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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 9221

The fast spread of severe acute respiratory syndrome coro-
navirus 2 has resulted in the emergence of several hot-spots 
around the world. Several of these are located in areas associ-
ated with high levels of air pollution. This study investigates 
the relationship between exposure to particulate matter and 
COVID-19 incidence in 355 municipalities in the Nether-
lands. The results show that atmospheric particulate matter 
with diameter less than 2.5 is a highly significant predictor 
of the number of confirmed COVID-19 cases and related 
hospital admissions. The estimates suggest that expected 
COVID-19 cases increase by nearly 100 percent when pollu-
tion concentrations increase by 20 percent. The association 

between air pollution and case incidence is robust in the 
presence of data on health-related preconditions, proxies 
for symptom severity, and demographic control variables. 
The results are obtained with ground-measurements and 
satellite-derived measures of atmospheric particulate matter 
as well as COVID-19 data from alternative dates. The 
findings call for further investigation into the association 
between air pollution and SARS-CoV-2 infection risk. If 
particulate matter plays a significant role in COVID-19 
incidence, it has strong implications for the mitigation 
strategies required to prevent spreading.

This paper is a product of the Fragility, Conflict and Violence Global Theme. It is part of a larger effort by the World Bank 
to provide open access to its research and make a contribution to development policy discussions around the world. Policy 
Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The author may be contacted 
at bandree@worldbank.org.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2020. ; https://doi.org/10.1101/2020.04.27.20081562doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.27.20081562
http://creativecommons.org/licenses/by-nc-nd/4.0/


Incidence of COVID-19 and Connections with Air Pollution
Exposure: Evidence from the Netherlands

Bo Pieter Johannes Andrée bandree@worldbankgroup.org

World Bank, Fragility Conflict and Violence Unit
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Highlights

Background: Research on viral respiratory infections has found that infection risks increase
following exposure to high concentrations of particulate matter. Several hot-spots of Severe
Acute Respiratory Syndrome Coronavirus 2 infections are in areas associated with high
levels of air pollution.

Approach: This study investigates the relationship between exposure to particulate matter
and COVID-19 incidence in 355 municipalities in the Netherlands using data on confirmed
cases and hospital admissions coded by residence, along with local PM2.5, PM10, population
density, demographics and health-related pre-conditions. The analysis utilizes different
regression specifications that allow for spatial dependence, nonlinearity, alternative error
distributions and outlier treatment.

Results: PM2.5 is a highly significant predictor of the number of confirmed COVID-19 cases
and related hospital admissions. Taking the WHO guideline of 10mcg/m3 as a baseline, the
estimates suggest that expected COVID-19 cases increase by nearly 100% when pollution
concentrations increase by 20%.

Conclusion: The findings call for further investigation into the association between air
pollution on SARS-CoV-2 infection risk. If particulate matter plays a significant role in
the incidence of COVID-19 disease, it has strong implications for the mitigation strategies
required to prevent spreading, particularly in areas that have high levels of pollution.
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1. Introduction

In 2019, confirmed infections with a new novel human coronavirus (SARS-CoV-2) emerged
in Wuhan, in the Hubei Province in China. The virus rapidly spread to other parts of China
and by early 2020 it had emerged in many other countries around the world. The World
Health Organization (WHO) declared a global pandemic on March 11 2020, as confirmed
cases topped 118,000 in more than 110 countries and territories around the world with
sustained community spread.

Epidemiologists have started to investigate possible environmental factors that accelerate
the spread of SARS-CoV-2 within communities (Sajadi et al., 2020; Bhattacharjee, 2020). A
recent paper by van Doremalen et al. (2020) analyzed the aerosol and surface stability of
SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus
(Wu et al., 2020a). The study found that SARS-CoV-2 can survive up to three days on some
surfaces, like plastic and steel, and that aerosol transmission is plausible since the virus can
remain viable and infectious in the air for hours. These findings echo those of Chen et al.
(2004) on environmental contamination with SARS-CoV-1, and are consistent with evidence
for aerosol distribution of SARS-CoV-2 found by Guo et al. (2020), but are inconsistent
with the current WHO stance that SARS-CoV-2 is not transported by air. However, the
possibility of airborne transmission would call for different mitigation efforts to prevent
spreading and is thus an important area of study.

The risk of infection of some airborne viruses has been shown to increase in the presence
of ambient fine particles that can stay in the air for long periods, travel far distances, and
penetrate deeply into lungs.1 One highly contagious airborne disease is caused by the measles
virus. Previous studies on disease outbreaks have highlighted that the incidence of measles
in China increased 1-3 days after short-term exposure to high concentrations of PM10 and
SO2 Chen et al. (2017b); Peng et al. (2020). In another study, ambient fine particles were
found to contribute to the relative risk of influenza transmission in Chinese cities (Chen
et al., 2017a) with the most significant effect occurring within a period of 2-3 days.

If air pollution plays a similar role in the incidence of SARS-CoV-2, there should
be a positive relationship between confirmed COVID-19 cases and particulate matter
concentrations. China ranks among the worst globally in terms of PM2.5 concentrations and,
within China, the Hubei province is among the more heavily polluted areas (van Donkelaar
et al., 2016). The most heavily hit Italian region is the Lombardy area in the northern Po
valley, which is among the regions with the worst air quality in Europe. Preliminary findings
from Italian researchers started pointing towards a correlation between days of exceeding
the limits for PM10 and the number of hospital admissions from COVID-19 (Setti et al.,
2020; Onufrio, 2020).

Increased air pollution could just reflect the presence of anthropogenic activity which
instead explains the patterns. However, that does not explain why COVID-19 cases are not
increasing rapidly in every densely populated area.

1. Over the years, numerous studies have related hospitalization numbers, case numbers, and relative risk of
respiratory viral infections and influenza-like illnesses to short-term air pollution exposure, mostly at city
level, using a variety of data sets and methods. See (Ciencewicki and Jaspers, 2007) for an early review,
see (Xu et al., 2013; Liang et al., 2014; Su et al., 2019) on influenza-like illnesses, and (Silva et al., 2014;
Huang et al., 2016; Feng et al., 2016; Li et al., 2018) on viral respiratory infections.

1
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To investigate this further, the current paper looks at confirmed cases and COVID-19
related hospital admissions in 355 municipalities in the Netherlands and uses regression
techniques to investigate correlations between COVID-19 case data and particulate matter
concentrations, controlling for a variety of demographic characteristics and data on health
related pre-conditions. The analysis finds that PM2.5 is a highly significant predictor of both
the number of confirmed COVID-19 cases and the number of related hospital admissions
per 100,000 inhabitants.

The analysis suggests that the association between air pollution and case incidence is
robust to proxies for worse respiratory health and symptom severity. The findings are also
robust to other important control variables and different regression specifications that allow
for spatial dependence, nonlinearity, alternative error distributions and outlier treatment.
Results are obtained with ground-measurements and satellite-derived PM2.5. Analyzing
COVID-19 data from alternative dates resulted in similar conclusions.

The remainder of this paper is organized as follows. Section 2 visually inspects several
available confirmed case maps and discusses the spatial distribution. Section 3 introduces
the data used for analysis. Section 4 presents regression results and discusses several of the
estimates. Section 5 concludes.

2. Spatial Distribution of COVID-19: Country Examples

Suggestive evidence that the spatial distribution of COVID-19 cases is not purely random
and might be related to environmental factors can be found by exploring several maps
of confirmed cases. A few easily accessible fine resolution maps are presented below, in
particular for the Netherlands, Germany, Spain and Italy. The data for the Netherlands is
taken from the Dutch National Institute for Public Health and Environment (RIVM).2 The
data for Germany is from the Robert Koch Institute.3 The data for Italy can be viewed via
a live dashboard, 4 and the raw data is well organized and available on a github page.5 The
Spanish data was taken from this link.6

A number of features of the spatial distributions are striking. First, there is a strong
spatial correlation visible in all four countries, which is to be expected for a virus that spreads
by human contact. It is intriguing, however, that the highest case density in the Netherlands
is in Brabant, the southeastern part of the country, while major cities like Amsterdam and
Rotterdam are in the west part of the country where the case density is lower. While Brabant
is not the most populous province, it accounts for the highest contribution to nation-wide
industrial GDP. Within the province, the sub-region Zuidoost-Noord-Brabant produces the
highest contribution to industrial GDP.7 This area approximately spans the COVID-19 case
cluster that can be seen on the map.

2. https://www.rivm.nl/coronavirus-kaart-van-nederland-per-gemeente.
3. https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4.
4. http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1
5. https://github.com/pcm-dpc/COVID-19/tree/master/dati-province
6. https://www.rtve.es/noticias/20200323/mapa-del-coronavirus-espana/2004681.shtml
7. https://www.cbs.nl/nl-nl/nieuws/2018/31/belang-industrie-voor-de-regio
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Incidence of COVID-19 and Connections with Air Pollution Exposure

Figure 1: Distribution of COVID-19 in the Netherlands and Germany. Confirmed cases per 10,000
inhabitants.

Figure 2: Distribution of COVID-19 in Spain and Italy. Confirmed cases per 1,000,000 inhabitants.

3
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In Germany, two areas stand out. First, the western part of the country, near the border
with the Netherlands, Belgium, and Luxembourg, has an increased case density. This area
(North Rhine-Westphalia, Rheinland-Pfalz and Baden-Württemberg) contains the major
industrial regions including the Ruhr area. Second, a cluster of cases can be seen in the
south-eastern part of the country near Munich where major automobile industry is found.
These areas are also the most populous of the country, which makes it difficult to draw any
immediate conclusions about a relationship with air quality.

In Spain, confirmed cases have the highest case density in the capital, Madrid, with an
extension into neighboring Sergovia. A second cluster can be also seen northeast of Madrid.
Interestingly, Spain’s population density is high along the eastern coast where the case
density is lower. This suggests that case incidence in the country does not simply follow
population densities, but that other factors play a role.

Finally, in Italy, confirmed cases have the highest case density in the northern part of
the country, Lombardy in particular. Without a doubt, Lombardy and the Po valley as a
whole has one of the highest concentrations of air pollutants of Europe. Moreover, the case
density does not seem to trend strongly with Italy’s population distribution. For example,
Italy’s population density is generally high along its coast, and cities like Rome and Naples
do not stand out in the map.

Taken together, the maps suggest that that COVID-19 incidence clusters spatially and
that environmental factors beyond population density may play a role. The analysis in
the remainder of the paper confronts the relatively granular Dutch case data with possible
predictors that include population density, air pollution, demographic characteristics and
health related controls.

3. Data

The COVID-19 data is taken from the RIVM.8 The first data snapshot includes all confirmed
cases as of March 22 (a total of 4,004 with known residence out of 4,157 confirmed cases).
A second snapshot of confirmed cases was taken on March 30 and includes 11,258 cases
with known residence out of 11,750 confirmed cases. The confirmed COVID-19 hospital
admissions are taken from the same source approximately 1 week after the first data snapshot
(31 March, a total of 4,562 with known residence out of 4,712 admissions from a total of
12,595 confirmed cases). While some cases are reported immediately, a share of the cases
follows a typical delay of up to 1-2 days after the actual case or hospitalization confirmation.
Both the confirmed cases, as well as confirmed hospital admissions, are coded by residence
(not by hospital addresses).

On March 31, approximately 37% of confirmed cases were also hospital admissions,
highlighting that case detection is likely biased toward more severe cases.9 Within one
week, the number of hospital admissions exceeded the confirmed cases of the previous week,
indicating that the time between confirmation and hospitalization likely spans only a few
days. Cases are reported to the RIVM by the Municipal Health Service (GGD).The GGD is
organized as collaboration between municipalities to provide base level public health service

8. https://www.rivm.nl/coronavirus-kaart-van-nederland-per-gemeente
9. For example, early estimates based on Chinese cases indicated that the hospitalization rate of elderly, the

most vulnerable population, was only 18.4% (Verity et al., 2020).
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in accordance with country-level legislation on public health. The 355 municipalities are
grouped into 25 GGD areas, each covering a population of approximately 600,000 inhabitants.
The GGD borders are visible in figure 5 which visualizes the hospital admissions.

The data is combined with demographic statistics (2019) obtained from the Dutch Central
Bureau of Statistics.10 The data contains the official population headcount at district level,
as well as a number of relevant household characteristics. A number of surveyed health
statistics (2016) have been obtained as well from the RIVM (maps can be viewed in the
source link).11. The data is based on a survey of 457,000 people and includes the share of
population in each district with a documented long-term illness (illnesses over 6 months), the
prevalence of overweight and obesity, alcohol abuse, smoking and noise due to traffic. Hence
the data controls for the presence of possible pre-conditions that make certain populations
more vulnerable.

A variety of air pollution data sets exist. For the main analysis, annual average particulate
matter concentrations from the RIVM are used to capture long-term exposure (2017,
published September 2019).12 The data is used by the government for official monitoring
in accordance with EU guidelines on air quality monitoring and has a resolution of 25
meter grids. These high-resolution grids are produced by spatial interpolation of ground-
measurements. For this analysis, the grids have been averaged to the municipality level.
The spatial distribution of pollution has remained relatively stable in recent years. The
intensity of air pollution has gradually gone down since 2013, though the difference between
the 2017 and 2015 data is relatively small. This suggests that the spatial variation of the
2017 data is still relevant to analyze the role of long-term pollution exposure in the current
situation. The temporal lag in the pollution data also ensures that there is no endogeneity
due to feedback between case incidence and changes in pollution levels that follow lock-down
policies.

To test whether the main findings of the analysis generalize to other pollution data
sets, a second analysis presented in the appendix uses the coarser grids from the global
PM2.5 data set of van Donkelaar et al. (2016). The main conclusions of the analysis do
not change when this alternative pollution data set is used, and since this data is mainly
satellite-derived, it may be used in other countries where detailed PM2.5 measurements are
not easily available. Figure 6 visualizes the spatial distribution of the main PM2.5 and PM10

statistics. Table 3 summarizes the full set of covariates used in the analysis.

4. Results

The analysis is organized into two main investigations and a set of robustness analyses. First,
section 4.1 analyzes the confirmed cases per 100,000 inhabitants using linear models that
account for possible spatial autocorrelation and residual dependence. Section 4.2 analyzes
the data nonlinearly, allowing parameter estimates to vary across locations and levels in
the data. Additional results are included in the appendix, section 6.2. In particular, the
robustness of the results is diagnosed by using alternative measures of incidence, a different
source of pollution data, and alternative distributional assumptions.

10. https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/wijk-en-buurtkaart-2019
11. https://www.rivm.nl/media/smap/langdurigeziekte.html
12. https://www.atlasleefomgeving.nl/kaarten

5
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4.1 Linear analysis of March 22 cases per 100,000 inhabitants

To analyze the relationship between spatial variation in particulate matter concentrations
and COVID-19 incidence, a number of regressions are estimated that control for possible
spatial autocorrelation (Anselin, 1988).13 Importantly, the spread of SARS-CoV-2 manifests
itself in hot-spots that result from contact with infective subjects from areas that are in close
proximity, and it can show strong geographical patterns that are not structurally related
to air pollution levels. The fact that the infection started at different times in different
areas together with the exponential and geographical nature of case spread, may lead to
spurious associations between the spatial distribution of case hot-spots and pollution levels,
particularly if the initial cases occurred in polluted regions by mere chance and then spread
to nearby regions.14

To account for the issue, spatial models include neighboring values of the dependent
variable and/or residuals as additional variables. These spatial averages control for the
clustering that results from geographical spillovers.15 These models can be understood
as spatial equivalents to the models that are commonly used to analyze time series in
which observed values are in part explained by recent observations. While the household
composition and population density terms capture more dense social links, the spatial
regression components capture the likelihood of contact with infective subjects. In particular,
within a hot-spot, neighboring areas have high numbers of cases per 100,000 inhabitants,
and the spatial regression terms capture the increased likelihood of having contact with
infective subjects within the region. The important empirical question that these models
thus seek to answer is whether pollution and case incidence are associated after controlling
for the geographical relationships in disease spread.

First, Model 1 estimates a linear regression using all 22 covariates and possible confounders
of interest that are summarized in table 3. These include population density, gender, age
groups, marital status and household composition, the share of migrants, as well as several
population health indicators. Particularly the health indicators are important because PM2.5

is known to affect population health. This may result in important pre-conditions that lead
to more severe COVID-19 disease. Pre-conditions captured by the data include the share of
population with a long-term illness (including asthma), the share of people that smoke and
admit to guidelines on alcohol use, the share of people diagnosed with obesity or overweight,
as well as variables on populations exposed to traffic noise.

13. The treatment of spatial autocorrelation and spatial residual correlation took a firm position in quantitative
geography after the contributions by Cliff and Ord (1969, 1972). Spatial econometrics as a subfield of
econometrics was rapidly developed as a means to analyze sub-country data in regional econometric
models (Anselin, 2010). Good introductory books exist, apart from the one referenced in the main text
(LeSage and Pace, 2009) is one other. The (Q)MLE is worked out, for example, in (Lee, 2004). The
field is still actively developed, with recent advances focusing on time series dynamics and non-linearity
(Beenstock and Felsenstein, 2019; Andrée, 2020).

14. The first case was detected on February 27 in Loon op Zand in Brabant, but that same night a case
was also confirmed in Amsterdam. Within 4 days, 10 cases had been confirmed in 6 cities across 4
provinces with multiple sources of infection, it took till March 23 for lockdown policies to be announced,
giving ample time for spread from multiple points, see https://nos.nl/artikel/2325309-beatrixziekenhuis-
gorinchem-gesloten-om-coronavirus-tien-patienten-in-nl.html

15. While the spatial autoregressive models only include the rate of infective subjects in neighboring areas as
regressors, the models in fact allow for feedback and spillovers to more distant observations as each area
is also a second-order neighbor of itself. See the literature on spatial models cited earlier.

6
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It is well known that models with a high number of variables can over-fit data sets
that contain only a modest number of observations. Model 2 estimates the same linear
regression but uses step-wise variable selection following the AIC, Model 3 uses the selected
variables in a spatial error model that controls for spatial dependence in the residuals (λ
parameter), Model 4 estimates a spatial autoregressive model that allows for dependence on
neighboring observations (ρ parameter), Model 5 allows for unique spatial autocorrelation
and spatial residual correlation parameters. For compactness, table 1 only lists Model 1
estimates for variables selected by the AIC, even though all regressors are included. Finally,
PM10 correlates (.95) strongly with PM2.5 and the AIC favored PM2.5. Replacing it with
PM10 in the regressions below led to a small deterioration in measures of fit, indicating that
PM2.5 is a statistically preferred predictor, although the main conclusions do not depend on
this. For simplicity, the focus remains on the PM2.5 data.

Table 1: Dependent Variable: Confirmed COVID-19 cases per 100,000 inhabitants.
Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 5b

(Intercept) -359.58 -402.51*** -202.58*** -200.63*** -207.50*** -185.43***
(218.20) (80.61) (76.06) (64.11) (74.59) (71.75)

Population density -6.28** -6.54*** -0.03 -1.10 -0.48 -0.48
(2.58) (2.38) (2.05) (1.87) (2.06) (1.94)

Share 25 to 44 3.55 2.62* -0.80 0.47 -0.37 -.41
(2.17) (1.34) (1.05) (1.05) (1.07) (1.02)

Share above 65 5.58* 4.22*** 2.12** 2.14* 2.08** 1.07*
(2.26) (1.27) (1.03) (1.00) (1.05) (1.00)

Share unmarried 4.94*** 4.78*** 4.01*** 3.28*** 3.83*** 3.59***
(1.33) (0.97) (0.96) (0.78) (0.94) (0.89)

Share single household -4.02*** -2.17*** -1.62*** -1.50*** -1.59*** -1.70***
(1.47) (0.57) (0.49) (0.45) (0.49) (0.46)

Share non-western immigrants -1.32** -1.23** -0.57 -0.78** -0.77* -0.58
(0.57) (0.48) (0.43) (0.38) (0.42) (0.40)

Share of water surface 17.58 16.11 11.30 13.56* 13.53 11.53*
(11.18) (10.28) (9.62) (8.07) (9.21) (8.71)

Share with long-term illness 1.10 1.19 0.41 0.72 0.64 0.97
(1.00) (0.76) (0.92) (0.60) (0.79) (0.74)

Case severity -0.065***
(.01)

Mean PM2.5 10.17** 10.84*** 6.21*** 3.52*** 4.91** 4.47***
(4.66) (1.48) (2.82) (1.22) (2.44) (2.31)

λ 0.71*** 0.42* 0.39
(0.26) (0.26) (0.25)

ρ 0.68*** 0.43 0.50**
(0.25) (0.25) (0.21)

R2 0.24 0.22 0.52 0.51 0.50 0.55
AICc 3414.85 3391.40 3274.36 3274.12 3269.31 3237.91

Standard Errors in parenthesis, significance levels as: ***p < 0.01, **p < 0.05, *p < 0.1

In the non-spatial regressions, the correlation with population density is negative and
significant, suggesting that the case density is on average lower in densely populated areas.
This could reflect mis-specified scaling. However, in the models that control for spatial
clustering, population density is not significant. This suggests that, after controlling for
spatial clustering, the spatial variation in case density is not related to population density
patterns. Instead, the share of unmarried and the share of single households, which relate to
the number of households in a given population and the type of social networks that they
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have, are significant regressors. The estimates suggest that instead of the total number of
people a person can have contact with within an area (population density), infection risk
is determined by the number of people a person is likely to interact with (determined by
marital status and household type), together with the average share of infected inhabitants
in the wider region (spatial components). This is a plausible result. To simplify the multi-
dimensional relationship between case densities and social interaction, regressing single
household shares on unmarried population shares shows that on average, a 1% increase in
the first is associated with a 0.74 % increase in the latter, suggesting that on average the
case densities increase when there are more households in an area.

Importantly, across all regression specifications, the coefficient for PM2.5 is positive and
highly significant in the presence of controls, and also in the specifications that control for
spatial residual trends and the rate of infective subjects in nearby areas. Combined, the
regressions thus provide strong evidence that PM2.5 plays a role in COVID-19 case incidence
that cannot be attributed to demographics or health pre-conditions. In particular, the
estimate of 10.84 in Model (2) suggests that, on average, cases per 100,000 inhabitants grow
by approximately 21.68 ∼ 22 when concentrations increase from 10mcg/m3 to 12mcg/m3.
This corresponds to slightly less than a 100% increase given that the average municipal case
density in the data is 24.79 ∼ 25 per 100,000 inhabitants. Note that the direct elasticity
is lower in the spatial models (3-5), but the net impacts need to be multiplied by spatial
spillover effects. Spatial spillovers ρ and spatial correlation in the residuals λ are both
significant and have a positive sign highlighting that spatial spillovers further add to local
effects. For example, evaluating the prediction difference of the spatial autoregressive model
(4) at PM2.5 levels of 10mcg/m3 and 12mcg/m3, suggests a very similar increase in case
incidence of 22.08 ∼ 22 per equal number of inhabitants.

Across the regression specifications, it is found that the health indicators have no
significant linear relationship with confirmed case incidence. Only the share of population
with a long-term illness was kept in the model with the lowest AIC, but its effect is not
significant in any of the regression specifications. Going from Model 1 to Model 2, it can
be seen that the parameter estimate for PM2.5 varies little after dropping the majority of
health data controls, suggesting that the association between case incidence and pollution is
not heavily impacted by adding or removing available data on possible pre-conditions. It
is however important to ensure that the association between case incidence and pollution
concentrations is not in fact driven by worse respiratory health in polluted areas. If worse
respiratory health and aggravated symptoms in polluted areas are the main channels of
action, higher COVID-19 case hospitalization rates should also be expected in these locations.
For this reason, the percentage of the confirmed cases that resulted in hospital admission
one week later (March 22 cases / March 31 hospital admissions times 100) was calculated as
proxy for case severity. In 29 areas with no confirmed cases where hospitalizations occurred
within a week, a value of 100 is assigned. In 9 areas where none of the confirmed cases
resulted in hospitalization, a value of 0 is assigned.16 Model 5b adds this additional proxy

16. The proxy is not perfect due to the low data density. Using instead the percentage of March 30 cases that
resulted in March 31 hospitalization leads to only 4 replacements of both types (100/0). Re-estimating
Model 5b with this recalculated proxy did not result in measurable change relative to Model 5. Using
instead the March 30 confirmed cases as dependent variable in the same regression specification did not
find the severity proxy to be significant and found PM2.5 to remain significant at the highest level.
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variable and finds that it is highly significant. The overall model fit improves as indicated
by the AICc and R2. The estimate for PM2.5 remains relatively unchanged and significant.
While one would expect that case severity contributes to higher cases, as increased symptom
severity may lead to higher case detection, the result suggests otherwise. One explanation
is that high hospital admission occurred in areas with a weak case detection policy. In
particular, if the disease goes unnoticed for long, the number of terminally ill patients
can grow because they do not receive appropriate treatment in time. In this case, low
case numbers can coincide with high hospital admission numbers. To investigate further
whether the proxy captures a valuable signal related to symptom severity, appendix section
6.2.5 provides additional results that try to explain the case severity proxy using the other
available predictors. These additional results find that age, male gender, and the share of
population with overweight are positively associated with increased case hospitalization
rates. This is in line with earlier identified risk groups (Ruan, 2020), suggesting that the
proxy does capture a relevant case severity signal.

Taken together, the evidence suggests a significant positive relationship between case
density and PM2.5 concentrations. However, there are still some limitations to the basic
regression results presented here. The standard linear regression model may not be perfectly
suitable for modeling the number of cases per 100,000 inhabitants due to the non-negative
nature of the data and a right skew in the case density distribution. Strong violations of
the correct-specification assumption can result in biased estimates, for instance because
the models assess linearity on an additive scale while the phenomenon is multiplicative.
Instead of assessing the data on the original scale as a multiplicative error model with
a changing variance function, this issue is often addressed by rewriting the model as an
additive error model on the log-scale with constant variance. This is appropriate as long as
the log transformation is appropriate to normalize the data. To assess whether the simple
estimations presented here are prone to a strong bias, section 6.2.2 investigates the residual
distribution and re-analyzes the data using a log-type power transformation from a family
of functions that allows for zeros. The results highlight that when the data is appropriately
scaled and multiple diagnostics confirm that the Normality assumption is in fact valid,
PM2.5 is still a highly significant positive predictor of case densities. Earlier studies on
the role of ambient fine particles in the transmission risk of airborne disease have instead
relied on Poisson-type regressions using count data. While these regressions are not entirely
appropriate as they do not account for the highly significant geographical relationships in
the data, section 6.2.1 presents Poisson-type results that allow for over-dispersion to show
that the main conclusions are also robust to this specification choice.

4.2 Nonlinear analysis of March 22 cases per 100,000 inhabitants

Instead of working on a transformed scale to address some of the highlighted issues, it is
also possible to tackle the problem nonlinearly on the original scale. This might also lead
to interesting results on important thresholds in the data. In particular, one might expect
particulate matter to only contribute to COVID-19 incidence after concentrations surpass a
certain critical threshold, or expect pollution dependencies to vary with unobserved weather
variables including humidity and temperature (Chen et al., 2017b,a; Peng et al., 2020). In
a recent study, Sajadi et al. (2020) have already shown that there could be a relationship
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between COVID-19 incidence and climatic conditions. Some COVID-19 related climatic
zones are mapped by the Copernicus Earth Observation Programme, see (Copernicus Climate
Change Service, 2020), and these put all but a select few municipalities analyzed in this
study in the same zone. For this reason, one should expect that if the relationship between
pollution and COVID-19 incidence varies regionally, it does so with a reasonable smoothness.

Additional results below are obtained using non-parametric penalized kernel regression
following (Hainmueller and Hazlett, 2014; Andrée et al., 2019). The estimates provide
observation-level marginal coefficients that allow for nonlinearity conditional on levels in
the data. Longitude and latitude have been added as additional controls, which allows the
model to capture spatial trends in line with a spatial residual component. However, this
time it also allows the model’s parameters to vary across spatial gradients in unobserved
components, such as related to weather. The model nests a linear model, specifically, higher
levels of regularization result in linearized relationships. Evidence that the relationship
with air pollution is nonlinear is strengthened by using Model (2) and re-estimating it after
applying a third-order Taylor approximation to the PM2.5 measurements. Calculating an
auxiliary test statistic for the significance of the second and third terms overwhelmingly
supports nonlinearity, a Likelihood Ratio obtains a p-value below 0.001 (statistic of 15.18 on
2 degrees of freedom).

The fit of the nonparametric model is tuned using standard cross-validation procedures
and out-of-sample prediction performance was estimated using 10-fold, repeated twice,
cross-validation. To keep the flexibility of the models at a manageable level given the
small number of observations, only a few predictors are used. In particular, the significant
predictors from the final model (5) are taken, the share of unmarried is dropped as the
model can now estimate nonlinear dependence on the share of single households, the share of
long-term illness and population density are added back in because they remain of particular
interest. The share of non-Western immigrants was dropped because it was insignificant
and dropping it did not negatively impact the cross-validation results. Finally, the share of
population in the 25 to 44 years group was dropped because estimating nonlinearly on only
the share of population above 65 resulted in better fit.

Table 2: Dependent Variable: Confirmed COVID-19 cases per 100,000 inhabitants.

Variable Avg. Pr(|Avg.| > 0) q.25 q.50 q.75

Population density -3.75 0.24 -8.40 -1.84 1.62
Share above 65 -0.41 0.44 -1.55 0.00 1.42
Share of single households -1.57 0.00 -2.56 -1.01 0.19
Share with long-term illness 0.39 0.59 -1.70 -0.06 1.94

Mean PM2.5 5.98 0.02 -1.24 3.16 11.45

Insample R2: 0.50, CV R2 0.35, Longitude and Latitude used as additional controls.

Table 2 presents the estimation results. In it, Avg. takes the average across all the
marginal coefficients and q.25-q.75 give the quantiles as an indication of parameter hetero-
geneity. To understand the shape of the nonlinearity, figure 3 plots conditional expectations
across the range of values in the covariates. The values are produced by fixing all covariates,

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2020. ; https://doi.org/10.1101/2020.04.27.20081562doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.27.20081562
http://creativecommons.org/licenses/by-nc-nd/4.0/


Incidence of COVID-19 and Connections with Air Pollution Exposure

except the one of interest, at mean values, and plotting the model predictions and their
standard errors across the .025th percentile to the .975th percentile values of inputs.

The averages of parameter estimates resemble the results from those obtained with linear
regression methods. In particular, the average slope of population density is again negative
but not significant, while the increased share of single households provides a stronger signal
for increased case densities, particularly in the inner range of values that have denser data
coverage (see figure 3). The age group control shows that elderly are more at risk. The
estimated relationship with the share of population that has a long-term illness highlights
an important threshold. Fewer COVID-19 cases are expected only in areas with very low
values for this indicator.
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Figure 3: Conditional expectation plots for COVID-19 cases per 100,000 inhabitants.

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2020. ; https://doi.org/10.1101/2020.04.27.20081562doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.27.20081562
http://creativecommons.org/licenses/by-nc-nd/4.0/


Andrée

Importantly, after addressing nonlinearity and spatial heterogeneity in parameter esti-
mates, the average slope of PM2.5 remains positive and highly significant. The ranges in
the quantiles highlight that there is substantial parameter heterogeneity. The nonlinear
estimates suggest that at low levels of PM2.5, changes in particulate matter concentrations
are not associated with significant changes in case incidence. However, after the mean annual
concentrations cross the WHO guidelines of 10mcg/m3, the standard errors tighten and the
number of expected cases increases sharply. At 12mcg/m3, the expected cases per 100,000
inhabitants are approximately double the numbers expected at 10mcg/m3.

Increasing PM2.5 from 10mcg/m3 to 12mcg/m3
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Figure 4: Prediction difference when increasing pollution concentrations (N=158).

More indication of impacts is approximated by calculating the prediction difference when
PM2.5 moves from 10mcg/m3 to 12mcg/m3, leaving all other covariates at observed values.
This is performed for all areas that have at least already 9mcg/m3 and case numbers within
the 25% to 75% quantile range (between 8.3 and 31.7 cases per 100,000). The prediction
difference is standardized based on the current actual case numbers and multiplied by 100,
thus expressed as a percentage increase with respect to current case numbers. The results in
figure 4 highlight the effect heterogeneity, suggesting that the modeled pollution association
varies strongly depending on other covariates. Numerical integration under the kernel density
suggests 80% of events result in positive increases in case incidence, and of these events the
estimated average increase in cases per 100,000 inhabitants is 95% when particulate matter
concentrations increase from 10mcg/m3 to 12mcg/m3.
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5. Conclusion

Research on viral respiratory infections, measles and influenza outbreaks has found that
infection risks increase following exposure to high concentrations of particulate matter. This
paper investigated the relationship between COVID-19 incidence and exposure to particulate
matter in 355 municipalities in the Netherlands. Regression analysis was performed using
confirmed cases per 100,000 inhabitants, confirmed COVID-19 related hospital admissions
per 100,000 inhabitants, and confirmed case counts as dependent variables.

The study finds that PM2.5 is a highly significant predictor of all three indicators of
COVID-19 incidence. The findings are robust to outlier treatment and power transforms
to normalize data, and are stable across alternative regression specifications that allow for
spatial dependence or nonlinearity, and remain significant in the presence of demographic
and health controls. Estimates suggest that when annual concentrations cross above the
WHO guidelines of 10mcg/m3, the number of expected cases per 100,000 inhabitants doubles
as annual concentrations reach 12mcg/m3 all else constant.

While the analysis found that these results are robust to various methodological consider-
ations, it is important to note that testing for SARS-CoV-2 is performed using convenience
sampling, which may well vary by area and in time. This may induce biases in the results if
the sampling rate is indirectly correlated with pollution levels. However, it is difficult to
perceive why sampling should structurally be related to pollution concentrations. Moreover,
in light of the rich body of literature on the association between pollution exposure and
respiratory tract infection risk, and the plausible parameter estimates with respect to many
of the other variables, convenience sampling does not seem to be a more plausible explanation
for the results than the findings of the study itself. Moreover, another new study by Wu
et al. (2020b) has found evidence for a higher number of confirmed fatal COVID-19 cases
per 100,000 inhabitants in the United States, which seems to corroborate the findings on
increased hospital admissions and cases per 100,000 inhabitants.

The findings call for further investigation. In particular, the air pollution link should
be investigated in multiple countries and for wider ranges of PM2.5 concentrations. If the
relationship extrapolates to higher concentrations, the implications for developing countries
may be severe. In particular, developing countries are highly polluted compared to the
levels observed in this study (Andrée et al., 2019) and are already identified as risk areas
for COVID-19 spread (Gilbert et al., 2020; Nkengasong and Mankoula, 2020; Martinez-
Alvarez et al., 2020). Even though this study was not able to find strong evidence for an
impact of PM2.5 on case severity, at the high levels of PM2.5 in developing countries, more
severe impacts on respiratory health may interact with case fatality of SARS-CoV-2. The
possible association between pollution and symptom severity will thus be important to
revisit, particularly because regional variation in case fatality of closely related SARS-CoV-1
has been associated with air pollution exposure (Cui et al., 2003).

Finally, as more data on COVID-19 spread becomes available, stronger results on the
specific effects of short-term air pollution exposure may be estimated. If fine particulate
matter plays a significant role in SARS-CoV-2 infection risk, it has strong implications for
the mitigation strategies required to prevent spreading.
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6. Appendix

6.1 Data descriptives

Figure 5: Hospital admissions per 100,000 inhabitants on March 31.

Figure 6: Particulate matter concentrations (2017).
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Table 3: Data descriptives.

Variable mean sd median min max

March 22 confirmed cases per 100,000 24.79 31.62 16.00 0.00 349.50
March 30 confirmed cases per 100,000 70.84 63.77 54.20 0.00 565.70
March 31 hospital admissions per 100,000 29.36 30.81 20.50 0.00 237.20
March 22 confirmed case counts 11.41 21.66 6.00 0.00 188.00
March 22 case hospitalization rate 141.15 102.67 107.05 0.00 804.92
March 30 case hospitalization rate 41.39 19.23 41.05 0.00 100.00

Population density (thousands per sqkm) 0.88 1.04 0.46 0.02 6.52
Share of male population 0.51 0.01 0.50 0.47 0.57
Share from 14 to 24 11.72 1.65 12.00 9.00 23.00
Share from 25 to 44 21.96 2.84 22.00 14.00 36.00
Share from 45 to 64 29.32 2.22 30.00 19.00 34.00
Share above 65 21.24 3.29 21.00 9.00 32.00
Share of unmarried 44.53 4.19 44.00 37.00 65.00
Share of single households 32.76 6.32 31.00 20.00 60.00
Share of households without children 32.02 3.56 32.00 20.00 40.00
Average household size 2.26 0.18 2.30 1.70 3.30
Share of western immigrants 8.61 4.46 8.00 2.00 47.00
Share of non-western immigrants 7.43 5.93 5.00 1.00 39.00
Share of water surface 0.11 0.17 0.04 0.00 0.94

Share with long-term illness 34.11 2.91 34.00 27.00 45.00
Share of overweight 51.01 3.68 51.00 37.00 61.00
Share exposed to noise above 50kmh 3.03 1.38 3.00 0.00 8.00
Share exposed to noise below 50kmh 4.84 2.00 5.00 1.00 13.00
Share with obesity 14.46 2.17 14.00 9.00 22.00
Share of non-heavy drinkers 39.94 4.87 40.00 30.00 58.00
Share of smokers 19.64 2.72 19.00 14.00 31.00

Mean PM2.5 10.22 1.33 10.69 6.95 12.04
Mean PM10 17.28 1.61 17.74 13.60 21.09
Mean Van Donkelaar PM2.5 14.60 1.77 15.01 10.15 18.05

6.2 Additional analysis results

This section presents a number of additional estimations. In particular, section 6.2.1 presents
Poisson-type regressions that use case counts as dependent variables in line with earlier
studies on the relationship between air pollution and viral spread, the influence of possible
outlier observations or the discussed distributional issues is investigated in section 6.2.2,
in section 6.2.3 the main analysis is re-estimated using confirmed cases from March 30 to
show that the conclusions are not dependent on the date of the case snapshot, the main
analysis is also repeated using confirmed hospital admissions from March 31 in section 6.2.4
to provide further evidence that the conclusions are not dependent on measurement error
in the confirmed cases. Section 6.2.5 investigates correlations between covariates and the
case hospitalization rates used to proxy for symptom severity. Finally, additional analysis in
section 6.2.6 re-estimates the main analysis using alternative satellite-derived PM22.5.
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6.2.1 Poisson-type regressions for case incidence

In table 4, the case counts are used in regression instead of case density. Model 8 estimates a
standard Poisson regression. Model 9 estimates a Poisson regression with stepwise selection
following the AIC. Model 10 presents the same model, allowing for over-dispersion. Finally,
Model 11 allows for a zero-inflated Negative Binomial distribution and model 12 performs
step-wise AIC under the Negative Binomial.

Table 4: Dependent Variable: Confirmed COVID-19 cases.
Variable Model 8 Model 9 Model 10 Model 11 Model 12

(Intercept) -13.75*** -13.75*** -13.75*** -9.89** -4.14
(2.23) (1.64) (5.12) (4.86) (2.72)

Population density -0.35*** -0.35*** -0.35*** -0.30*** -0.29***
(0.02) (0.02) (0.08) (0.08) (0.07)

Share of male population -22.38*** -23.12*** -23.12*** -16.07*** -13.29***
(1.90) (1.85) (5.77) (4.96) (4.41)

Share 14 to 24 0.07*** 0.07*** 0.07 0.04
(0.02) (0.01) (0.04) (0.05)

Share 25 to 44 0.16*** 0.16*** 0.16*** 0.17*** 0.15***
(0.02) (0.02) (0.05) (0.05) (0.04)

Share above 65 0.13*** 0.13*** 0.13** 0.09* 0.05*
(0.02) (0.02) (0.05) (0.05) (0.03)

Share of unmarried 0.14*** 0.14*** 0.14*** 0.11*** 0.10***
(0.01) (0.01) (0.04) (0.04) (0.02)

Share of household without children 0.06*** 0.06*** 0.06 0.04
(0.02) (0.01) (0.04) (0.04)

Average household size 2.75*** 2.58*** 2.58*** 1.04
(0.44) (0.25) (0.77) (0.68)

Share of western immigrants 0.03*** 0.03*** 0.03 0.00
(0.01) (0.01) (0.02) (0.02)

Share of non-western immigrants 0.03*** 0.03*** 0.03** 0.02
(0.00) (0.00) (0.01) (0.02)

Share enduring noise above 50km 0.03* 0.04*** 0.04 0.01
(0.02) (0.01) (0.04) (0.04)

Share of obese 0.06** 0.05*** 0.05 -0.03
(0.02) (0.02) (0.05) (0.04)

Share of non-drinkers -0.05*** -0.05*** -0.05** 0.00
(0.01) (0.01) (0.02) (0.01)

Share of smokers 0.11*** 0.12*** 0.12*** 0.06
(0.01) (0.01) (0.04) (0.04)

Mean PM2.5 0.52*** 0.47*** 0.47*** 0.45*** 0.44***
(0.05) (0.02) (0.06) (0.05) (0.04)

R2 0.59 0.59 0.59 0.47 0.47
AICc 3995.20 3983.77 3983.77 2242.19 2227.05

Standard Errors in parenthesis, significance levels as: ***p < 0.01, **p < 0.05, *p < 0.1

The residuals are checked for spatial autocorrelation, and significant residual clustering
was still found. Spatial autocorrelation is not easily addressed in count data with standard
regression implementations, hence the results are simply from a mis-specified model. For this
reason, the models that relax distributional assumptions (10-12) should provide improved
indications of significance, with Model 10 being proffered. The main results of the paper
presented in section 4 take spatial processes explicitly into account and are in turn preferred
over Model 12.

A few results using the count data echo the main findings. In particular, the slope of
population density is negative, indicating that the more populous areas in the Netherlands
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are more likely to have lower case numbers on average rather than higher. Several of the
health indicators are significant, but only in the standard Poisson regression. Allowing for
over-dispersion or estimating under the Negative Binomial distribution finds no significant
relationship suggesting that these relationships are less robust. In all specifications, the
impact of PM2.5 remains highly stable and significant. This provides further evidence that
confirmed COVID-19 cases are higher in polluted areas and that these conclusions do not
dependent on using count or Normal estimation techniques.

6.2.2 Distributional mis-specification and outlier analysis

Since only a modest amount of observations has been used in the analysis, it is important to
diagnose whether the estimation result could be heavily impacted by outlier observations.
One way to diagnose this is to inspect a Q-Q plot, which compares the standardized residuals
to theoretical quantities from the Normal distribution.

Figure 7 highlights that the Normality assumption is not entirely satisfied. Both Model
2 and Model 5 residuals contain outliers, particularly in the right tail of the distribution. In
both models, the residuals follow a very similar pattern and the three major outliers that
are prevalent on both specifications are Boekel, Uden and Bernheze which are all in the
COVID-19 cluster in the province of Brabant. Outliers can be influential in a regression,
though they do not necessarily have to be, while other points that lie within a normal
range of the model can be influential without being an outlier per se. The impact of outlier
observations depends also on the data density in the region around the data point. The Q-Q
plots do not inform about whether the identified outlier observations are actually influential
in the regression. Figure 8 calculates Cook’s distance, a multivariate measure of influence,
and identifies influential data points by evaluating the impact of individual observations
on the regression results with respect to the covariates of interest through a leave-one-out
procedure.
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Figure 7: Comparison of residuals to theoretical quantities.
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Figure 8: Residuals versus Leverage plot using Cook’s distance.

Figure 8 highlights that Boekel and Bernheze are relatively influential, but not critically.
This is reassuring, nevertheless it is important due to the small sample nature of the
applications to evaluate whether the identified mild violations have a drastic impact on the
estimation results. Two regressions are performed to analyze this. First, Model 5c replaces
the dependent values of the 8 observations that have visibly the largest residuals in the Q-Q
plot with predicted values from Model 5 and re-estimates the specification. This allows
comparing directly how the parameter estimates change when these outlier observations
are replaced with values that lie closer to the normal range of the data. It is important to
note that if these observations are not outliers in an additive sense, but simply reflect the
nature of the data-generating process, then these new estimates have in fact an increased
bias resulting from further mis-specification. To evaluate whether outliers can be addressed
through model-specification, Model 5d first normalizes the data using a power transformation
(Johnson) by finding the transformation that minimizes the p-value of a Shapiro test for
Normality, and then re-estimates Model 5’s specification on the more Gaussian data. These
parameter values cannot be directly compared to the parameter values of Model 5 because
the new relationship is nonlinear (logarithmic-type). Nevertheless, Model 5d informs whether
the significance of relationships remains intact when the Normality violations are neutralized.
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Figure 9: Comparison of residuals to theoretical quantities.

Table 5: Dependent Variable: Confirmed COVID-19 cases per 100,000 inhabitants.

Variable Model 5c Model 5d

(Intercept) -91.40** -10.75***
(43.93) (2.41)

Population density -0.83 -0.16**
(1.27) (0.07)

Share from 25 to 44 -0.16 0.05
(0.73) (0.04)

Share above 65 0.67 0.10**
(0.68) (0.04)

Share of unmarried 1.61*** 0.10***
(0.52) (0.03)

Share of single households -0.56* -0.05***
(0.30) (0.02)

Share of non-western immigrants -0.55** -0.02
(0.25) (0.01)

Share of water surface 9.33* 0.68**
(5.31) (0.31)

Share with long-term illness 0.29 0.01
(0.37) (0.02)

Mean PM2.5 2.67*** 0.45***
(0.89) (0.04)

λ -0.22 -0.05
(0.16) (0.19)

ρ 0.73 -0.06
(0.07) (0.17)

R2 0.54 0.31

Standard Errors in parenthesis, significance levels as: ***p < 0.01, **p < 0.05, *p < 0.1
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Inspecting the new Q-Q plots in figure 9 highlights that Model 5c is still prone to
distributional mis-specification. This also suggests that the outliers whose values are now
replaced with values closer to the normal range of the data are not necessarily outliers
in an additive sense, but simply reflect the exponential nature of the data. From that
regard, Model 5d is preferred, as it applies a suitable exponential transformation that clearly
neutralizes any outlier or non-Gaussian behavior. In both models, the relationship with
PM2.5 remains significant and positive hence the conclusion is that the main findings of the
analysis are not sensitive to outliers.

6.2.3 Re-estimation using March 30 confirmed cases per 100,000 inhabitants

Model 5e, in table 6 below, re-estimates the step-wise AIC regression and then uses the
covariates in the same specification as Model 5 using confirmed cases from March 30. This
is to evaluate whether the relationship with PM22.5 is robust to using data from a different
date. The correlation between confirmed cases per 100,000 inhabitants on March 22 and
March 30 is approximately .90. It is clear from the estimation results that using the newer
data does not alter the main conclusions. In particular, similar covariates are preferred by
the AIC and the parameter estimate for PM2.5 increased in value and remains significant at
the highest level.

Table 6: Dependent Variable: Confirmed COVID-19 cases per 100,000 inhabitants using
March 30 cases.

Variable Model 5e

(Intercept) -374.01***
119.87

Population density -2.28
(3.54)

Share from 25 to 44 3.12
(1.99)

Share above 65 4.79***
(1.89)

Share of unmarried 5.03***
(1.45)

Share of single households -2.72***
(0.83)

Share of non-western immigrants -1.70**
(0.70)

Share with long-term illness 1.14
(1.04)

Mean PM2.5 6.39***
2.42

λ -0.11
0.16

ρ 0.71
0.08

R2 0.56
AICc 3736.24

Standard Errors in parenthesis, significance levels as: ***p < 0.01, **p < 0.05, *p < 0.1
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6.2.4 Re-estimation using March 31 confirmed hospital admissions per 100,000
inhabitants

Model 5f in table 7 below, re-estimates Model 2 then uses the covariates in the same
specification as Model 5 using confirmed hospital admissions from March 31. This is to
evaluate whether the relationship with PM2.5 is robust to possible measurement error in the
confirmed cases. The correlation between confirmed cases per 100,000 inhabitants on March
22 and March 31 hospital admissions is approximately .80, the correlation using March 30
confirmed cases is .88. It is clear from the estimation results that using confirmed admissions
instead of cases does not alter the main conclusions. In particular, the parameter estimate
for PM2.5 remains highly significant.

Table 7: Dependent Variable: Confirmed COVID-19 hospital admissions per 100,000 inhabi-
tants.

Variable Model 5f

(Intercept) -256.68***
(82.20)

Population density -2.48
(1.82)

Share from 14 to 24 1.55
(1.24)

Share from 25 to 44 2.25*
(1.20)

Share from 45 to 64 0.40
(0.84)

Share above 65 3.18***
(1.15)

Share of unmarried 2.63***
(0.74)

Share of single households -1.90***
(0.48)

Share of non-western immigrants -0.47
(0.36)

Share of water surface 14.89**
(7.49)

Share with long-term illness 0.88
(0.55)

Mean PM2.5 3.74***
(1.33)

λ -0.10
(0.17)

ρ 0.68***
(0.09)

R2 0.54
AICc 3242.22

Standard Errors in parenthesis, significance levels as: ***p < 0.01, **p < 0.05, *p < 0.1
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6.2.5 Linear analysis of case hospitalization rates

The main results provided evidence for increased COVID-19 incidence in areas where
populations are more exposed to air pollution. However, it is possible that the estimated
association between PM2.5 concentrations and COVID-19 incidence can be attributed to
worse respiratory health in polluted areas, which then leads to more severe symptoms and
higher case detection. The analysis tried to control for this using health data and the
percentage of confirmed cases that resulted in hospitalization as controls. This did not
impact the results. A second way to further test this theory is by analyzing the association
between PM2.5 and the case hospitalization rate because worse respiratory health would
lead to more severe COVID-19 disease (Ruan, 2020). The suspect correlation is investigated
below using step-wise AIC variable selection keeping PM2.5 in the variable set, followed
by the full spatial specification. Model 6 uses March 31 confirmed COVID-19 hospital
admissions as a percentage of March 22 confirmed COVID-19 cases, model 7 uses March 30
confirmed cases. The analysis finds that age, male gender, and the share of population with
overweight are positively associated with increased case hospitalization rates which follows
earlier identified risk groups (Ruan, 2020).

Table 8: Dependent Variable: Confirmed COVID-19 related hospital admissions as a per-
centage of COVID-19 cases.

Variable Model 6 Model 7

(Intercept) -587.36* -93.71***
(296.95) (35.24)

Population density -2.08*
(1.26)

Share of male population 935.03**
(487.40)

Share 45 to 64 9.17*** 1.05*
(3.82) (0.51)

Share of unmarried 0.57*
(0.33)

Share of households without children -7.74***
(2.58)

Average household size 7.70
(5.51)

Share of western immigrants -1.83
(1.96)

Share of non-western immigrants 0.46*
(0.25)

Share of water surface 14.25**
(5.62)

Share of overweight 8.74*** 0.57**
(1.92) (0.25)

Share exposed to noise above 50kmh -10.16**
(4.22)

Mean PM2.5 -6.70 0.40
7.79 0.63

λ 0.46* -0.40**
0.13 0.17

ρ -0.60*** 0.61***
0.16 0.10

R2 0.20 0.26
AICc 3938.38 3019.20

N 355 355

Standard Errors in parenthesis, significance levels as: ***p < 0.01, **p < 0.05, *p < 0.1
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6.2.6 Re-estimation using satellite-derived PM2.5

This section evaluates whether the relationship with PM2.5 generalizes to measurements
from a different source. Table 9 compares the municipality-level data. Both measurements
trend in the same direction but the levels according to the RIVM are roughly one-third
below those of van Donkelaar.

Table 9: Comparison of PM2.5 statistics: RIVM 2017 vs van Donkelaar 2016.

Variable Mean Min q.25 q.50 q.75 Max
RIVM 2017 10.22 6.95 9.43 10.69 11.23 12.04
van Donkelaar 2016 14.60 10.15 13.44 15.01 16.01 18.05

Correlation: 0.70

Model 5g in table 10, estimates step-wise AIC with the new pollution data and uses
the selected covariates in the specification of Model 5. Model 5h uses the same controls as
Model 5, and Model 5i applies the Yeo-Johnson power transform. The analysis makes use
of the confirmed cases from March 22. It is clear from the estimation results that the use
of satellite-derived PM2.5 results in similar conclusions. The parameter estimate for PM2.5

remains significant in the presence of controls and is significant at the highest level when
the dependent variable is first normalized.

Table 10: Dependent Variable: Confirmed COVID-19 cases per 100,000 inhabitants.
Variable Model 5g Model 5h Model 5i

(Intercept) -127.26* -213.60*** -11.17***
(74.02) (72.86) (2.46)

Population density 0.90 -0.04
(1.93) (0.07)

Share from 25 to 44 -0.50 0.026
(1.07) (0.04)

Share above 65 2.38*** 2.21** 0.10***
(0.91) (1.06) (0.04)

Share of unmarried 3.50*** 4.14*** 0.14***
(1.02) (0.96) (0.03)

Share of single households -1.76*** -1.78*** -0.07***
(0.46) (0.50) (0.02)

Share of non-western immigrants -0.53 -0.71* -0.02
(0.34) (0.41) (0.01)

Share of water surface 2.47 2.22 -0.79***
(8.71) (8.75) (0.28)

Share of overweight -1.32
(0.91)

Share with obesity 1.60
(1.53)

Share with long-term illness 0.68 0.01
(0.78) (0.02)

Mean PM2.5 2.75** 3.13** 0.28***
(1.28) (1.29) (0.03)

λ 0.41* 0.40* 0.10
(0.24) (0.24) (0.19)

ρ 0.45** 0.46* -0.16
(0.22) (0.22) (0.19)

R2 0.50 0.50 0.30
AICc 3265.34 3268.53 920.81
N 355 355 355

Standard Errors in parenthesis, significance levels as: ***p < 0.01, **p < 0.05, *p < 0.1
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