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Abstract 
 
Background: The aim of this study is to explain the changes of outbreak indicators for 
coronavirus in China with nonlinear models and time series analysis. There are lots of 
methods for modelling. But we want to determine the best mathematical model and the best 
time series method among other models.  
 
Methods: The data was obtained between January 22 and April 21, 2020 from China records. 
The number of total cases and the number of total deaths were used for the calculations. For 
modelling Weibull, Negative Exponential, Von Bertalanffy, Janoscheck, Lundqvist-Korf and 
Sloboda models were used and AR, MA, ARMA, Holt, Brown and Damped models were 
used for time series. The determination coefficient (R2), Pseudo R2 and mean square error 
were used for nonlinear modelling as criteria for determining the model that best describes the 
number of cases, the number of total deaths and BIC (Bayesian Information Criteria) was 
used for time series. 
 
Results: According to our results, the Sloboda model among the growth curves and ARIMA 
(0,2,1) model among the times series models were most suitable models for modelling of the 
number of total cases. In addition Lundqvist-Korf model among the growth curves and Holt 
linear trend exponential smoothing model among the times series models were most suitable 
model for modelling of the number of total deaths. Our time series models forecast that the 
number of total cases will 83311 on 5 May and the number of total deaths will be 5273. 

Conclusions: Because results of the modelling has providing information on measures to be 
taken and giving prior information for subsequent similar situations, it is of great importance 
modeling outbreak indicators for each country separately. 
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Introduction 

Coronavirus outbreak (COVID-19) was first appeared in the Wuhan city, Hubei Province, in 
China. The virus was identified in the first half of January 2020 [1]. The epidemiological 
features of the disease are still unknown, and the number of total cases and the number of 
total deaths varies day by day. When the rapid spread and serious consequences of the disease 
were observed, precautions were taken and positive cases began to be recorded after the 
second half of January. Because the number of total cases and the number of total deaths are 
used for examining the course of the outbreak, modelling of these indicators are the important 
issue. The model results are valuable for determining the appropriate preventions. In the 
literature, it was observed that some models were used for short-term forecasts considering 
the previous data. It is possible to reduce the number of total cases and total deaths by taking 
necessary precautions. At this point, it is very important to make future estimates.  

In this study, it was aimed to examine the course of outbreak in China with alternative 
statistical models by taking into the number of total cases and the number of total deaths for 
the day it became clear until April 20 and also we want to select the best model for defining 
with model selection criteria. For modelling Weibull, Negative Exponential, Von Bertalanffy, 
Janoscheck, Lundqvist-Korf and Sloboda models were used and AR, MA, ARMA, Holt, 
Brown and Damped models were used for time series.  

Materials and Methods 

Data 

The data was obtained between January 22 and April 21, 2020 in China records. The number 
of total cases and the number of total deaths were used for the calculations. The reasons for 
choosing China for modeling are that, it is the first country to fight the outbreak, therefore it is 
possible to observe the natural course of the outbreak and it is the country that struggles for 
the longest time. 

The number of total cases and the total deaths of coronavirus disease in the world were 
recorded daily by following the web address https://www.worldometers.info/coronavirus/. 

Models for describing the course of the outbreak 

For coronavirus outbreak, the change in the number of total cases and the number of total 
deaths over time was analyzed separately. In the analysis of time-total case and time-total 
deaths, six different nonlinear models were used including Weibull, Negative exponential, 
Von Bertalanffy, Janoscheck, Lundqvist-Korf and Sloboda models (Table 1) [2]. For time 
series analysis, Box-Jenkins and exponential smoothing methods were used (Table 2 and 
Table 3). 

The models are examined in two subsections: first group models are Growth Curves and 
second group models are Time Series. The growth models descriptive equations are given in 
Table 1[3-8]. 
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Table 1. Growth Curves 

Model Equation 
Weibull model 
 

�� � � � ������ , � 	 0 

Negative exponential model 
 

�� � ��1 � ����
, � 	 0 

Von Bertalanffy model 
 

�� � ��1 � �����
�, � 	 0 
 

Janoscheck model 
 

�� � ��1 � �������, � � 1 

Lundqvist-Korf model 
 

�� � ������� 

Sloboda model  
 

�� � ��������� , � 	 0 

 

In Table 1, Yt is the observed dependent variable as the number of total cases and the number 
of total death and t is the independent variable. In our models, t is the day. The A term is the is 
the asymptotic limit of the number of total cases and the number of total deaths as time goes 
to infinity, B is the proportion of the number of total cases to the number of total deaths. It is 
the proportion of the number of total cases to the number of total deaths, obtained after the 
estimated case / deaths with the initial value of time (days), to the highest number of total 
cases / deaths. The k term is the proportion of the maximum increase rate to the highest 
number of cases or death. The �, c, d are the changing points that occurs when the change in 
the estimated increase rate goes from increase to decrease. 

 

Table 2: Box-Jenkins Models 

Model  Equation 
Autoregressive Model (AR(p)) �� � ������ � ������ � � � �	���	 � �� 
Moving Averages Model (MA(q)) �� � � � �� � ������ � ������ � � � �
���
  

Autoregressive Moving averages 
Model (ARMA(p,q)) 

�� � ������ � ������ � � � �	���	 � ��
� ������ � ������ � � � �
���
  

 
 

AR (p) is the p. degree of autoregressive series [9]. MA (q) refers to the moving average 
model of order q. In this series, ��~���0, ��
 is the White noise series [10]. ARMA (p, q)) 
model is expressed by both AR (p) and MA (q) processes [11]. 

Table 3. Exponential Smoothing Models 

Model  Equation 
 
 
Holt Double Exponential Smoothing 

�� � ��� � �1 � �
����� �  ���
 
 

 � � !��� � ����
 � �1 � !
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Model  
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Damped Trend Model 
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Brown’s Single Parameter Linear 
Exponential Smoothing Model 

"�� � �"��� � �1 � �
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In Holt method, �� is the new smoothed value, � is the smoothing coefficient, (0<�<1), �� is 
the actual value at t. period,  ! is the smoothing coefficient for trend estimation, (0<! . 1), 
 � is the trend predicted value, p is the number of forecasting periods and  "#��	 is the 
forecasting value after p period [12]. In Damped trend method, if 0</<1, the trend is damped, 
if &= 1, the equations become identical to the Holt's Linear Trend method. Tashman and Kruk 
(1996) defined that there may be value in allocating / � 1, if applied in series with a strong 
tendency, with exponential trend [13]. The Brown's Single Parameter Linear Exponential 
Smoothing Model is more suitable, if there is an increasing or decreasing trend in the time 
series. In this model, the initial equations "�� and "�� are obtained by single exponential 
smoothing and double exponential smoothing, respectively [14]. For the estimation of post m 
process, the equation is given in the below [15]. 

",��
 � *� � ��( 
 

The exponential smoothing method is the method in which the estimates are constantly 
updated, taking into account the recent changes in the data [16]. In these methods, the 
weighted average of past period values is calculated and taken as the estimated value of future 
periods. 

Estimation accuracy of the applied methods were evaluated with R2, Pseudo R2 and BIC. 
Bayesian information criterion (BIC) was developed by Gideon E. Schwarz (1978), who gave 
a Bayesian argument for adopting it [17]. 

012 � 34��,��
 � 534�4
/4 
Where �,�� is the error variance 
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Results 

The data used in the study were the observations recorded between January 22 and April 21. 

Growth models prediction results for the number of total cases 

The parameters estimates that estimated from 91 daily number of cases with nonlinear 
mathematical models between 22 January-15 April 2020 in China were presented in Table 4. 
Coefficient of determination (R2), Pseudo R2 and Mean Square Error (MSE) statistics were 
used to compare models. When Table 4 was examined, it was seen that the R2 and MSE 
values of Weibull, and Janoscheck models were equal. The MSE of Sloboda model was 
slightly smaller than two model but R2 was equal. The Sloboda model can be considered the 
most suitable model, through smaller MSE value, larger Pseudo R2 value. The Weibull and 
Janoscheck models can also be chosen as an alternative model. 

Table 4. The parameter estimates and selection criteria results of growth models for the 
number of total cases 

Model A b k  MSE R2 
Weibull  81256.3 79123.8 0.000299 '=2.706 2609839.4 0.997 
Negatif exponential  88954.9  0.042  72795574.9 0.903 
Von Bertalanffy 82624.0 1.396 0.116  7835780.1 0.990 
Janoschek 81256.3 0.974 0.000299 c=2.706 2609839.4 0.997 
Lundqvist-Korf 83881.5  1814.408 d=-2.753 10816583.1 0.986 
Sloboda 81377.2 3.513 0.014 γ � 1.669 2559449.5 0.997 
 

The prediction curves of growth models are given in Figure 1. 

 

 

Figure 1. Estimation curves of growth models for the number of total cases 

 

 

The results of time series models for the number of total cases 

Box-Jenkins methods and exponential smoothing methods were used among time series 
models for total number of cases. Autocorrelation (ACF) and partial autocorrelation (PACF) 
graphs of the series were examined. When the ACF and PACF graphs are examined in Figure 
2, the first degree difference had been taken since the series were not stationary at the level. 
But the stationary assumption is not provided yet. The difference from the second degree was 
taken and the series became stationary. According to the ACF and PACF charts, the series 
quickly approached zero after the first delay in the ACF graph. In this case, since p = 0, d = 2 
and q = 1, it was modeled by the integrated first degree moving averages method. In other 
words, the most suitable time series method was the ARIMA (0,2,1) model. In addition, 
exponential smoothing methods were used and the model performances were given in Table 
5. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2020. ; https://doi.org/10.1101/2020.04.26.20080465doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.26.20080465
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 5. Model compliance statistics for cases 

Model R2 BIC Ljung-Box 
ARIMA(0,2,1) 0.997 14.562 3.470 and p=0.999 
Holt 0.997 14.600 3.925 and p=0.999 
Brown 0.997 14.585 7.508 and p=0.976 
Damped 0.997 14.639 3.480 and p=0.999 
 

 

Figure 2. ACF and PACF graphs for cases 

 

The performance of the model was given in Table 6 and it was seen that model’s estimations 
were successful like growth models. 

Table 6. Agreement coefficients of ARIMA (0,2,1) 

Model Fit statistics Ljung-Box Q 

Stationary R-squared R-squared RMSE Normalized BIC Statistics DF p 
0.266 0.997 1416.329 14.562 3.470 17 0.999 

 

The parameter estimates of the ARIMA (0,2,1) model were given in Table 7. 

Table 7. Model Parameters of ARIMA (0,2,1) 

 Estimate SE t p 
Difference 2       
MA(1) 0.668 0.084 8.321 0.001 
 

ARIMA (0,2,1) model was found appropriate among different time series models. 

The ARIMA (0,2,1) model in this study can be written as in the below. 

�� � 2���� � ���� � ����� � �� 
�� � 2���� � ���� � 0.668���� � �� 

The forecasts from ARIMA (0,2,1) model  for 15 day were given in Table 5. 

 

 

 

 

 

Table 5. The predicted number of cases in China from April 22 to May 5 
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Date (April 16- May 1 ) Days Case forecasting 
April 22  92 82798 
April 23  93 82837 
April 24 94 82877 
April 25 95 82916 
April 26 96 82955 
April 27 97 82995 
April 28 98 83035 
April 29 99 83074 
April 30 100 83114 
May 1  101 83153 
May 2  102 83193 
May 3 103 83232 
May 4 104 83272 
May 5 105 83311 

 

As seen in Table 5, the number of total cases continues increasingly, albeit at low speed. The 
number of total cases is forecasting to be 83311 on the 105th day of the outbreak, that is, on 5 
May 2020. 

Observed and predicted values of the total cases were shown in Figure 3.  

  

Figure 3. The curve of ARIMA(0,2,1) for the number of total cases 

 

 

The prediction and forecasting results of growth models for the number of total deaths 

The parameters and the selection criteria of the growth models for total deaths were given in 
Table 8. 

Table 8. The parameter estimates and selection criteria results of growth models for the 
number of total deaths 

Model A b k  MSE R2 Pseudo R2 
Weibull  3546.610 3631.067 0.002 γ=1.863 88568.282 0.949 Weibull  
Negatif üstel 5030.733  0.017  146041.563 0.913 Negatif üstel 
Von 
Bertalanffy 

3628.783 1.163 0.068  80308.717 0.953 Von 
Bertalanffy 

Janoschek 3546.613 1.024 0.002 c=1.863 88568.282 0.949 Janoschek 
Lundqvist-
Korf 

4086.033  194.275 d=-1.686 75008.636 0.956 Lundqvist-
Korf 

Sloboda 3996.376 391039.638 8.721 γ=0.127 76161.284 0.956 Sloboda 

 

When Table 8 was examined regarding the number of total deaths in China, the most suitable 
models were Lundqvist-Korf and Sloboda growth models, respectively. The R2 values of 
these models were found highest as 0.956 and also MSE values were of these are lower than 
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the others. Lundqvist-Korf model can be considered as the most suitable model, since it had 
smaller MSE. The prediction curves of growth models were given in Figure 4. 

 

Figure 4. Curves of growth models for the number of total deaths 

 

The results of time series models for the number of total deaths 

The most suitable time series model was found as Holt linear trend exponential smoothing 
model among time series models for the number of deaths. The compliance of the models 
were given in Table 9 and it was seen that the predictions were successful as growth models. 

 

 

 

Table 9. Compliance statistics of the models 

Model R2 BIC Ljung-Box 
ARIMA(1,2,0) 0.982 10.372 12.609 and p=0.762 
Holt 0.989 9.969 1.086 and p=0.999 
Brown 0.987 10.036 11.590 and p=0.824 
Damped 0.989 10.031 1.042 and p=0.999 
 

The parameter estimation of the Holt linear trend exponential smoothing model was presented 
in Table 10. The observed and predicted values were given in Figure 5.  

Table 10. The parameters of Holt linear trend exponential smoothing model  

 Estimate SE t Sig. 
Alpha (Level) 1.000 0.107 9.388 0.001 
Gamma (Trend) 0.001 0.015 0.054 0.957 
SE: Standard error 

The forecasts of the number of total deaths for exponential smoothing model by using Holt 
linear trend exponential smoothing model for 15 day were given in Table 11. The rate of 
increase in the number of deaths in China was decreasing and it was predicted that it will be 
between 3343-3355 in the period between April 16 and May 1, with a slight increase (Table 
11). 

Table 11. The forecasting results for Brown exponential smoothing model 

Date (April 16- May 1 ) 
Days Deaths forecasting 

April 22 
92 4678 

April 23 
93 4724 

April 24 
94 4769 
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April 25 
95 4815 

April 26 
96 4861 

April 27 
97 4907 

April 28 
98 4953 

April 29 
99 4999 

April 30 
100 5044 

May 1 
101 5090 

May 2 
102 5136 

May 3 
103 5182 

May 4 
104 5228 

May 5 
105 5273 

 

The Holt linear trend exponential smoothing curve for the exponential smoothing model was 
given in Figure 5. 

 

Figure 5. Curve of Holt linear trend exponential smoothing model for the number of total 
deaths 

 

Discussion 

The best time series model was ARIMA (0,2,1) model for the number of cases. In a study, 
ARIMA model was used on the daily prevalence data of COVID-2019 from January 20, 2020 
to February 10, 2020 and ARIMA (1,2,0) and ARIMA (1,0,4) models were obtained [18]. 
Logistic, Bertalanffy and Gompertz models were used to estimate the number of cases and 
deaths on COVID-19 disease in different regions in China before by Jia and et al. According 
to their study, the Logistics model was reported to be better than the others by the R2 criterion 
conducted extensive research in quasi-experimental analysis method in various provinces in 
China and investigated the relationship between population and number of outbreak cases 
[19,20]. In their study, they found that the correlation coefficients of the relationship between 
the population and the number of cases differed among regions. They have observed that the 
number of cases was high in regions with high population and there was a high correlation 
between them. They stated that factors such as immigrants, tourism and mobility plays an 
important role in this. Also the authors determined the number of cases with the epidemic 
growth model Fan et al. [19]. 

Roosa et al. (2020) analyzed the number of cases in some regions in China with generalized 
logistic growth model (GLM), Richards Model and Sub-Epidemic Model in a short-term (10 
days). They found that the number of cases will increase. They estimated that the case 
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increase (GLM) in the Guangdong and Zhejiang regions would be lower by using the 
Richards models and the rate would be higher by using the sub-epidemic model [21]. 

In a study on the risk of infection of COVID-19 detected in a passenger ship in China in 
February 2020, it was observed that the risk of infection in those with close contact was 
higher than those with no close contact. The estimated of number of cases was obtained by 
back calculation method [22]. Al-qaness et al. (2020) used Adaptive Neuro-Fuzzy Inference 
System (ANFIS), Flower Pollination Algorithm (FPA), Salp Swarm Algorithm (SSA) and 
FPASSA-ANFIS methods to estimate the number of cases with COVID-19 disease in China 
and the USA. They calculated model performance with Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared 
Relative Error (RMSRE) and R2. They found that the best method for modeling and 
estimating the number of total cases was the FPASSA-ANFIS method [23]. 

Kuniya (2020) estimated the outbreak peak of coronavirus disease in Japan with the SEIR 
compartmental model [24]. In another study, the number of reproduction of the Wuhan novel 
coronavirus 2019-nCoV was estimated with the susceptible-exposed-infected-removed 
(SEIR) compartment model [25].There are studies on coronavirus disease by different 
researchers using various statistical methods. Yuan et al. Used the median (interquartile range, 
IQR) and Mann Whitney U test or Wilcoxon test, Twu et al and Prem et al. Used SEIR model 
and Neher et al used SIR model [26-29]. In our study, we compared the time series analysis 
using Weibull, Negative Exponential, Von Bertalanffy, Janoscheck, Lundqvist-Korf and 
Sloboda models, which are different from the methods used in previous studies. According to 
the literature, there is no publication about nonlinear mathematical models used in our study 
on coronavirus outbreak before. 

  

5.Conclusions 

The parameter estimates of the Weibull, Janoschek, Sloboda and Lundqvist-Korf were close 
to each other in the analysis of nonlinear growth models regarding the number of cases and 
deaths in China. Their R2 and MKE statistics were similar. The parameter estimation and 
compliance statistics of the Negative Exponential and von Bertalanffy models, which are 
among the nonlinear models, differed in both the number of cases and the number of deaths. 
When nonlinear models are examined, R2 value, which is used as a criterion in comparing 
models, was obtained from the lowest Negative Exponential model both in the number of total 
cases and the number of total deaths. The lowest MSE was obtained from Sloboda model for 
the number of total cases and from Lundqvist-Korf model for the number of total deaths. 

In terms of time series analysis, the number of total cases and the number of deaths are 
modeled differently. The number of total cases were modelled with ARIMA(0,2,1) that is a 
moving averages method, while the number of total deaths were modeled by the Holt linear 
trend model, which is a exponential smoothing method. According to the estimation results, 
we estimate that the number of total cases and deaths will be increase and this will be a big 
danger. For this result, all necessary precautions must be taken against the danger. 
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