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Abstract 

Background: Proactive interventions have halted the pandemic of coronavirus infected disease 

in some regions. However, without reaching herd immunity, the return of epidemic is possible. 

We investigate the impact of population structure, case importation, asymptomatic cases, and the 

number of contacts on a possible second wave of epidemic through mathematical modelling.  

Methods: we built a modified Susceptible-exposed-Infectious-Removed (SEIR) model with 

parameters mirroring those of the COVID-19 pandemic and reported simulated characteristics of 

epidemics for incidence, hospitalizations and deaths under different scenarios. 

Results: A larger percent of elderly people leads to higher number of hospitalizations, while a 

large percent of prior infection will effectively curb the epidemic. The number of imported cases 

and the speed of importation have small impact on the epidemic progression. However, a higher 

percent of asymptomatic cases slows the epidemic down and reduces the number of 

hospitalizations and deaths at the epidemic peak. Finally, reducing the number of contacts among 

young people alone has moderate effects on themselves, but little effects on the elderly 

population. However, reducing the number of contacts among elderly people alone can mitigate 

the epidemic significantly in both age groups, even though young people remain active within 

themselves.  

Conclusion: Reducing the number of contacts among high risk populations alone can mitigate 

the burden of epidemic in the whole society. Interventions targeting high risk groups may be 

more effective in containing or mitigating the epidemic.     
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Introduction 

The pandemic of coronavirus infected disease (COVID-19) caused by the novel Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1, 2] has significantly impacted people’s 

daily life and led to a global public health crisis [3]. As of April 14, 2020, there were 1,973,715 

confirmed cases and 125, 910 deaths worldwide. The US accounted for 605,193 cases and 

25,757 deaths (https://coronavirus.jhu.edu/map.html). To contain or mitigate the epidemic, 

countries and regions affected by the COVID-19 pandemic have mandated various 

nonpharmaceutical interventions (NPI) such as meticulous and extensive contact tracing, mass 

detection of virus infection, case isolation, social distancing, and closures of school and non-

essential business. As a result, the pandemic was blunted in some countries, and daily new case 

counts are decreasing in many places [4]. 

However, the partially controlled or blunted epidemic leaves the source of infection and also a 

large pool of susceptible people in the community, posing a danger of re-surging outbreak. Two 

important factors may contribute to a second wave of COVID-19 pandemic. First, unlike the 

2003 SARS pandemic in which mainly symptomatic cases are infectious [5], asymptomatic 

infection of the SARS-CoV-2 and pre-symptomatic cases can transmit the disease [6-10]. Studies 

have detected virus shedding in nasopharyngeal swap samples among asymptomatic cases [11]. 

A few case reports have shown some cluster of cases initiated by asymptomatic cases [6, 8, 10]. 

Researchers have postulated that asymptomatic and pre-symptomatic cases may play a 

significant role in sustaining the community transmission [7].  

Second, government leaders have been pressed to allow people to return to normal work and life 

to avoid economic recession. After social activities are restored, both international and domestic 
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travel ban will be lifted. Social and work-related gatherings are restored. Imported symptomatic 

and asymptomatic cases may kindle a second wave of epidemic in the community [7]. For 

example, despite Singapore has implemented possibly one of the most rigorous contact tracing, 

personal protection and social distancing measures, an unexpected surge of new cases has been 

observed, with newly confirmed daily cases doubled from 142 in April 7 to 287 in April 8, and 

still 334 in April 14 (https://www.gov.sg/article/covid-19-cases-in-singapore). As of this writing, 

the source of this sudden increase is still under investigation.       

From the health services perspective, the number of severe cases who require medical care or die 

of the disease is the most important indicator of the burden of pandemic. Heath care providers, 

hospital beds, and intensive care units (ICU) are limited resources. One main purpose of 

mitigating the pandemic is to alleviate the impact of pandemic on healthcare resources. Several 

reports have shown that about 20% of symptomatic COVID-19 cases require hospitalizations, 

and of them, about 30-50% may require ICU [12-14] (also  see 

https://gis.cdc.gov/grasp/COVIDNet/COVID19_3.html). More importantly, elderly people or 

people with existing chronic conditions have worse outcome than young people. For example, in 

the US, the mortality rate for age 50 or younger is below 1%, while the mortality rate increases 

to more than 10% among people aged 80 or above [15]. Finally, as demonstrated in the 2009 

H1N1 flu pandemic [16], a pandemic with lower hospitalization and mortality rates has less 

impact on the society than those with higher hospitalization and mortality rates, though it may 

still have heavier impact on the economy.    

Epidemic model simulation has been used extensively to estimate essential epidemic parameters, 

evaluate the epidemic progression and provide critical guidance to policy makers. Simulation 

studies based on the early epidemic data from Wuhan, China and incorporated human travel and 
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migration information have provided more accurate picture of epidemic [17-21]. In addition, 

based on simulating individual behaviors under realistic societal settings, several key simulation 

analyses have informed the policy makers about the effectiveness of various intervention 

strategies to halt the epidemic [22-25]. Another simulation study updates daily about the impact 

of the COVID-19 pandemic on the use of health care resource and predicts the trend and peaks 

of health care use in the US [26] (https://covid19.healthdata.org/united-states-of-america). 

In this study, we will build a modified Susceptible-Exposed-Infectious-Removed (SEIR) model 

[27] to simulate the COVID-19 pandemic and investigate the impact of population structure, 

asymptomatic cases, case importation, and the number of contacts on the epidemic progression. 

We will explicitly evaluate the changes of hospitalizations and mortality under various scenarios 

for young and elderly people. Our analysis will provide theoretical evidence for possible 

strategies to prepare for a second wave of epidemic.     

 

 Method 

Modified SEIR Model  

The COVID-19, like many other respiratory infectious diseases such as influenza, often has an 

incubation period during which the exposed persons cannot transmit the virus to others. After the 

incubation period, there is an infection period during which cases may or may not have 

symptoms but are able to infect other people. The infectivity may also vary at different time 

points of the infection period. As in the COVID-19 pandemic, the highest infectious points are 1-

2 days around the symptom onset [28]. After the infection period, the patients are recovered or 

removed from the infectious pool. In addition, various controlling measures may be implemented 
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during the epidemic, notably the case isolation, quarantine of high risk people through contact 

tracing, and also social distancing.  All these measures will change the transmissibility of virus 

during a contact between an infectious person and a susceptible person. Therefore, the modified 

SEIR model as shown in Figure 1 is appropriate (also see the modeling framework section in 

supplemental documents for details). The SEIR model and its variants have been used in many 

previous studies for modeling the COVID-19 pandemic [23, 25]. Briefly, we divide the 

population into the susceptible population (S), self-quarantined susceptible people (Q), exposed 

but not infectious people (E), infectious compartment which includes those cases from 

quarantined susceptible (IQ), symptomatic cases (ID), asymptomatic cases (IU) (also those with 

mild symptoms, both of which are often undiagnosed or unreported), and the removed 

compartment which includes those hospitalized (H), recovered (R), and dead (D). The self-

quarantined persons are not necessarily based on individual contact tracing but rather refer to 

those who are alert to any possible infection in the community and may avoid contacting with 

any exposed persons. They are a special susceptible people who will not infect others if they are 

infected.   

We also assume a dynamic population in which the numbers of imported susceptible persons and 

exposed persons (often have no symptom) are proportional (f1 and f2) to the size of total 

population (i.e., larger regions attract more visitors). We further assume the death rate due to 

other causes is a constant for all populations. For those who are symptomatic, diagnosed with the 

infection and hospitalized, their deaths are attributed to the infection or complications of the 

coronavirus infection. In addition, at the beginning of the simulation, some proportion of the 

population have past infection (or immunized) (P). Therefore, the total population at the time t is 
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N(t) = S(t) + Q(t) +E(t) + ID(t) + IU(t) + IQ(t) + H(t) + R(t) + P0. There are several other 

assumptions that will be discussed later and also in the supplemental document. 

To account for population heterogeneity, we also apply the basic framework (Figure 1) to both 

young (age < 65) and elderly (age >=65) populations. The two flowcharts are connected through 

cross-infection due to mutual contacts. The combined flowcharts can be translated into a set of 

ordinary differential equations (see supplemental document). The key equations relevant to the 

drive of pandemic and cross-infection between two age groups are for the change of exposed 

people at time t (subscript y for young, and s for elderly people, with time indicator t 

suppressed):      

𝑑𝐸𝑦

𝑑𝑡
= 𝑓𝑦2𝑁𝑦 + (𝑏𝑦1𝐼𝑦𝐷+𝑏𝑦2𝐼𝑦𝑈)𝑘𝑦

𝑆𝑦

𝑁𝑦
+ (𝑏𝑠1𝐼𝑠𝐷+𝑏𝑠2𝐼𝑠𝑈)𝑘𝑦𝑠

𝑆𝑦

𝑁𝑦
− 𝑣𝑦1𝐸𝑦−𝑣𝑦2𝐸𝑦 − 𝑢𝑦𝐸𝑦 

𝑑𝐸𝑠
𝑑𝑡

= 𝑓𝑠2𝑁𝑠 + (𝑏𝑠1𝐼𝑠𝐷+𝑏𝑠2𝐼𝑠𝑈)𝑘𝑠
𝑆𝑠
𝑁𝑠

+ (𝑏𝑦1𝐼𝑦𝐷+𝑏𝑦2𝐼𝑦𝑈)𝑘𝑦𝑠
𝑆𝑠
𝑁𝑠

− 𝑣𝑠1𝐸𝑠−𝑣𝑠2𝐸𝑠 − 𝑢𝑠𝐸𝑠 

 

Specifically, the first equation models the exposure dynamics among young people. It includes 

imported exposed people (fy2Ny), newly exposed people through contacting within the young 

people ((𝑏𝑦1𝐼𝑦𝐷+𝑏𝑦2𝐼𝑦𝑈)𝑘𝑦
𝑆𝑦

𝑁𝑦
) and contacting between young susceptible and infected elderly 

people ((𝑏𝑠1𝐼𝑠𝐷+𝑏𝑠2𝐼𝑠𝑈)𝑘𝑦𝑠
𝑆𝑦

𝑁𝑦
). Then some percent of exposed young people become 

symptomatic cases (𝑣𝑦1𝐸𝑦), and some become asymptomatic cases ( 𝑣𝑦2𝐸𝑦). A fixed percent of 

exposed people will die of other diseases (𝑢𝑦𝐸𝑦). The second equation for the exposure 

dynamics among elderly people can be interpreted similarly.  

 Model parameterization  
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The model involves many parameters. Their definitions, default values, and ranges are listed in 

the supplemental document (supp. Table 1). A few key parameters are listed in Table 1. The 

model parameters are set to daily rates and all the durations between various stages of disease 

progression are assumed with some exponential distribution. These parameters are based on 

observed epidemic process from China, Italy and early epidemic in the US (see references in 

Table 1). The key parameter, virus infectivity, is based on the basic reproduction number (R0), 

defined as the average number of secondary cases infected by an index case. Based on the basic 

SIR model, it can be estimated as (average contacts)*(infectivity per contact)*(serial interval). 

Early reports on the basic reproduction number suggested an R0 of 2.2, ranging from 2-3 [1]. 

Recent reports, however, suggested a much higher number, some as high as 5.7 [20, 29, 30]. We 

adopt the R0=2.6 as a conservative estimate[31, 32]. The number of average contacts in the 

population ranges 2-30 [23, 33]. We assume a moderate 10 contacts for young, 7 contacts for 

elderly, and 3 contacts between young and elderly people in this study. Some seniors may have 

more contacts than the default value due to group living or regular community gathering. They 

are not considered in this population level modeling. The serial interval is the average duration 

between the infection time point (often substituted with symptom onset time point) of the index 

case and the symptom onset (or diagnosis) of secondary cases. Reported serial intervals vary 

significantly across different studies, with an average of 5 days [17, 19, 23, 34-36]. We adopt a 

conservative estimate of 6 days for young and 4 days for elderly people, ranging 3-10 days. 

Finally, we assume an overall hospitalization rate of 10%, as commonly reported in the United 

States (https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/). Hospital stay is 7-21 days, 

as most hospitalized people are elderly patients. The in-hospital mortality rate is set as 5% for 

young and 20% for elderly symptomatic patients, and an overall mortality of 1% and 10% for 
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young and elderly patients, respectively [12, 14, 37-39]. The recovery duration for those who are 

not hospitalized is 5-20 days, typical for non-severe pneumonia. 

Model simulation and Sensitivity analysis 

The default model is set on a region with 1 million residents, consisting of 20% elderly people 

and 20% of total population with past infection (or immunized). There is no existing 

symptomatic or asymptomatic case, and no person in self-quarantine in the region. We assume 

only one imported young exposed case every two days for 20 days (i.e., 10 imported cases).  

Analyses are performed based on the ranges of parameter estimates. We vary one parameter at a 

time, holding other factors at their default values.  Key epidemic measures from the models are 

presented in tables. Multi-parameter analyses with two or more factors varying together are also 

performed, important findings are discussed in the text. Additional outputs are included in the 

supplemental materials. 

The R package EpiModel is used for simulating the deterministic epidemic models[40]. The R 

codes for simulating the modified SEIR epidemic models are available 

(http://github.com/xinhuayu/returnepidemic/). 

Ethics statement 

This study is deemed exempt from ethics approval as the research involves no human subjects 

and we use publicly available data. No informed consent is needed. 

 

Results 

Model calibration  
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Under the default model setting, all epidemic measures reflect the model parameters 

satisfactorily (Table 2, also refer to supplemental Table 1). That is, the resulting epidemic 

measures from the default model such as the disease incidence, epidemic peak, and duration of 

the epidemic are reasonable and mirror those reported in the literature. For example, starting with 

ten imported infectious persons and assuming 40% asymptomatic cases at the peak of epidemic, 

the epidemic reaches peak quickly within 73 days and lasts 172 days. It is ten days quicker 

among elderly people than among young people (Table 2). The epidemic curves for incident 

cases (symptomatic and asymptomatic), hospitalizations and deaths by age groups are typical 

(Supplemental Figure 2). The modeling results in an overall hospitalization rate of 14.1%. The 

in-hospital mortality rate is 5.0% for young and 20.3% for elderly people, with an overall 

mortality rate of 1.9%, similar to those empirical measures in the COVID-19 pandemic in the 

early epidemic of the US. Therefore, the default model represents the current COVID-19 

pandemic sufficiently well.  

Impact of population structure   

As summarized in Table 3, the size of region and a small percent change of self-quarantined 

susceptible people do not change the epidemic progression significantly except for the total 

number of cases.  A smaller percent of elderly slows down the epidemic, while a much higher 

percent of elderly does not change the epidemic curve significantly. As expected, when over 

60% people have prior infections, the epidemic takes very long to reach the peak and results in 

substantial fewer cases. The effects are similar in both young and elderly people (supplemental 

Table 2a & 2b).   

Impact of asymptomatic cases  
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Both the percent and infectivity of asymptomatic cases were investigated (Table 3). An increase 

of the percent of asymptomatic cases from 10% to 30% postpones the epidemic peak by 12 days 

due to less infectivity of asymptomatic cases, and results in significantly fewer hospitalizations 

and deaths. On the other hand, a higher infectivity of asymptomatic cases (e.g., 100% of 

symptomatic cases) results in a fast developing and narrow epidemic curve which reaches the 

peak within 60 days. There are more hospitalizations and deaths at the epidemic peak compared 

with the default model, both assumed 40% asymptomatic cases. In addition, a change of the 

percent of asymptomatic cases among elderly people leads to larger changes in hospitalizations 

and deaths than that of young people (Supplemental Table 2a & 2b).  For example, comparing 

60% with 40% asymptomatic cases, the total hospitalizations are reduced only by half among 

elderly people, while it is a two third decrease among young people. Furthermore, when the 

effects of the percent and infectivity of asymptomatic cases are combined, for example, in a low 

risk epidemic with 60% asymptomatic cases but with a lower (30%) infectivity, the epidemic 

reaches its peak slower for both young and elderly people with peak hospitalizations almost half 

of the default model (assuming 40% asymptomatic cases and 50% infectivity) (supplemental 

Figure 3). 

Impact of case importing process 

This epidemic model is initiated by imported infectious persons (may be asymptomatic or pre-

symptomatic cases). The number of imported cases is in absolute sense, regardless of the size of 

population. A daily arrival of two infectious people speeds up the epidemic by 8 days compared 

with one case every two days in the default model (Table 3). The magnitudes of epidemic are 

similar between different importation scenarios. In addition, a longer importing duration shifts 

the epidemic only slightly. Finally, if we assume all the imported cases are asymptomatic cases, 
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the epidemic curves are not significantly different from that of default model (supplemental 

Figure 4).   

Impact of the number of contacts 

The number of contacts affect the epidemic curves in a complicate way (Figure 2 for 

hospitalizations, and supplemental Figure 5 and 6 for incidence and deaths). Limiting the number 

of contacts only among young people changes the course of epidemic among themselves 

moderately (Figure 2a). It has little impact on the epidemic curves among elderly people, and 

subsequently does not change the burden of overall hospitalizations, as elderly people are more 

likely to be hospitalized or die  than young people. On the other hand, limiting contacts among 

elderly people alone not only changes the epidemic curves among themselves, but also 

significantly affects those of young people (Figure 2b and 2c), even though young people 

maintain a lot of contacts within themselves. For example, when limiting 3 contacts among 

elderly people, 10 contacts among young people, and 3 contacts between young and elderly 

people (Figure 2c), at the peak of epidemic, the maximum number of hospitalizations is 618 for 

young people and 882 for elderly people. At the end of epidemic, the total hospitalizations are 

25,358 and 33,741, and total deaths are 1,268 and 6,858 for young and elderly people, 

respectively, all significantly lower than those of default model (Table 2). The times to the 

epidemic peaks are also postponed in both curves. When both young and elderly people reduce 

contacts to 3 per day, such as under the stay-at-home rule, the epidemic curves on 

hospitalizations are significantly mitigated in both age groups (Figure 2d).  

Finally, we consider two extreme scenarios: 1) high risk scenario: assuming one imported case 

per day continuously throughout the epidemic, 30% asymptomatic cases at the epidemic peak, 

and the same infectivity between symptomatic and asymptomatic cases; 2) low risk scenario: 
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assuming one imported case every two days for twenty days, 60% asymptomatic cases, and 

asymptomatic cases have only 30% infectivity of symptomatic cases. In both scenarios, limiting 

contacts among elderly people alone still has significant impact on hospitalizations in both age 

groups, and a larger relative difference in the low risk scenario than high risk scenario (Figure 3 

and supplemental Figure 7).        

 

Discussion 

 

We have created a modified SEIR model and parameterized it with estimates from the current 

COVID-19 pandemic to investigate the impact of various parameters on the possible second 

wave of pandemic. Our scenario analyses suggest that unless the population have reached herd 

immunity (e.g., over 60% people are immune to the disease, assuming a reproduction number of 

2.6 [31, 32]), a small number of imported cases within a short duration may rekindle the 

epidemic among the large susceptible pool. Despite young imported cases and only 3 contacts 

between young and elderly people, infection can quickly transmit into elderly people. 

Interestingly, our model demonstrates that reducing the number of contacts among elderly people 

alone can not only slowdown the epidemic but also reduce the magnitude of the epidemic among 

both young and elderly people. This spillover effect implies that interventions targeting high risk 

groups such as elderly population can have a larger impact on the whole society, without 

significantly disturbing the working life among young people.   

Our findings are consistent with that of prior simulation studies and real life experience in 

several Asian countries [1, 17, 18, 22, 24, 26]. Many countries have implemented more proactive 
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interventions such as school closing and stay at home rules, which have mitigated the epidemic 

in many regions.   

One of the most effective strategies to curb an epidemic is to reduce personal interactions 

through social distancing and prohibiting large gatherings [23, 33, 41]. Our simulations have 

shown that reducing the number of contacts among young people alone does not affect the 

burden of epidemic significantly in terms of hospitalizations and deaths due to COVID-19. On 

the other hand, reducing the number of contacts among elderly people alone not only mitigates 

the impact of epidemic among themselves, but also changes the course of epidemic among 

young people, despite they still remain very active. Elderly people often have weaker immune 

system and multiple underlying chronic conditions. If infected with the virus, they are more 

likely to be symptomatic and more infectious because their bodies are not able to eliminate virus 

effectively. Therefore, during a pandemic such as COVID-19, elderly people are more likely to 

be hospitalized and die from the complications of infection. Thus, protecting elderly people not 

only decreases their risk of being infected but also reduces the burden of epidemic in the whole 

society.    

With growing availability of detection kits during the COVID-19 pandemic, more asymptomatic 

or mild symptomatic cases are identified. Ultimately, an optimal view is asymptomatic cases 

may account for 60% of infections. However, recent research and case reports have confirmed 

that asymptomatic or pre-symptomatic cases can shed enough quantify of virus to be infectious 

[6-9, 11]. Furthermore, if the infectivity of asymptomatic cases is similar to that of symptomatic 

cases, a faster epidemic will occur. Despite more asymptomatic cases at the peak of epidemic, 

there are also significantly more hospitalizations and deaths, which may overwhelm the health 

care system. With a lower infectivity (30% infectivity) among asymptomatic cases, the epidemic 
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reaches its peak later and results in half of hospitalizations at the peak compared with the default 

model (Supplemental Figure 3). In addition, a closely related issue is case importation [25]. 

Imported cases are often pre-symptomatic, asymptomatic or with mild symptoms. They seed of a 

second outbreak, even with just a few cases. Therefore, proactively identifying asymptomatic 

cases, isolating them and tracing their contacts thereafter will prevent the occurrence of an 

epidemic [22].   

Our study has some strengths. We have devised a modified SEIR model to incorporate both 

symptomatic and asymptomatic cases. We emphasize population heterogeneity such as age 

structure in the model. We include a self-quarantined group who will not infect other people if 

they are infected with the virus. Naturally, these settings can be extended to represent other high 

risk or special groups with revised parameters. In addition, we separate hospitalization and death 

from other removed compartments to explicitly estimate the impact of an epidemic on 

hospitalizations and deaths. From the health impact point of view, severe cases that lead to 

hospitalizations and deaths are more important than mild cases, as demonstrated in the 2009 

H1N1 pandemic [16].  Furthermore, we explored a few key determinants of epidemic explicitly, 

leading to many insights on epidemic prevention strategies.  

There are a few limitations in our study. As inherent in all modeling studies, simulation 

interpretations are heavily dependent on model assumptions and parameter estimations. Our 

epidemic model is a population model. Although we take account of population heterogeneity 

such as age in the current model, our age group is overly broad. A more detailed age grouping 

scheme, including children, young adults, middle age group, and elderly, may reflect the age-

specific epidemic more realistically. Other factors may also be included, and additional 

compartments such as pre-symptomatic stage may be modeled. However, more sophisticated 
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models require more assumptions and may not necessarily provide more insights about the 

epidemic process. Instead, in this study, in addition to ensuring the mathematical correctness of 

the models, we prioritize the epidemiological concepts and clinical relevance in setting up the 

models rather than model complexity.  Nevertheless, our findings do not intend to provide 

definitive advice to design a new policy but rather gain insights of the epidemic process and 

provide theoretical support for a possibly more effective prevention strategy based on approaches 

targeting high risk populations. 

In addition, we assume random mixing within and between age groups. As a population model, 

we cannot assess the impact of individual behaviors such as the way of reducing contacts, social 

distancing and travelling. Furthermore, it ignores clustering within the population such as senior 

group living, community gatherings (e.g., churches, community centers), worksites and schools. 

These clusters are hotbeds for superspreading events which may lead to a sudden increase of new 

cases and overwhelm the healthcare system unexpectedly. Furthermore, the quarantine 

compartment in the model is not contact tracing based. Modeling contact tracing based 

quarantine is more relevant to public health interventions[42]. Therefore, the goal of our future 

research is to exploring the effect of these factors with stochastic simulations of individual 

behavior[24, 43] and network analysis[44]. Additionally, our model is set on a mid-size region 

with 1 million residents. We do not intend to model an pandemic, as all prevention strategies are 

ultimately local.  

Our study only examines a small subset of scenarios during the epidemic. Multi-interventions 

and more stringent controlling measures are more effective in mitigating a pandemic but are 

likely less sustainable in the long run. After the initial epidemic ends, society will return to 

normal, and only one or two most effective interventions such as social distancing may be 
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practiced, often partially. Thus, one parameter analysis under various scenarios is important for 

evaluating the probability of a second epidemic.  

Finally, one critical issue in preparing for and preventing a second wave of pandemic is 

vaccinating the susceptible people, which is the most effective way to protect people, especially 

among high risk populations such as elderly people. However, there are several questions that 

should be addressed: a) when will the vaccine be available? A timely vaccine will protect most 

of the susceptible people. But despite the accelerated development of hundreds of projects 

worldwide, effective vaccines may still be six to eight months away; b) what percent of 

population will receive the vaccine?  Not all people will accept the vaccination for various 

reasons including health conditions, allergic reactions, refusal, religious beliefs and ideologies. 

An insufficient coverage of vaccination may still leave a large pool of the susceptible, resulting 

in a possible smaller second wave of outbreak; c) how fast will the vaccine be distributed? 

During the pandemic, inefficient logistic may impede the vaccine distribution. Furthermore, 

vulnerable populations such as elderly people, people living in rural areas, people without good 

insurance, and some racial/ethnical groups, may receive the vaccine later than other populations, 

resulting in some lingering epidemics in these populations locally; and d) how effective will the 

vaccine be? Based on the effectiveness of the seasonal influenza vaccine, the effectiveness of the 

flu vaccine may only have 30-60% of protection (https://www.cdc.gov/flu/vaccines-

work/effectiveness-studies.htm). In addition, virus may mutate over time, especially under the 

evolutionary pressure of vaccination, new strains may lose the targets of the vaccine, causing the 

vaccine to be ineffective. Even if the virus does not mutate over time, individual variations in the 

vaccine responses should not be neglected. In addition, the neutralizing effect of the vaccine has 

not been established, and a short-term immunity against the novel SARS-CoV-2 will undermine 
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the purposes of vaccination. Currently we are conducting further analyses to examine these 

issues.  

In summary, with a modified SEIR model, we have demonstrated that simple intervention 

strategies such as reducing the number of contacts through social distancing among elderly 

people alone will not only reduce the risk of infection and alleviate disease burden among 

themselves, but also mitigate the impact of a second epidemic in the whole society. Interventions 

targeting high risk groups may be more effective in containing or mitigating the pandemic. 

       

Acknowledgments 

The author wishes to acknowledge the support from FedEx Institute of Technology at the 

University of Memphis for the data science cluster seed grant fund. The funder plays no role in 

design, analysis and report the current study. The author also wants to thank two anonymous 

reviewers for their insightful comments and suggestions that significantly improved the 

manuscript. 

Conflict of Interest: None.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.04.26.20081109doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.26.20081109


19 
 

References: 

1. Li, Q., X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K.S.M. Leung, et al., Early 

Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N 

Engl J Med, 2020. 382(13): p. 1199-1207. 

2. Zhu, N., D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, et al., A 

Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, 2020. 

382(8): p. 727-733. 

3. Center, P.R. Most Americans Say Coronavirus Outbreak Has Impacted Their Lives. 2020 

March [cited 2020 June 18]; Available from: 

https://www.pewsocialtrends.org/2020/03/30/most-americans-say-coronavirus-outbreak-

has-impacted-their-lives/. 

4. Yu, X., Impact of mitigating interventions and temperature on the instantaneous 

reproduction number in the COVID-19 epidemic among 30 US metropolitan areas. 

MEDRXIV/2020/081083, 2020. 

5. Peiris, J.S., K.Y. Yuen, A.D. Osterhaus, and K. Stohr, The severe acute respiratory 

syndrome. N Engl J Med, 2003. 349(25): p. 2431-41. 

6. Li, C., F. Ji, L. Wang, L. Wang, J. Hao, M. Dai, Y. Liu, X. Pan, et al., Asymptomatic and 

Human-to-Human Transmission of SARS-CoV-2 in a 2-Family Cluster, Xuzhou, China. 

Emerg Infect Dis, 2020. 26(7). 

7. Li, G., W. Li, X. He, and Y. Cao, Asymptomatic and Presymptomatic Infectors: Hidden 

Sources of COVID-19 Disease. Clin Infect Dis, 2020. 

8. Pan, X., D. Chen, Y. Xia, X. Wu, T. Li, X. Ou, L. Zhou, and J. Liu, Asymptomatic cases 

in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis, 2020. 20(4): p. 410-

411. 

9. Zhou, J., Y. Tan, D. Li, X. He, T. Yuan, and Y. Long, Observation and analysis of 26 

cases of asymptomatic SARS-COV2 infection. J Infect, 2020. 

10. Bai, Y., L. Yao, T. Wei, F. Tian, D.Y. Jin, L. Chen, and M. Wang, Presumed 

Asymptomatic Carrier Transmission of COVID-19. JAMA, 2020. 

11. Le, T.Q.M., T. Takemura, M.L. Moi, T. Nabeshima, L.K.H. Nguyen, V.M.P. Hoang, 

T.H.T. Ung, T.T. Le, et al., Severe Acute Respiratory Syndrome Coronavirus 2 Shedding 

by Travelers, Vietnam, 2020. Emerg Infect Dis, 2020. 26(7). 

12. Guan, W.J., Z.Y. Ni, Y. Hu, W.H. Liang, C.Q. Ou, J.X. He, L. Liu, H. Shan, et al., 

Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 2020. 

13. Huang, C., Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, et al., Clinical 

features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020. 

395(10223): p. 497-506. 

14. Zhou, F., T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, et al., Clinical course 

and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a 

retrospective cohort study. Lancet, 2020. 395(10229): p. 1054-1062. 

15. CDC, Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — 

United States, February 12–March 16, 2020. MMWR Morb Mortal Wkly Rep, 2020(69): 

p. 343-346. 

16. Shrestha, S.S., D.L. Swerdlow, R.H. Borse, V.S. Prabhu, L. Finelli, C.Y. Atkins, K. 

Owusu-Edusei, B. Bell, et al., Estimating the burden of 2009 pandemic influenza A 

(H1N1) in the United States (April 2009-April 2010). Clin Infect Dis, 2011. 52 Suppl 1: 

p. S75-82. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.04.26.20081109doi: medRxiv preprint 

https://www.pewsocialtrends.org/2020/03/30/most-americans-say-coronavirus-outbreak-has-impacted-their-lives/
https://www.pewsocialtrends.org/2020/03/30/most-americans-say-coronavirus-outbreak-has-impacted-their-lives/
https://doi.org/10.1101/2020.04.26.20081109


20 
 

17. Kucharski, A.J., T.W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R.M. Eggo, 

and C.-w.g. Centre for Mathematical Modelling of Infectious Diseases, Early dynamics 

of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect 

Dis, 2020. 

18. Chen, T.M., J. Rui, Q.P. Wang, Z.Y. Zhao, J.A. Cui, and L. Yin, A mathematical model 

for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty, 

2020. 9(1): p. 24. 

19. Du, Z., X. Xu, Y. Wu, L. Wang, B.J. Cowling, and L.A. Meyers, Serial Interval of 

COVID-19 among Publicly Reported Confirmed Cases. Emerg Infect Dis, 2020. 26(6). 

20. Nishiura, H., N.M. Linton, and A.R. Akhmetzhanov, Serial interval of novel coronavirus 

(COVID-19) infections. Int J Infect Dis, 2020. 93: p. 284-286. 

21. Roosa, K., Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J.M. Hyman, P. Yan, and G. 

Chowell, Real-time forecasts of the COVID-19 epidemic in China from February 5th to 

February 24th, 2020. Infect Dis Model, 2020. 5: p. 256-263. 

22. Hellewell, J., S. Abbott, A. Gimma, N.I. Bosse, C.I. Jarvis, T.W. Russell, J.D. Munday, 

A.J. Kucharski, et al., Feasibility of controlling COVID-19 outbreaks by isolation of 

cases and contacts. Lancet Glob Health, 2020. 8(4): p. e488-e496. 

23. Prem, K., Y. Liu, T.W. Russell, A.J. Kucharski, R.M. Eggo, N. Davies, C.-W.G. Centre 

for the Mathematical Modelling of Infectious Diseases, M. Jit, et al., The effect of control 

strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, 

China: a modelling study. Lancet Public Health, 2020. 

24. Ferguson, N., D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, 

A. Boonyasiri, et al., Report 9: Impact of non-pharmaceutical interventions (NPIs) to 

reduce COVID-19 mortality and healthcare demand 2020, Imperial College: UK. 

25. Chinazzi, M., J.T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, Y.P.A. 

Pastore, K. Mu, et al., The effect of travel restrictions on the spread of the 2019 novel 

coronavirus (COVID-19) outbreak. Science, 2020. 

26. IHME, Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilatordays 

and deaths by US state in the next 4 months. IHME COVID-19 health service utilization 

forecasting team. 2020. 

27. Lipsitch, M., T. Cohen, B. Cooper, J.M. Robins, S. Ma, L. James, G. Gopalakrishna, S.K. 

Chew, et al., Transmission dynamics and control of severe acute respiratory syndrome. 

Science, 2003. 300(5627): p. 1966-70. 

28. He, X., E.H.Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y.C. Lau, J.Y. Wong, et al., 

Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med, 2020. 

26(5): p. 672-675. 

29. Sanche, S., Y.T. Lin, C. Xu, E. Romero-Severson, N. Hengartner, and R. Ke, High 

Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. 

Emerg Infect Dis, 2020. 26(7). 

30. Zhao, S., Q. Lin, J. Ran, S.S. Musa, G. Yang, W. Wang, Y. Lou, D. Gao, et al., The basic 

reproduction number of novel coronavirus (2019-nCoV) estimation based on exponential 

growth in the early outbreak in China from 2019 to 2020: A reply to Dhungana. Int J 

Infect Dis, 2020. 

31. Imai, N., A. Cori, I. Dorigatti, M. Baguelin, C.A. Donnelly, S. Riley, and N.M. Ferguson, 

Report 3: Transmissibility of 2019-nCoV 2020, Imperial College of London: London, 

OK. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.04.26.20081109doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.26.20081109


21 
 

32. Wu, J.T., K. Leung, and G.M. Leung, Nowcasting and forecasting the potential domestic 

and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a 

modelling study. Lancet, 2020. 395(10225): p. 689-697. 

33. Mossong, J., N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, M. Massari, S. 

Salmaso, et al., Social contacts and mixing patterns relevant to the spread of infectious 

diseases. PLoS Med, 2008. 5(3): p. e74. 

34. Zhang, J., M. Litvinova, W. Wang, Y. Wang, X. Deng, X. Chen, M. Li, W. Zheng, et al., 

Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside 

Hubei province, China: a descriptive and modelling study. Lancet Infect Dis, 2020. 

35. Zhao, S., P. Cao, D. Gao, Z. Zhuang, Y. Cai, J. Ran, M.K.C. Chong, K. Wang, et al., 

Serial interval in determining the estimation of reproduction number of the novel 

coronavirus disease (COVID-19) during the early outbreak. J Travel Med, 2020. 

36. Lauer, S.A., K.H. Grantz, Q. Bi, F.K. Jones, Q. Zheng, H.R. Meredith, A.S. Azman, N.G. 

Reich, et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From 

Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med, 2020. 

37. Wu, Z. and J.M. McGoogan, Characteristics of and Important Lessons From the 

Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 

72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 2020. 

38. Russell, T.W., J. Hellewell, C.I. Jarvis, K. van Zandvoort, S. Abbott, R. Ratnayake, G. 

Cmmid Covid-Working, S. Flasche, et al., Estimating the infection and case fatality ratio 

for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the 

Diamond Princess cruise ship, February 2020. Euro Surveill, 2020. 25(12). 

39. Verity, R., L.C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-

Dannenburg, H. Thompson, et al., Estimates of the severity of coronavirus disease 2019: 

a model-based analysis. Lancet Infect Dis, 2020. 

40. Jenness, S.M., S.M. Goodreau, and M. Morris, EpiModel: An R Package for 

Mathematical Modeling of Infectious Disease over Networks. Journal of Statistical 

Software, 2018. 84. 

41. Pan, A., L. Liu, C. Wang, H. Guo, X. Hao, Q. Wang, J. Huang, N. He, et al., Association 

of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in 

Wuhan, China. JAMA, 2020. 

42. Day, T., A. Park, N. Madras, A. Gumel, and J. Wu, When is quarantine a useful control 

strategy for emerging infectious diseases? Am J Epidemiol, 2006. 163(5): p. 479-85. 

43. Peak, C.M., L.M. Childs, Y.H. Grad, and C.O. Buckee, Comparing nonpharmaceutical 

interventions for containing emerging epidemics. Proc Natl Acad Sci U S A, 2017. 

114(15): p. 4023-4028. 

44. Keeling, M.J. and K.T. Eames, Networks and epidemic models. J R Soc Interface, 2005. 

2(4): p. 295-307. 

45. Wang, X., J. Fang, Y. Zhu, L. Chen, F. Ding, R. Zhou, L. Ge, F. Wang, et al., Clinical 

characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) 

in a Fangcang Hospital. Clin Microbiol Infect, 2020. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.04.26.20081109doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.26.20081109


22 
 

Table 1: Parameters used in the epidemic models 

Definition Default value  Range References 

Importing rate for exposed 

persons 

1 every two days 

only for young 

population, lasts 

for 20 days 

 

0-2 cases per day, 

proportional to the 

size of population, 

with larger regions 

have more imported 

cases  

Arbitrary 

Reproduction number, the 

average number of 

secondary cases infected by 

an index case 

2.6  1.5-4 [1, 20, 29, 30, 

32] 

Contact rate per capita 10 for young, 7 for 

old, and 3 for 

interactions 

between young and 

old people 

 

Each with 2-30 

contacts range. Senior 

group living or 

community gathering 

is not considered. 

 

[23, 33] 

Serial interval: duration 

between infection point 

(often symptom onset) of 

index case and the onset of 

secondary cases infected by 

him 

6 days for young, 4 

days for old 

3-10 days, average 5 

days 

[17, 19, 23, 34, 

35]  

Incubation period: duration 

between exposure and 

symptom onset  

5 days for young, 4 

days for old 

2-14 days [36] 

Recovery duration 7 days for young 

and 14 days for old 

4-20 days [45] 

Hospitalization rate 5% for young, and 

30 % for old 

5% - 50%. average 

10% hospitalization 

among diagnosed, US 

 

Hospital stay 7 days for young, 

and 21 for old  

4-30 days  [13, 14, 37] 

Mortality among 

hospitalized 

5% for young, and 

20% for old people 

1% - 50% [13-15, 37, 45] 
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Table 2: Basic epidemic measures from the simulation with default model parameterization  

 Young  

(Age < 65) 

(susceptible No. = 

640,000) 

Old  

(Age >= 65) 

(susceptible No. = 

160,000) 

Total population 

(susceptible No. = 

800,000) 

Days to epidemic peak 

(duration till =<5 cases) 

76 (172) 66 (122) 73 (172) 

Susceptible at epidemic 

peak No. (% total) 

347,117 (43.4%) 64,398 (40.2% 427,443 (53.4%) 

Maximum quarantined No. 

(% susceptible) 

3,156 (1.8%) 132 (1.5%) 3,210 (1.8%) 

Maximum new cases 18,805 (5.4%) 7,735 (12.0%) 23,193 (5.4%) 

Symptomatic  

No. (incidence %) 

11,145 (3.2%) 4,614 (7.2%) 13,742 (3.2%) 

Asymptomatic 

No. (incidence %) 

7,660 (2.2%) 3,121 (4.8%) 9,451 (2.2%) 

Maximum new 

hospitalizations  

No. (%among symptomatic) 

732 (6.6%) 1,247 (27.0%) 1,791 (13.0%) 

Maximum new deaths 

No. (%among symptomatic) 

(%among hospitalized) 

33 (0.3%) (4.5%) 161 (3.5%) (12.9%) 191 (1.4%) (10.7%) 

    

Total cases within 240 days 

No (incidence %) 

553,851 (86.5%) 158,010 (98.8%) 711,861 (89.0%) 

Symptomatic  

No. (incidence %) 

331,168 (51.7%) 94,354 (59.0%) 425,522 (53.2%) 

Asymptomatic  

No. (incidence %) 

222,683 (34.8%) 63,656 (39.8%) 286,339 (35.8%) 

Total hospitalizations  

No. (% among 

symptomatic) 

25,707 (7.8%) 34,408 (36.5%) 60,115 (14.1%) 

Total deaths  

No. (%among symptomatic) 

(%among hospitalized) 

1,285 (0.4%) 

(5.0%) 

6,998 (7.4%) 

(20.3%) 

8,283 (1.9%) 

(13.8%) 

 

Note: Parameters for the default model are listed in the supplemental table 1. Briefly, the 

population size is 1 million residents, 20% percent of elderly, 20% prior infection, importing 

young cases at 1 per two days for 20 days (10 cases), 40% mild/asymptomatic cases among 

unquarantined susceptible, 10 contacts for young people, 7 contacts for elderly people, and 3 

contacts between young and elderly people. The peak self-quarantined is 2% of the susceptible 

population but changes with the prevalence of disease. The hospitalization rate is 5% for young, 

and 30% for old symptomatic cases, respectively. The mortality rate is 5% for hospitalized 

young people and 20% for hospitalized elderly. There are no prior symptomatic or asymptomatic 

cases or quarantined people in the total population. The modeling duration is 240 days.
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Table 3: Impact of population structure, asymptomatic infection and importing process on the epidemic progression 

      Maximum at the epidemic peak Total 

Parameters levels 

Time to 

peak 

(Duration) 

New 

symptoma

tic 

New 

asymptomati

c 

New 

hospitalizati

ons 

New 

deaths 

Hospitaliza

tions 
Deaths 

Default model   73 (164)      13,742          9,451        1,791        191          60,115        8,283  

                  

Size of region 

  

500,000 73 (164)        6,871          4,726           896          95          30,057    4,141  

100,000 72 (147)       1,374             945           179        19            6,011          828  

50,000 73 (140)          687             473             90          10            3,006          414  

                  

% Elderly 10% 77 (192)       9,808          6,770           995        103          43,925        4,833  

  30% 73 (161)     17,108        11,716        2,500        273          75,632     11,716  

  40% 73 (155)     19,650        13,407        3,139        352          90,792     15,182  

                  

% Prior 

infection 

30% 81 (189)     10,037          6,875        1,385        155          51,025        7,147  

50% 110 (240+)        4,070          2,757           651          83          31,940        4,744  

  60% 141 (240+)       1,953          1,312           345          48          21,676       3,356  

                  

% Self-

quarantined 

  

0.5% 73 (172)     13,545          9,520        1,758        188          58,178        8,163  

5% 73 (171)     14,432          9,239        1,907        199          67,121        8,715  

15% 73 (183)     15,990          8,790        2,185        217          84,913        9,801  

         

% 

Asymptomatic 

cases at the 

peak 

10% 54 (136)     29,936          3,719        3,412        322          92,515      12,448  

30% 66 (160)     17,558          8,501        2,313        241          71,646      10,076  

60% 78 (192)       6,453        11,792           964        110          35,036       5,065  
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Infectivity of 

asymp. vs 

symptomatic 

30% 78 (185) 
    12,223          8,388        1,651        182          59,076        8,217  

70% 67 (159)      15,505        10,697        1,939        199          61,088        8,341  

100% 60 (145)      17,997        12,464        2,135        210          62,104       8,397  

               

Imported young 

cases (per day) 

0.25 76 (175)      13,740          9,454        1,789        191          60,091        8,279  

1 69 (168)     13,760          9,467        1,793        191          60,139       8,287  

2 65 (165)      13,760          9,470        1,794        191          60,164       8,291  

                  

Importing 

duration (days) 
5 75 (175)      13,730          9,450        1,790        190          60,095       8,280  

10 73 (173)     13,739          9,455        1,790        191          60,109       8,282  

30 72 (172)     13,738          9,455        1,791        191          60,116       8,283  
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Figure 1: The Modified Susceptible, Exposed, Infectious, and Removed (SEIR) Model  

 

Note: The compartments are susceptible (S), self-quarantined susceptible (Q), exposed (E), infectious (those cases from quarantined 

IQ, symptomatic cases ID and asymptomatic cases IU), and removed (hospitalized: H, Dead: D, and Recovered: R). detailed 

explanations for parameters are in the text and supplemental documents 
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Figure 2: Impact of the number of contacts on the epidemic curves of hospitalizations among young and elderly people 

 

Note: the default model includes 40% asymptomatic cases and 50% infectivity of asymptomatic cases 
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Figure 3: Impact of the number of contacts on the epidemic curves of hospitalizations for two scenarios 

 

 

(a) High risk scenario: continuously one imported case per day, 30% asymptomatic, same infectivity between asymptomatic and 

symptomatic cases.  
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(b) Low risk scenario: one imported case every two days for twenty days, 60% asymptomatic, with 30% infectivity as 

symptomatic cases  
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