI vs Asymptomatic Carriage (J), CDI vs 1114 
Non-CDI Diarrhea (K) and CDI vs Non-CDI (L). The minimum set of features selected based on 1115 
the MDA ranking and the 1-SE rule is highlighted by a vertical blue dashed line. Error bars 1116 
represent the standard errors of the means (SEM).  1117 
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 1122 
Fig. S7. The fitness evolution during the symbolic classification based on genetic 1123 
programming. The fitness function is a maximization function, and the tree with highest fitness 1124 
score in each iteration were plotted. The final selected number of generations is highlighted with 1125 
a vertical blue dashed line.  1126 
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Table S1. Sample sizes of different data types in different groups.  1139 
 1140 
 NAAT negative NAAT positive  
Characteristics Control Non-CDI 

Diarrhea 
Asymptomatic 
Carriage 

CDI Total 

Immunological data 45 44 35 99 223 
Microbial data 41 42 33 91 207 
Immunological & 
microbial data 

39 42 28 78 187 
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Table S2. Permutational multivariate analysis of variance (PERMANOVA) in microbial 1173 
compositions and immune markers. CDI statuses: Control, Non-CDI Diarrhea, Asymptomatic 1174 
Carriage, and CDI. Race: White, Native American, Asian, African American, Pacific Islander 1175 
and mixed origin. Ethnicity: Hispanic and Not Hispanic. Here F represents the F-statistic: a 1176 
larger F value indicate that the between-group variation is greater than within-group variation. R2 1177 
represents the variation explained by the model. P represents the P-value calculated from 1178 
permutation.  1179 
 Microbiome Cytokines 
Test factors F R2 P F R2 P 
CDI status  2.285 0.0388 0.001 3.351 0.052 0.016 
Age 1.605 0.009 0.081 0.541 0.003 0.516 
Sex 1.557 0.009 0.095 0.916 0.005 0.372 
Race 0.881 0.031 0.832 1.595 0.050 0.153 
Ethnicity 0.476 0.003 0.961 0.206 0.001 0.771 
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Table S3. Differentially abundant genera between CDI and Asymptomatic Carriage groups 1207 
detected by ANCOM, adjusted for age and sex. For each genus, the first column represents its 1208 
W statistic, and subsequent four columns represent logical indicators of whether it is 1209 
differentially abundant under a series of cutoffs (0.9, 0.8, 0.7 and 0.6). The last two columns 1210 
represent its relative abundance (mean ± standard deviation) in the two groups.  1211 
 1212 

 1213 
 1214 
 1215 
 1216 
 1217 
 1218 
 1219 
 1220 
 1221 
 1222 
 1223 
 1224 
 1225 
 1226 
 1227 
 1228 
 1229 

Genera W_stat Cutoff 
0.9 

Cutoff  
0.8 

Cutoff  
0.7 

Cutoff  
0.6 

Relative 
abundance 
(%) in CDI 

Relative 
abundance (%) 
in 
Asymptomatic 
Carriage 

Veillonella 204 TRUE TRUE TRUE TRUE 1.86 ± 5.55 0.06 ± 0.20 
Enterobacter 182 FALSE TRUE TRUE TRUE 0.79 ± 1.81 0.20 ± 1.01 
Lactococcus 179 FALSE TRUE TRUE TRUE 0.10 ± 0.30 0.36 ± 0.69 
Dorea 177 FALSE TRUE TRUE TRUE 0.10 ± 0.26 0.79 ± 2.00 
Moryella 174 FALSE TRUE TRUE TRUE 0.20 ± 1.19 0.13 ± 0.24 
[Ruminococcus]_gauvreauii_group 173 FALSE TRUE TRUE TRUE 0.09 ± 0.26 1.10± 3.68 
Stenotrophomonas 167 FALSE TRUE TRUE TRUE 0.13 ± 0.79 0.28 ± 0.76 
Agathobacter 158 FALSE FALSE TRUE TRUE 0.07 ± 0.19 0.25 ± 0.42 
Granulicatella 157 FALSE FALSE TRUE TRUE 0.31 ± 1.10 0.10 ± 0.46 
Blautia 154 FALSE FALSE TRUE TRUE 5.30 ± 7.99 10.18 ± 14.05 
Sellimonas 150 FALSE FALSE TRUE TRUE 0.46 ± 2.18 1.20 ± 2.50 
Eggerthella 147 FALSE FALSE TRUE TRUE 1.39 ± 2.16 2.98 ± 4.06 
Faecalitalea 145 FALSE FALSE TRUE TRUE 0.91 ± 2.07 1.41 ± 3.05 
Dialister 141 FALSE FALSE FALSE TRUE 1.10 ± 7.07 0.23 ± 1.27 
Lachnospiraceae_UCG_008 135 FALSE FALSE FALSE TRUE 0.20 ± 0.39 0.37 ± 0.45 
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Table S4. Differentially abundant genera between CDI and Non-CDI Diarrhea groups 1230 
detected by ANCOM, adjusted for age and sex. For each genus, the first column represents its 1231 
W statistic, and subsequent four columns represent logical indicators of whether it is 1232 
differentially abundant under a series of cutoffs (0.9, 0.8, 0.7 and 0.6). The last two columns 1233 
represent its relative abundance (mean ± standard deviation) in the two groups.  1234 
 1235 

Genera W_stat detected_0.9 detected_0.8 detected_0.7 detected_0.6 
Relative 
abundance (%) 
in CDI 

Relative 
abundance 
(%) in Non-
CDI Diarrhea 

Clostridioides 206 TRUE TRUE TRUE TRUE 0.67 ± 1.80 0.03 ± 0.16 
[Eubacterium]_hallii_group 199 TRUE TRUE TRUE TRUE 0.40 ± 2.12 1.14 ± 2.05 
Collinsella 195 TRUE TRUE TRUE TRUE 0.57 ± 1.59 2.57 ± 5.33 
Enterobacter 189 TRUE TRUE TRUE TRUE 0.79 ± 1.81 0.05 ± 0.20 
Epulopiscium 166 FALSE TRUE TRUE TRUE 0.06 ± 0.30 0.00 ± 0.01 
Agathobacter 165 FALSE TRUE TRUE TRUE 0.07 ± 0.19 0.42 ± 0.93 
Dorea 165 FALSE TRUE TRUE TRUE 0.10 ± 0.26 0.96 ± 2.24 
Escherichia_Shigella 163 FALSE FALSE TRUE TRUE 3.54 ± 6.46 1.84 ± 5.01 
Eisenbergiella 149 FALSE FALSE TRUE TRUE 1.03 ± 3.36 0.10 ± 0.40 
Stenotrophomonas 147 FALSE FALSE TRUE TRUE 0.13 ± 0.79 0.09 ± 0.17 
Streptococcus 147 FALSE FALSE TRUE TRUE 6.16 ± 13.27 7.00 ± 7.39 
Dialister 138 FALSE FALSE FALSE TRUE 1.10 ± 7.07 0.06 ± 0.25 
Ruminiclostridium 137 FALSE FALSE FALSE TRUE 0.08 ± 0.44 0.00 ± 0.01 
Fusobacterium 131 FALSE FALSE FALSE TRUE 0.18 ± 0.51 0.01 ± 0.04 
Klebsiella 131 FALSE FALSE FALSE TRUE 1.75 ± 6.94 0.58 ± 2.74 
Veillonella 125 FALSE FALSE FALSE TRUE 1.86 ± 5.55 0.27 ± 0.78 

 1236 
 1237 
 1238 
 1239 
 1240 
 1241 
 1242 
 1243 
 1244 
 1245 
 1246 
 1247 
 1248 
 1249 
 1250 
 1251 
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Table S5. Differentially abundant genera between CDI and Non-CDI groups detected by 1252 
ANCOM, adjusted for age and sex. For each genus, the first column represents its W statistic, 1253 
and subsequent four columns represent logical indicators of whether it is differentially abundant 1254 
under a series of cutoffs (0.9, 0.8, 0.7 and 0.6). The last two columns represent its relative 1255 
abundance (mean ± standard deviation) in the two groups.  1256 

Genera W_stat detected
_0.9 

detected_
0.8 

detected_
0.7 

detected_
0.6 

Relative 
abundance 
(%) in CDI 

Relative 
abundance (%) 
in Non-CDI 

Clostridioides 201 TRUE TRUE TRUE TRUE 0.67 ± 1.81 0.08 ± 0.26 
Veillonella 201 TRUE TRUE TRUE TRUE 1.86 ± 5.58 0.14 ± 0.50 
Enterobacter 200 TRUE TRUE TRUE TRUE 0.79 ± 1.82 0.08 ± 0.55 
Klebsiella 196 TRUE TRUE TRUE TRUE 1.75 ± 6.98 0.49 ± 2.25 
Collinsella 194 TRUE TRUE TRUE TRUE 0.57 ± 1.60 2.29 ± 4.64 
Fusobacterium 194 TRUE TRUE TRUE TRUE 0.18 ± 0.51 0.04 ± 0.25 
[Eubacterium]_hallii_group 193 TRUE TRUE TRUE TRUE 0.40 ± 2.13 1.21 ± 2.55 
Stenotrophomonas 193 TRUE TRUE TRUE TRUE 0.13 ± 0.79 0.30 ± 1.06 
Escherichia_Shigella 191 TRUE TRUE TRUE TRUE 3.54 ± 6.50 1.96 ± 5.31 
[Ruminococcus]_gnavus_group 185 FALSE TRUE TRUE TRUE 1.73 ± 3.15 0.50 ± 1.81 
Agathobacter 179 FALSE TRUE TRUE TRUE 0.07 ± 0.19 0.50 ± 1.37 
Dialister 176 FALSE TRUE TRUE TRUE 1.10 ± 7.11 0.10 ± 0.69 
Dorea 170 FALSE TRUE TRUE TRUE 0.10 ± 0.26 0.86 ± 2.17 
Lactococcus 169 FALSE TRUE TRUE TRUE 0.10 ± 0.30 0.23 ± 0.56 
Anaerobacillus 164 FALSE FALSE TRUE TRUE 0.02 ± 0.06 0.00 ± 0.01 
Moryella 164 FALSE FALSE TRUE TRUE 0.20 ± 1.19 0.11 ± 0.26 
Adlercreutzia 162 FALSE FALSE TRUE TRUE 0.00 ± 0.02 0.08 ± 0.33 
Family_XIII_AD3011_group 161 FALSE FALSE TRUE TRUE 0.03 ± 0.07 0.09 ± 0.16 
Erysipelatoclostridium 160 FALSE FALSE TRUE TRUE 3.56 ± 7.56 0.80 ± 1.79 
[Eubacterium]_brachy_group 154 FALSE FALSE TRUE TRUE 0.01 ± 0.03 0.04 ± 0.10 
Campylobacter 154 FALSE FALSE TRUE TRUE 0.03 ± 0.11 0.00 ± 0.00 
Citrobacter 154 FALSE FALSE TRUE TRUE 0.41 ± 2.11 0.20 ± 1.09 
Clostridium_sensu_stricto_1 151 FALSE FALSE TRUE TRUE 0.72 ± 1.76 0.38 ± 1.19 
Clostridium_sensu_stricto_13 151 FALSE FALSE TRUE TRUE 0.07 ± 0.41 0.00 ± 0.01 
Akkermansia 149 FALSE FALSE TRUE TRUE 3.3 ± 9.68 6.41 ± 12.03 
Alistipes 142 FALSE FALSE FALSE TRUE 1.28 ± 3.05 1.30 ± 2.34 
Bacillus 139 FALSE FALSE FALSE TRUE 0.01 ± 0.03 0.00 ± 0.01 
Enterorhabdus 137 FALSE FALSE FALSE TRUE 0.01 ± 0.03 0.08 ± 0.55 
Pantoea 137 FALSE FALSE FALSE TRUE 0.01 ± 0.03 0.00 ± 0.00 
Ruminococcaceae_UCG_004 134 FALSE FALSE FALSE TRUE 0.05 ± 0.17 0.15 ± 0.41 
Curvibacter 132 FALSE FALSE FALSE TRUE 0.01 ± 0.01 0.00 ± 0.00 
Granulicatella 131 FALSE FALSE FALSE TRUE 0.31 ± 1.11 0.08 ± 0.27 
Lachnospiraceae_NC2004_group 131 FALSE FALSE FALSE TRUE 0.02 ± 0.04 0.05 ± 0.09 
Ruminiclostridium_5 131 FALSE FALSE FALSE TRUE 0.50 ± 1.11 1.33 ± 2.79 
Epulopiscium 130 FALSE FALSE FALSE TRUE 0.06 ± 0.30 0.01 ± 0.04 
Robinsoniella 130 FALSE FALSE FALSE TRUE 0.06 ± 0.33 0.01 ± 0.07 
[Eubacterium]_coprostanoligenes_group 128 FALSE FALSE FALSE TRUE 0.13 ± 0.39 0.39 ± 2.19 
Eggerthella 128 FALSE FALSE FALSE TRUE 1.39 ± 2.17 1.86 ± 2.96 
Erwinia 126 FALSE FALSE FALSE TRUE 0.00 ± 0.00 0.00 ± 0.00 
[Ruminococcus]_gauvreauii_group 124 FALSE FALSE FALSE TRUE 0.09 ± 0.26 0.45 ± 2.04 
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Table S6. Characteristics of microbial correlation networks associated with different 1257 
groups. 1258 
 1259 

Groups Average 
degree 

Clustering 
coefficient 

Edges Graph 
density 

Modularity Nodes 

Control 9.475 0.368 938 0.048 0.377 198 
Non-CDI Diarrhea 11.314 0.474 1171 0.055 0.271 207 
Asymptomatic Carriage 9.730 0.349 973 0.049 0.442 200 
CDI 5.200 0.502 299 0.046 0.568 115 
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Table S7. Comparison of host immune markers in different groups. Mean (Q1, Q3); p-value 1292 
calculated with Mann-Whitney U test. 1293 
 1294 

Immune 
markers 

Control (n=45) 
Non-CDI Diarrhea 
(n=44) 

Asymptomatic 
Carriage (n=35) 

CDI (n=99) 

P-value (CDI 
vs. 
Asymptomatic 
Carriage) 

P-value (CDI 
vs. Non-CDI 
Diarrhea) 

P-value 
(CDI vs. 
Non-CDI) 

IgA_toxA 33.63 (7.24, 62.54) 16.94 (8.44, 16.96) 44.59 (10.21, 102.50) 48.41 (12.10, 104) 0.543 < 0.001 0.001 
IgG_toxA 19.87 (9.75, 22.43) 24.20 (11.11, 27.77) 22.20 (11.48, 24.86) 40.09 (14.77, 59.18) 0.009 0.002 < 0.001 
IgM_toxA 2.04 (0.00, 2.87) 2.45 (0.00, 3.36) 2.15 (0.00, 2.98) 2.09 (0.00, 2.84) 0.316 0.643 0.172 
IgA_toxB 9.73 (2.68, 8.61) 18.78 (4.07, 19.18) 23.02 (5.80, 20.12) 35.07 (4.76, 67.79) 0.469 0.102 0.002 
IgG_toxB 9.66 (4.30, 9.80) 11.97 (5.92, 13.46) 13.57 (3.98, 15.98) 14.61 (4.92, 17.56) 0.980 0.870 0.379 
IgM_toxB 12.12 (2.28, 9.24) 13.72 (2.78, 12.77) 11.08 (2.74, 9.04) 14.99 (1.87, 10.47) 0.261 0.192 0.256 
GCSF 11.27 (0.46, 14.17) 49.37 (2.18, 29.36) 20.01 (2.18, 20.49) 386.64 (22.56, 159.95) < 0.001 < 0.001 < 0.001 
IL-10 8.29 (0.00, 3.15) 33.22 (0.00, 14.06) 9.05 (0.00, 9.78) 35.17 (1.63, 27.99) 0.002 0.021 < 0.001 
IL-13 1.38 (0.00, 0.00) 1.97 (0.00, 0.34) 5.22 (0.00, 0.00) 9.35 (0.00, 1.09) 0.529 0.593 0.167 
IL-15 1.56 (0.00, 0.24) 2.82 (0.00, 3.28) 2.03 (0.00, 1.46) 5.22 (0.19, 5.33) 0.007 0.037 < 0.001 
IL-1b 0.05 (0.00, 0.00) 0.11 (0.00, 0.00) 0.44 (0.00, 0.00) 0.7 (0.00, 0.00) 0.920 0.387 0.159 
IL-2 0.04 (0.00, 0.00) 0.05 (0.00, 0.00) 0.45 (0.00, 0.00) 1.4 (0.00, 0.00) 0.630 0.151 0.051 
IL-4 1.88 (0.00, 0.00) 9.58 (2.57, 12.44) 5.73 (0.00, 0.00) 11.54 (0.00, 9.12) 0.002 0.011 0.032 
IL-6 15.78 (0.00, 3.77) 24.97 (0.00, 10.71) 9.52 (0.00, 5.46) 47.09 (2.52, 37.71) < 0.001 < 0.001 < 0.001 
IL-8 100.51 (12.37, 59.19) 80.85 (15.22, 73.45) 59.78 (10.33, 44.76) 128.05 (27.20, 122.24) < 0.001 0.004 < 0.001 

MCP1 
477.00 (397.19, 
545.00) 

591.61 (399.55, 
779.32) 

613.28 (430.85, 
791.37) 

844.96 (522.41, 
990.98) 0.053 0.020 < 0.001 

TNFa 8.61 (6.20, 10.95) 21.76 (8.93, 21.22) 12.45 (4.91, 14.84) 26.68 (13.88, 28.94) < 0.001 0.006 < 0.001 

VEGFA 102.78 (35.76, 118.27) 
109.85 (34.53, 
127.69) 

118.44 (27.54, 
188.60) 125.93 (19.54, 140.49) 0.499 0.603 0.390 
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Table S8. Accuracy, Precision, Recall and F1-score of symbolic classification in CDI 1316 
diagnosis. CDI subjects were considered as either true positive or true negative. Results shown 1317 
in the parenthesis represents the latter case. The performance of the symbolic classification 1318 
model evaluated by cross-validation. We randomly split the dataset to form a training set (80% 1319 
of the data) and a test set (20% of the data) in 10 different ways. Each time, for each 1320 
classification task (diagnostic goal), we learned the SC model from the training dataset and 1321 
evaluated it on the test dataset. Data represents as mean ± standard deviation.  1322 
 1323 

Diagnostic goal Accuracy Precision Recall F1-score 
CDI vs. 
Asymptomatic 
Carriage 

0.873 ± 0.085 0.878 ± 0.101 
(0.857 ± 0.180) 

0.963 ± 0.043 
(0.639 ± 0.229) 

0.915 ± 0.061 
(0.718 ± 0.185) 

CDI vs. Non-
CDI Diarrhea 0.883 ± 0.036 0.899 ± 0.078 

(0.865 ±0.098) 
0.912 ± 0.070 
(0.847 ± 0.110) 

0.901 ± 0.039 
(0.846 ± 0.055) 

CDI vs. Non-
CDI 0.818 ± 0.040 0.770 ± 0.102 

(0.861 ±0.059) 
0.784 ± 0.120 
(0.839 ± 0.091) 

0.769 ± 0.074 
(0.845 ± 0.036) 
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