
A gene locus that controls expression of ACE2 in virus infection 
 
 
M. Azim Ansari1,2,3,4*, Emanuele Marchi1,2,3*, Narayan Ramamurthy1,2,3*, 
Dominik Aschenbrenner1,3, Carl-Philipp Hackstein2, STOP-HCV consortium, 
ISARIC-4C Investigators, Rory Bowden4, Eshita Sharma4, Vincent 
Pedergnana5, Suresh Venkateswaran6, Subra Kugathasan6, Angela Mo7, 
Greg Gibson7, John McLauchlan8, Eleanor Barnes1,2,3, John Kenneth 
Baillie9,10, Sarah Teichmann11, Alex Mentzer4, John Todd4, Julian Knight4, 
Holm Uhlig1,3,12, Paul Klenerman1,2,3* 
 

1. Translational Gastroenterology Unit, Nuffield Department of Medicine, 
University of Oxford, Oxford OX3 9DU, UK 

2. Peter Medawar Building for Pathogen Research, Nuffield Department of 
Medicine, University of Oxford, Oxford OX1 3SY, UK 

3. NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, 
OX3 9DU 

4. Wellcome Centre for Human Genetics, Roosevelt Dr, Headington, 
Oxford OX3 7BN 

5. French National Centre for Scientific Research (CNRS), Laboratory 
MIVEGEC (CNRS, IRD, UM), Montpellier, France 

6. Department of Pediatrics, Emory University School of Medicine and 
Children’s health care of Atlanta, Atlanta, USA 

7. Center for Integrative Genomics, Georgia Institute of Technology, 
Atlanta, USA 

8. MRC-University of Glasgow Centre for Virus Research, Sir Michael 
Stoker Building, University of Glasgow, Glasgow, G61 1qh, 

9. Edinburgh Royal Infirmary, 51 Little France crescent, Edinburgh, EH16 
4SA 

10. Genetics and Genomics, Roslin Institute, University of Edinburgh, 
Edinburgh EH25 9RG, UK. 

11. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton 
Cambridge, CB10 1SA UK 

12. Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK 
 
*These authors contributed equally 
 
Correspondence to: 
 
M. Azim Ansari & Paul Klenerman, Peter Medawar Building for Pathogen 
Research, University of Oxford, Oxford OX1 3SY 
 
Tel: +441865281885 
Fax: +441865281236 
Email: ansari@well.ox.ac.uk or paul.klenerman@ndm.ox.ac.uk 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.26.20080408doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.26.20080408
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Abstract 
 
 
The SARS-CoV-2 pandemic has resulted in widespread morbidity and 
mortality globally, but with widely variable outcomes. The development of 
severe disease and mortality is higher in older individuals, males and those 
with other co-morbidities, and may vary across ethnic groups. However, so 
far, no host genetic factor has been clearly associated with susceptibility and 
development of severe disease. To understand the impact of host genetics on 
expression of ACE2 (SARS-CoV-2 receptor) during RNA virus infection we 
performed a GWAS for ACE2 expression in HCV-infected liver tissue from 
195 individuals. We discovered that polymorphisms in the host IFNL region 
which control expression of IFNL3 and IFNL4 modulate ACE2 expression. 
ACE2 expression was regulated additionally by age, with a subsidiary effect of 
co-morbidity. The IFNL locus controlled expression of a gene network 
incorporating many well-known interferon-stimulated genes which anti-
correlated with ACE2 transcript levels. The same anti-correlation was found in 
the gastrointestinal tract, a site of SARS-CoV-2 replication where 
inflammation driven interferon-stimulated genes are negatively correlated with 
ACE2 expression. The interferon dependent regulation of ACE2 was identified 
in a murine model of SARS-CoV-1 suggesting conserved regulation of ACE2 
across species. Polymorphisms in the IFNL region, as well as age, may 
impact not only on classical antiviral responses but also on ACE2 with 
potential consequences for clinical outcomes in distinct ethnic groups and with 
implications for therapeutic interventions. 
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Introduction 
 
Severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) which 
results in coronavirus disease 2019 (COVID-19) is a positive-stranded RNA 
virus that causes a severe respiratory syndrome in a subset of infected 
individuals and has led to widespread global mortality. The genome of SARS-
CoV-2 shares about 80% sequence similarity with SARS-CoV and 96% 
sequence similarity with bat coronavirus Bat CoV RaTG131.  
 
Entry of coronaviruses into susceptible cells depends on the binding of the 
spike (S) protein to a specific cell-surface protein and subsequent S protein 
priming by cellular proteases. Similar to SARS-CoV-1, infection by SARS-
CoV-2 employs ACE2 as a receptor for cellular entry2. Viral entry also 
depends on TMPRSS2 protease activity, and cathepsin B/L activity may be 
able to substitute for TMPRSS22. 
 
Epidemiological studies have indicated that the risk for serious disease and 
death from COVID-19 is higher in males, in older individuals and those with 
co-morbidities3–5. Host genetic variation is important in determining 
susceptibility and disease outcome for many infectious diseases6 and it is 
likely to be important in determining SARS-COV-2 susceptibility and 
development of severe disease after infection. Such insights would be 
important in understanding pathogenesis, repurposing antiviral drugs and 
vaccine development. 
 
The earliest immune defence mechanism activated upon virus invasion is the 
innate immune system7. Virus-induced signalling through innate immune 
receptors prompts extensive changes in gene expression which are highly 
effective in resisting and controlling pathogens and subsequently prompt the 
activation of inflammatory and or antiviral immune effectors involved in 
pathogen clearance8. It has been shown that host genetics contributes to 
transcriptional heterogeneity in response to infections9, which underlies some 
of the differences in innate immune responses observed between individuals 
and the varying susceptibility to infection10. Therefore in the context of 
infectious diseases, it is of paramount importance to investigate infected 
tissue to understand how host genetics may impact on gene expression. 
 
To understand the impact of host genetics on expression of ACE2 in the 
presence of viral infection, we first used HCV-infected liver biopsies from 195 
individuals and performed host genome-wide genotyping and liver 
transcriptomics. Performing a genome-wide association study (GWAS) for 
ACE2 expression, we found that ACE2 expression is modulated by host 
genetic variation in the IFNL region on chromosome 19. We also observed 
that increase in age is significantly associated with increase in ACE2 
expression and that expression of interferon pathway signalling genes are 
negatively correlated with ACE2 expression. This pattern is conserved across 
tissues, infections and species. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.26.20080408doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.26.20080408
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 
 
We used genotyped autosomal SNPs in the host genome to undertake a 
GWAS, where the trait of interest was the expression of ACE2 in virus-
infected liver, performing more than 300,000 association tests. We performed 
linear regression assuming an additive model, and adjusting for population 
structure by including the first five host genetic principal components (PCs) as 
covariates. There was no inflation in the association test statistics 
(Supplementary Figure 1). We used a false discovery rate (FDR) of 5% to 
decide on significance.  
 
Across the human genome, the most significant associations were observed 
for three SNPs (all in linkage disequilibrium11 in European populations, 
Supplementary Figure 2 and 3) in the IFNL locus on chromosome 19 
(Figure 1a and Supplementary Table 1, min p-value = 8.1x10-8 for SNP 
rs12980275).  
 
Host genetic variations in this region have previously been associated with 
HCV infection outcomes such as viral load, spontaneous clearance and 
treatment outcome, as well as viral evolution10,12,13. The causal variant is likely 
to be the dinucleotide exonic variant rs368234815 in IFNL414. This variant 
[ΔG > TT] causes a frameshift, abrogating production of functional IFN-λ4 
protein. This variant is not directly typed on our genotyping array, however it is 
in high linkage disequilibrium with SNP rs12979860 [T > C] (r2 = 0.975 CEU 
population, 1000 Genomes dataset, rs12979860 T allele is in linkage with 
rs368234815 ΔG allele) which is an intronic SNP in the IFNL4 gene and was 
directly typed on our genotyping array and is one of the three SNPs 
significantly associated with ACE2 expression. The allele frequency varies 
substantially between populations globally, with the rs12979860 CC genotype 
(which protects against HCV) most enriched in East Asian populations and 
the non-CC genotypes (CT and TT) strongly enriched amongst those of 
African origin15 (Supplementary Figure 4). 
 
To further understand the impact of polymorphisms in the host IFNL4 gene on 
ACE2 expression in presence of viral infection, we investigated the impact of 
IFNL4 SNP rs12979860 on expression of ACE2 in HCV-infected liver. We 
used linear regression using a dominant genetic model: CC vs CT and TT 
genotypes (i.e. those that do not produce IFN-λ4 protein and those that do) 
including age, gender and cirrhosis status as covariates (Figure 1b). We 
observed significantly higher expression of ACE2  (P=1.5x10-9) in individuals 
with CC vs. non-CC genotypes (Figure 1c). Additionally, we observed that 
ACE2 expression increased with age (P=0.006) in both CC and non-CC 
patients (Figure 1d). Patients with cirrhosis tend to have higher ACE2 
expression although this association was marginally not significant (P=0.056, 
Figure 1b).  
 
The IFNL4 gene itself is polymorphic and a common amino acid substitution 
(coded by the SNP rs117648444 [G > A]) in the IFN-λ4 protein, which 
changes a proline residue at position 70 (P70) to a serine residue (S70), 
reduces its antiviral activity in vitro16,17. Patients harbouring the impaired IFN-
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λ4-S70 variant display lower hepatic interferon-stimulated gene (ISG) 
expression levels, which is associated with increased HCV clearance 
following acute infection and a better response to IFN-based therapy, 
compared to patients carrying the more active IFN-λ4-P70 variant16. After 
imputing and phasing IFNL4 rs368234815 and rs117648444 we observed 
three haplotypes: TT/G (IFN-λ4-Null); ΔG/G (IFN-λ4-P70) and ΔG/A (IFN-λ4-
S70). HCV-infected patients were classified into three groups according to 
their predicted ability to produce IFN-λ4 protein: (i) no IFN-λ4 (two allelic 
copies of IFN-λ4-Null, N = 69), (ii) IFN-λ4–S70 (two copies of IFN-λ4-S70 or 
one copy of IFN-λ4-S70 and one copy of IFN-λ4-Null, N = 21), and (iii) IFN-
λ4-P70 (at least one copy of IFN-λ4-P70, N = 92). Analysis of the IFN-λ4 
predicted patient groups revealed that IFN-λ4–S70 group had the expected 
impact on ACE2 expression i.e. lower levels of ACE2 expression relative to 
the IFN-λ4-Null group (P=0.022), and higher levels relative to the (more 
stimulatory) IFN-λ4-P70 group although the effect was marginally not 
significant, P=0.087, Supplementary Figure 5). 
 
We also investigated the impact of the IFNL4 SNP rs12979860 genotypes on 
TMPRSS2, CTSB and CTSL genes which may also be needed for viral entry2. 
We observed that these three genes had much higher expression levels in the 
liver relative to ACE2, however their expression was not significantly 
associated with SNP rs12979860 genotypes (Supplementary Figure 6). Both 
CTSB and CTSL genes had significantly lower expression in patients with 
cirrhosis (PCTSB=1.2x10-5, PCTSL=8.8x10-8), while TMPRSS2 had higher level 
of expression in cirrhotic patients; however this was not significant (P=0.11, 
Supplementary Figure 7). 
 
We also performed correlation analysis accounting for multiple testing to 
identify genes correlated with ACE2 in virus-infected livers. We observed 
large correlation coefficients (maximum of 0.51) and detected 591 genes 
significantly correlated with ACE2 expression at 1% FDR and with correlation 
coefficients of > 0.3 or < -0.3. Considering separately the genes that were 
positively correlated and those that were negatively correlated with ACE2 
expression (Supplementary Tables 2 and 3), we performed a gene set 
enrichment analysis, observing that genes involved in type I interferon 
signalling pathways were enriched among genes negatively correlated with 
ACE2 expression (Figure 1e and 1f). These genes overlap strongly with 
those induced by IFNL7. We also observed that genes involved in extracellular 
structure organisation were enriched among genes positively correlated with 
ACE2 expression (Supplementary Figure 8). 
 
To understand the impact of the IFNL locus on the overall gene expression in 
the virus-infected liver, we used our liver transcriptome data and tested for 
association between SNP rs12979860 and gene expression data using a 
dominant genetic model (CC vs. CT and TT genotypes). At 1% FDR, SNP 
rs12979860 was an eQTL for 583 genes. Genes involved in type I interferon 
signalling were enriched among genes that were upregulated in non-CC 
individuals relative to the CC individuals. Genes involved in B and T cell 
mediated immunity were enriched among genes upregulated in CC individuals 
relative to non-CC individuals (Supplementary Figures 9 and 10).  
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To further explore the anti-correlation of ISGs with ACE2 expression in a 
known site of SARS-CoV-2 replication, we explored the relationship between 
ACE2 and ISGs expression in the gastrointestinal (GI) tract, examining the 
levels of IFN-regulated genes in a gene expression study of terminal ileum 
biopsies in inflammatory bowel disease (IBD) in treatment-naive young donors 
(RISK cohort18). In intestinal biopsies, there was a striking decrease of ACE2 
expression with increasing severity of inflammation that was independent of 
the abundance of transcriptional markers of epithelial identity19 (Figure 2a, 
Supplementary Figure 11a) and genes anti-correlated with ACE2 had 
increasing expression with rise in disease activity (Figures 2b and 
Supplementary Figure 11b). Genes associated with epithelial cell structure 
and function were enriched among genes that were positively correlated with 
ACE2 in both liver and intestine, while genes associated with type I interferon 
signalling pathways were enriched among genes that negatively correlated 
with ACE2 expression in both tissues (Figure 2c and Supplementary Figure 
11c). 
 
We repeated this analysis to define the impact of IFNL4 polymorphisms on 
gene expression in a second cohort of IBD patients enriched for those of 
African-American ethnicity20 (Supplementary Figure 11d). This analysis 
confirmed the clear anti-correlation of ACE2 expression with ISGs. Consistent 
with the absence of viral infection, there was no association seen between 
IFNL4 genotype and ACE2 expression in this IBD disease cohort (P=0.4). 
 
Since the pattern of gene expression incorporating downregulation of ACE2 
was consistent in two models of chronic infection and/or inflammation in 
different sites, we addressed whether a similar pattern of gene regulation was 
observed in lung tissue using data from mouse models of SARS infection21 
(GSE59185). Indeed we observed in SARS-CoV-1 infected lung a similar 
enrichment of ACE2 regulating genes as observed in human liver. There was 
a strong correlation of gene regulation measured by GSEA analysis and 
furthermore we observed the same associated down-regulation of ACE2 in 
the presence of up-regulation of classical ISGs (Figure 2e and f).  

Discussion 
 
To understand the host genetic factors that drive ACE2 expression in the 
presence of RNA virus infection, we performed a genome-wide association 
analysis, for ACE2 expression in infected liver. Using infected tissue is 
important, since genetically driven differences in innate immune responses 
are only likely to be observed when innate immune responses are triggered. 
We observed that host genetic polymorphisms in the IFNL region modulate 
ACE2 expression in the presence of viral infection. The likely causal 
mechanism is the variant rs368234815 [ΔG > TT], which results in a 
frameshift and abrogates production of IFN-λ4 protein. Although our initial 
observation was made in patients with HCV infection and the liver tissue, 
given the robust maintenance of the transcriptional pattern in the GI tract and 
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in murine models of SARS, it seems likely to be relevant to SARS-CoV-2 
pathogenesis. 
 
Interferon lambda receptor (IFNLR1) is largely restricted to tissues of 
epithelial origin22,23, therefore, IFN-λ proteins may have evolved specifically to 
protect the epithelium. Overall, INFL genes lead to a pattern of gene 
expression which is similar to type I interferon genes, but the time course and 
pattern of expression may vary7. This has been explored in HCV, where a 
slower, but sustained impact of IFNL signalling is seen24. In vitro studies have 
revealed that ISG expression and anti-viral activity induced by recombinant 
IFNL4 are comparable to that induced by IFNL325. Importantly, however, the 
tight regulation of IFNL426 means its ability to respond and induce a rapid 
antiviral state may be limited27 as seen both in vitro, and in vivo28. However, 
once established, the IFNL4 transcriptional module may also be highly 
sustained (as seen here and in other HCV cohorts16) and also noted 
elsewhere, e.g. after childbirth29. 
 
In mice, the type III IFN response is restricted largely to mucosal epithelial 
tissues, with the lung epithelium responding to both type I and III IFNs30 and 
intestinal epithelial cells responding exclusively to type III IFNs. Among 
nonhematopoietic cells, epithelial cells are potent producers of type III IFNs. 
In mouse models, type III IFNs seem to be the primary type of IFN found in 
the bronchoalveolar lavage in response to influenza A virus infection and play 
a critical role in host defence31. Intriguingly, in humans, the IFNL4 
polymorphism identified here is associated with the outcome of RNA virus 
respiratory tract infections in children, with the non-CC variant showing a 
poorer outcome32. The data from the GI tract indicate that this gene 
expression pattern is conserved amongst tissues, consistent with emerging 
data33. Inflammatory signals may act to sustain the triggering of ISGs and 
sustain downregulation of ACE2. Of note for inflammatory bowel disease, loss 
of ACE2 in the ileum impacts on secretion of antimicrobial peptides and the 
local microbiome34.  
 
Downregulation of ACE2 itself may limit the ability of coronaviruses to enter 
cells, but may, if sustained, have impacts on inflammation. Indeed ACE2-/- 
mice suffer from enhanced disease following virus infection of the lung 
through an angiotensin-driven mechanism35. In other settings, the nonCC 
genotype may provide a more limited early response26 and lead to more 
sustained activation of the IFNL pathway29 than CC genotype 
(Supplementary Figure 12 and 13)  although overall the issue of which 
genotype might be protective in COVID-19 remains open. We also note the 
impact of ageing, which blunts this response in both genotypes. The 
mechanism for this requires further study, as does the impact of gender. 
These data and model are also consistent with transient upregulation of ACE2 
seen in early time points by IFNα in vitro36 but the full kinetics need further 
study in vitro and in vivo.  
 
This study provides an orthogonal investigation of SARS-CoV-2 induction of 
ACE2. Although we did not study this directly in the respiratory tract, such 
studies should be urgently performed to confirm these data – ideally in 
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epithelial tissue, where the model suggested above can be tested. 
Furthermore the overall impact of this polymorphism on the clinical course 
should be assessed, especially given the very variable distribution of IFNL4 
alleles in different ethnic groups, which may in turn reflect selection earlier in 
human evolution10,15. Finally, the strong genetic data add weight to the idea of 
a careful exploration of IFNL pathways in therapy for SARS-CoV-237. 
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Methods 
	
Boson cohort: 
 
Boson patient cohort: 
 
For this study, we used patient data from the BOSON cohort that has been 
described elsewhere38. All patients provided written informed consent before 
undertaking any study-related procedures. The BOSON study protocol was 
approved by each institution’s review board or ethics committee before study 
initiation. The study was conducted in accordance with the International 
Conference on Harmonisation Good Clinical Practice Guidelines and the 
Declaration of Helsinki (clinical trial registration number: NCT01962441). 
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RNA extraction, library prep, sequencing and mapping for the BOSON 
cohort: 
 
Liver biopsy samples were available for 198 patients. Total RNA was 
extracted from patient liver biopsies at baseline (pre-treatment) using RNeasy 
mini kits (Qiagen). Briefly, liver biopsy samples were mechanically disrupted 
in the presence of lysis buffer and homogenized using a QIAshredder. Tissue 
lysates were then centrifuged and clarified supernatants were transferred into 
new microcentrifuge tubes (pellets were discarded). Next, 1 volume of 70% 
ethanol was added to the lysates and samples were mixed by gentle vortexing 
. 700uL of sample was then transferred into RNeasy spin columns (with 2mL 
collection tubes) and centrifuged at 10000 rpm for 15 seconds. Column flow-
through was discarded. DNase digestion was subsequently performed to 
eliminate any contamination from genomic DNA. 80uL of DNase I solution 
(10uL DNase I stock + 70uL Buffer RDD) was added directly to RNeasy spin 
columns and incubated at room temperature for 15 minutes. Following DNase 
incubation, the columns were washed with 350uL of Buffer RW1 and 
centrifuged at 10000 rpm for 15 seconds. Flow-through was discarded and 
500uL of Buffer RPE was added to the spin columns. Columns were then 
centrifuged again at 10000 rpm for 15 seconds and flow-through was 
discarded. An additional 500uL of Buffer RPE was added to the spin columns 
and columns were centrifuged at 10000 rpm for 2 minutes. Finally, spin 
columns were transferred into new microcentrifuge tubes and 30uL of RNase-
free water was added directly to the column membrane. Columns were then 
centrifuged at 10000 rpm for 1 minute to elute the RNA. 
 
RNA yield was quantified using a NanoDrop spectrophotometer. Selected 
samples were also run on an Agilent TapeStation system to assess RNA 
quality and purity. Library preparation from purified RNA samples was 
performed using the Smart-Seq2 protocol39, used along with previously 
described indexing primers during amplification40.  
 
High- throughput RNA sequencing of prepared libraries was performed on the 
Illumina HiSeq 4000 platform to 75bp PE at the Wellcome Center for Human 
Genetics (Oxford, UK). Reads were trimmed for Nextera, Smart-seq2 and 
Illumina adapter sequences using skewer-v0.1.12541. Trimmed read pairs 
were mapped to human genome GRCh37 using HISAT2 version 2.0.0-beta42. 
Uniquely mapped read pairs were counted using featureCounts43, subread-
1.5.044, using exons annotated in ENSEMBL annotations, release 75. 
Mapping QC metrics were obtained using picard-tools-1.92 
CollectRnaSeqMetrics.jar. Three samples were excluded after QC checks due 
to low sequencing depth which left 195 samples for analysis. Genes were 
filtered using the criteria of having a count per million of 1.25 in at least 10 
samples to remove low expressed genes. Function cpm from edgeR45 version 
3.20.9 was used to calculate the counts per million (CPM) values. Two 
samples had zero CPM values for ACE2 gene and they were set to the 
minimum ACE2 expression (in CPM) observed across all the samples. Log10 
of CPM was used for all the analysis. 
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Host genotyping and imputation 
 
Genomic DNA was extracted from buffy coat using Maxwell RSC Buffy Coat 
DNA Kit (Promega) as per the manufacturer's protocol and quantified using 
Qubit (Thermofisher). DNA samples from patients were genotyped using the 
Affymetrix UK Biobank array, as described elsewhere12. Both liver RNA 
trascriptomic and human genome-wide SNP data were obtained on a total of 
190 patients of mainly White self-reported ancestry infected with HCV subtype 
3a. After quality control and filtering of the human genotype data, 
approximately 330,000 common SNPs with minor allele frequency greater 
than 5% were available for analysis. The Phasing and imputation was 
performed using SHAPEIT246 and IMPUTE247 version 2.3.1 using default 
settings and the 1000 Genomes Phase III dataset as a reference population48. 
After QC, the imputation data for 182 patients were of high quality. Imputation 
quality for samples included for rs117648444 and rs368234815 variants 
(information 0.974 and 0.994 respectively and certainty 0.995 and 0.997 
respectively). All patients were also independently genotyped for SNP 
rs12979860 as described previously38.  
 
 
Statistical analysis 
 
To test for association between human SNPs and ACE2 expression (in 
log10(CPM)), we performed linear regression using PLINK49 version 1.9 using 
an additive genetic model adjusted for the human population structure (first 
five PCs). For 190 patients both host genome-wide genotyping data and liver 
RNAseq data was available. We used the qvalue package in R to calculate 
false discovery rate in this analysis and 5% FDR as significance threshold. 
 
To test for association between ACE2 expression and host SNP rs12979860 
(dominant genetic model (CC vs. CT and TT genotypes)), cirrhosis status, sex 
and age we used multivariate linear regression as implemented in R. To test 
for association between ACE2 expression and IFN-λ4 predicted patient 
groups (IFN-λ4-Null, IFN-λ4-S70 and IFN-λ4-P70), we used linear regression 
as implemented in R and added cirrhosis status, sex and age as covariates to 
the analysis. 
 
Log(CPM) data as calculated by cpm function from edgeR package was used 
to calculate Pearson’s correlation coefficient against ACE2 expression. The 
qvalue package was used to calculate false discovery rate. To filter out 
significant genes we used FDR of 1% and correlation coefficient of >0.3 or <-
0.3 for positively and negatively correlated genes. To test for enrichment we 
used enrichGO function from the clusterProfiler package50. We only 
investigated gene sets in “biological process” GO hierarchy. 
 
To test for association between SNP rs12979860 genotypes (CC vs. CT and 
TT) and expression of all genes, we used LIMMA package with voom 
transformation51. Cirrhosis status, sex, age, race and batch number were 
included as covariate to account for possible confounders. The gene set 
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enrichment analysis was performed using ernichGO function from the 
clusterProfiler package. 
 
 
RISK cohort:  
 
RNA isolation cDNA synthesis 
 
Cell lysates were homogenized with a QIAshredder column (Qiagen, Crawley, 
UK) and RNA extracted with the RNEasy Mini Kit (Qiagen, Crawley, UK) 
following manufacturers instruction. cDNA was reverse-transcribed from 
template RNA either using a two-step reverse transcription using AppScript 
cDNA synthesis kit (Appleton Woods). 
 
RISK cohort classification and data analysis. 
The RISK study is an observational prospective cohort study with the aim to 
identify risk factors that predict complicated course in pediatric patients with 
Crohn’s disease52. The RISK study recruited treatment-naive patients with a 
suspected diagnosis of Crohn’s disease. The Paris modification of the 
Montreal classification were used to classify patients according to 
disease behaviour (non-complicated B1 disease (non-stricturing, non-
penetrating disease); complicated disease, composed of B2 (stricturing) 
and/or B3 (penetrating) behaviour) as well as disease location (L1, ileal only, 
L2, colonic only, L3, ileocolonic and L4, upper gastrointestinal tract). 322 
samples were investigated with ileal RNA-seq. Individuals without ileal 
inflammation were classified as non-IBD controls. Patients with Crohn’s 
disease were followed over a period of 3 years. Patients were largely of 
European (85.7%) and African (4.1%) ancestry. RPKM expression values for 
the RISK cohort52 were retrieved from GEO (GSE57945). The dataset was 
filtered to (n=19,556) genes that had an expression value ≥ 0.1 in >10% of the 
patients. 
 
To account for the potential loss of epithelial cells contribution to gene 
expression a metagene score was generated based on the average 
expression of epithelial identity genes19. RPKM data were transformed and 
presented as: RPKM+1/epithelial cell metagene. For the intersection of ACE2 
correlated gene expression, genes were ranked based on their pearson 
correlation coefficient to ACE2 for each patient subgroup. Intersected lists of 
ACE2 expression positively (pearson correlation coefficient > 0.5) and 
negatively (pearson correlation coefficient < -0.5) correlated genes were 
extracted (positive correlation: n = 2067; negative correlation: n = 2264).  
Liver ACE2 expression and RISK ACE2 expression correlated and anti-
correlated gene sets were intersected based on Entrez gene identifiers using 
Cytoscape (version 3.7.1) and visualized using the Cytoscape Venn and Euler 
Diagrams (Version 1.0.3) plugin 
(http://apps.cytoscape.org/apps/vennandeulerdiagrams). Functionally grouped 
networks of terms and pathways were analysed using the Cytoscape (version 
3.7.1) ClueGO (version 2.5.6) and CluePedia (version 1.5.6) plug-in53. 
The analysis was performed by accessing the Gene Ontology Annotation 
(GOA) Database for Biologic processes, Cellular components, Immune 
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system processes and Molecular function, the Reactome pathways database 
(https://reactome.org/) and the KEGG database 
(https://www.genome.jp/kegg/pathway.html). Only pathways with an adjusted 
enrichment p-value ≤ 0.05 were considered (Two-sided hypergeometric test, 
Bonferroni step down p-value correction). GO terms were grouped based on 
the highest significance when more than 50% of genes or terms were shared. 
The filtered RISK gene expression data (n=19,556; expression value ≥ 0.1 in 
>10% of the patients) served as reference gene set. 
 
Resources for statistical analysis and data visualization: 
 
Prism version 8.0 (GraphPad Software) 
Excel for Mac Version 15.32 (Microsoft) 
Cytoscape 3.7.1 (https://cytoscape.org/) 
Cytoscape 3.7.1 plugin ClueGO (Version 2.5.6) 
Cytoscape 3.7.1 plugin CluePedia (version 1.5.6) 
Cytoscape 3.7.1 plugin Venn and Eluler Digrams (Version 1.0.3) 
Morpheus (https://software.broadinstitute.org/morpheus/) 
R (Version 3.6.1) 
RStudio (Version 1.2.5001) 
 
Specific statistical tests applied in this study are described in the respective 
figure legends. The level of statistically significant difference was defined as p 
≤ 0.05.  
 
GENESIS cohort: 
 
Ileal biopsies from GENESIS cohort: 
 
GENESIS is funded by the National Institute of Diabetes and Digestive and 
Kidney Diseases and managed by Emory University for the recruitment of 
self-identified African American subjects with IBD54. We used a subset of 195 
GENESIS cohort subjects with ileal transcriptomic profiles as an additional 
replication cohort to test for anti-correlation of ACE2 expression with IFN gene 
expression. Pearson correlation tests between normalized expression values 
for ACE2 and four IFN genes confirmed that this pattern of anti-correlation is 
also observable in a cohort enriched for African American ancestry. This 
dataset includes 158 IBD patients along with 37 controls. Subjects with ileal 
inflammation were included as IBD, while non-IBD controls did not have ileal 
inflammation. This dataset is enriched for African American ancestry (70%), 
and gender was equally distributed. Full descriptions of age, gender, race, 
disease status and other phenotypic information are available in a prior 
publication20. Additionally, ileal transcriptomic profiles sequenced on the 
NextSeq 550 platform are available in the GEO repository (GSE57945) for all 
subjects. 
 
 
RNA pre-processing and data analysis for SARS mouse model 
RNA-Seq read counts from each samples were aligned to human reference 
hg38  using  STAR55 and HISAT56 alignment algorithms and gene read counts 
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were generated for each mapped sample using featureCounts program43. 
Low expressed features were filtered out prior logCPM transform of the read 
counts matrix, normalization and further gene filtering by expression variability 
(IQR > 0.75) and annotation were applied retaining 5817 genes to following 
analysis. EdgeR57 and limma51 packaged were used to perform differential 
gene expression analysis of in-home generated and public available data. 
Gene set enrichment analysis (GSEA58) was employed to measure co-
expression of our lists of gene correlations and differentially expression 
analysis in public available data from GEO.	
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Figures	
	

	
	
Figure 1:  Impact of host genetics on ACE2 expression in presence of 
virus. (a) Manhattan plot of association between host genetic variation and 
ACE2 expression in virus infected liver biopsies using an additive model. The 
dashed line indicates 5% FDR level. Significant SNPs are coloured red and 
their ID is shown. (b) Forest plot of the effect sizes of SNP rs12979860 
(dominant model), cirrhosis status, age and gender on ACE2 expression. The 
black circles indicate the point estimate and the black lines indicate their 95% 
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confidence interval.  (c) Distribution of ACE2 expression stratified by SNP 
rs12979860 genotypes (dominant model). Black circle shows the mean and 
the lines indicate its 95% confidence interval. (d) The relationship between 
ACE2 expression and age. The blue and red lines show the linear regression 
fit (for CC and nonCC genotypes respectively) and the gray area indicates 
their 95% confidence interval. (e) Expression of four representative interferon 
stimulated genes (ISG) and their observed negative correlation with ACE2 
expression. The Pearson’s correlation coefficient is shown for each gene. (f) 
Gene Ontology gene set enrichment analysis among genes with significant 
negative correlation with ACE2 expression. Only the top ten enriched gene 
sets are shown, which are all ISG related pathways. 
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Figure 2: Conservation of interferon signalling-ACE2 anti-correlation 
across tissues, chronic inflammation and species. (a) ACE2 expression in 
terminal ileum biopsies transcriptomes of the RISK cohort grouped based on 
health state and histologic assessment of inflammation. (HD = Healthy Donor; 
UC = Ulcerative Colitis without ileal involvement; iCD = ileal Crohn’s Disease; 
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Micro. Infl. = Microscopic Inflammation, Macro. Infl. = Macroscopic 
Inflammation; DU = Deep Ulcers).  Data are shown as RPKM relative to the 
epithelial cell identity metagene (see methods) (b) Expression of liver ACE2 
expression anti-correlated genes in the RISK cohort. Kruskal-Wallis test with 
multiple comparison correction controlling the FDR was used for association 
testing. (c) Expression and correlation of representative interferon stimulated 
genes (ISG) and ACE2 in the RISK cohort. Pearson’s correlation coefficients 
are shown. (d) Volcano plot of differential gene expression pattern induced by 
SARS-CoV1 infection in mouse model vs mock. Representative ISG genes 
and ACE2 are indicated. (e) GSEA plot of genes negatively correlated with 
ACE2 expression (enriched in ISGs) in the SARS-CoV-1 infected mouse 
model vs mock. 
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