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Abstract  

Background: Brain-machine interfaces (BMI) based on scalp 

electroencephalography (EEG) have the potential to promote cortical plasticity following 

stroke, which has been shown to improve motor recovery outcomes. However, clinical 

efficacy of BMI-enabled robotic rehabilitation in chronic stroke population is confounded 

by the spectrum of motor impairments caused by stroke.   

Objective: To evaluate the efficacy of neurorehabilitation therapy on upper-limb 

motor recovery, by quantifying changes in clinical, BMI-based, and kinematics-based 

metrics. Further, to identify neural correlates or biomarkers that can predict the extent of 

motor recovery.   
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Methods: Chronic stroke survivors (n = 10, age 55 ± 9.2y, chronicity 3.1 ± 2.8y) 

were recruited to participate in a 4-6 weeks long clinical study. Participants completed 12 

therapy sessions that involved a BMI enabled powered exoskeleton (MAHI Exo-II) for 

training, which targeted elbow flexion and extension. Clinical assessments including Fugl-

Meyer Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT) were measured 

up to 2-months after therapy. BMI performance, kinematic performance, and change in 

movement related cortical potentials (MRCP) were also determined.  

Results: On average, 132 ± 22 repetitions were performed per participant, per 

session. BMI accuracy across all sessions and subjects was 79 ± 18%, with a small 

number of false positives (23 ± 20%). FMA-UE and ARAT scores improved significantly 

over baseline after therapy and were retained at follow-ups (ΔFMA-UE = 3.92 ± 3.73 and 

ΔARAT = 5.35 ± 4.62, p < 0.05). 80% participants (7 with moderate-mild impairment and 

1 with severe-moderate impairment) reached minimal clinically important difference 

(MCID: FMA-UE > 5.2 or ARAT > 5.7) during the course of the study. Kinematic measures 

indicate that, on average, participants’ movements became faster and smoother. 

Quantification of changes in MRCP amplitude showed significant correlation with ARAT 

scores (ρ = 0.72, p < 0.05) and marginally significant correlation with FMA-UE (ρ = 0.63, 

p = 0.051), suggesting higher activation of ipsi-lesional hemisphere post-intervention. The 

study did not have any adverse events. 

Conclusion: This study presents evidence that BMI enabled robotic rehabilitation 

can promote motor recovery in individuals with chronic stroke, several years after injury 

and irrespective of their impairment level, or location of the lesion (cortical/subcortical) at 
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baseline. Further, the extent of motor recovery was correlated with changes in movement 

related potentials, occurring contralateral to the impaired arm.  

Support: NIH National Robotics Initiative Grant R01NS081854 and a grant from 

Mission Connect, a project of TIRR Foundation.  

1. Introduction 

Upper-limb motor weakness occurs in 77% of first time and 55 – 75% chronic 

stroke survivors and significantly affects their quality of life (Coscia et al., 2019; Lawrence 

et al., 2001). Regaining arm and hand function is an essential part of achieving 

independence in daily life and therefore is a major goal of rehabilitation programs.  While 

most traditional rehabilitative strategies are using bottom-up approaches by incorporating 

training of distal body parts to influence neural systems (Belda-Lois et al., 2011), e.g., 

constraint induced movement therapy (CIMT) (Wolf et al., 2008), robotic arm training (Lo 

et al., 2010), bilateral arm training (Whitall et al., 2000), or  functional electrical stimulation 

(Makowski et al., 2014), a number of studies have addressed clinical effects of top-down 

approaches, e.g., brain stimulation (Dimyan & Cohen, 2010; Liew et al., 2014) , motor 

imagery (Lopez et al., 2019) and brain-computer interface (BCI)  (Daly & Wolpaw, 2008) 

to induce neuroplastic changes in the sensorimotor network, especially in stroke survivors 

with severe motor deficits.   

Brain-machine/computer interface (BMI/BCI) can improve treatment benefits when 

combined with robotic and muscular stimulation based neurorehabilitation therapies, by 

capitalizing on the principles of Hebbian plasticity (Soekadar et al., 2015). Indeed, 

previous clinical studies that combined motor imagery based BMIs with upper-limb arm 

and hand exoskeletons or electrical muscle stimulation achieved significantly better motor 
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improvement compared to sham or control groups (Ang et al., 2014; Biasiucci et al., 2018; 

Frolov et al., 2017; Pichiorri et al., 2015; Ramos-murguialday et al., 2013).  

Despite these promising findings, evidence of cortical changes following 

neurorehabilitation therapy remain largely unproven, and a neural correlate (or biomarker) 

that can predict the extent of motor recovery still remains elusive. To address this deficit, 

(Ramos-murguialday et al., 2013) used functional MRI and found post-therapy activations 

in the ipsi-lesional motor and pre-motor cortices to be correlated (ρ = 0.55) with Fugl-

Meyer Assessment for Upper Extremity (FMA-UE) scale. (Ang et al., 2014) found the 

revised Brain Symmetry Index to be inversely correlated to motor improvement, 

suggesting that bilateral activations of cortical hemispheres led to better recovery (ρ = -

0.62). Others have reported increased resting state functional connectivity and integrity 

of white matter tracts (via diffusion tensor imaging) within the motor areas of both 

hemispheres following BMI mediated stroke rehabilitation (Biasiucci et al., 2018; Rathee 

et al., 2019; Song et al., 2015).    

In this study, we explored the relationship between movement related cortical 

potentials (MRCPs) and motor recovery following 12 sessions of BMI-enabled robot- 

assisted stroke rehabilitation. It was hypothesized that MRCP amplitude and latency (i.e., 

duration of MRCP prior to movement onset) would increase, on account of increased 

activation of the ipsi-lesional hemisphere or inhibition of competing contra-lesional 

hemisphere, following motor relearning and cortical reorganization (Yilmaz et al., 2015). 

Further, to increase patient engagement and strengthen MRCPs, the BMI algorithms 

were optimized to detect MRCPs in single-trials using our previously published method 

(Bhagat et al., 2016). Preliminary findings of our clinical trial, reporting the improvements 
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in movement quality and arm function from initial 6 participants, were published in (J. L. 

Sullivan et al., 2017). In this paper, we present a comprehensive analysis from 10 

participants by determining longitudinal efficacy of EEG-based BMIs, as well as by 

evaluating changes in brain activity, motor recovery, and movement quality following BMI-

exoskeleton therapy.  

2. Methods 

A single-arm clinical study (ClinicalTrials.gov #NCT01948739) was conducted to 

evaluate the efficacy of BMI enabled exoskeletons on stroke recovery and brain activity. 

The study procedures were approved by the Institutional Review Boards of University of 

Houston, Rice University, University of Texas Health Science Center at Houston, and the 

Houston Methodist Hospital at Houston, Texas. All participants provided informed 

consent in accordance with the Declaration of Helsinki.  

A Study Participants 

Between 2013 and 2018, 160 individuals were screened for eligibility based on 

following inclusion criteria: first time subacute and chronic stroke (i.e. at least 3 months 

since injury); stable baseline arm function (see below); hemiparesis of upper extremity 

(manual muscle testing of at least 2 but no more than 4 out of 5 in elbow and wrist flexors); 

no joint contracture or severe spasticity; no neglect that would preclude participation in 

the training protocol; presence of proprioception; no history of neurolytic procedure in the 

past four months; and no contraindication to MRI. Persons with orthopedic limitation of 
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upper extremity that would affect motor performance; lack of motivation due to untreated 

depression were excluded from the study. To evaluate baseline arm function stability, 

Fig. 1. CONSORT flow diagram showcasing patient recruitment, intervention and follow-ups 
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FMA-UE assessment was performed at screening and was repeated one month later. A 

participant was enrolled only if the difference in FMA-UE scores at these visits was ≤ 3 

points (Klamroth-Marganska et al., 2014).  

Among the participants excluded at screening (n = 142), 117 did not meet the 

inclusion criteria, 4 did not have a stable baseline, and 13 declined to participate. In 

addition, 8 individuals that previously participated in our pilot study (Bhagat et al., 2016) 

for the clinical trial were excluded, since they were familiar with BMI-exoskeleton therapy 

paradigm. Subsequently, eighteen participants enrolled in the study and were assigned 

to the BMI-exoskeleton therapy group, and there was no control group. Among these 

participants, 10 individuals completed the protocol. Participants who dropped out of the 

study had MRI contraindication (n=4), could not commit time to participate in all therapy 

and assessment sessions (n=3), or were not interested in participating (n=1). The 

enrollment and intervention details following the Consolidated Standards of Reporting 

Trials (CONSORT) flow diagram are shown in Fig. 1.  

The study cohort consisted of participants with either cortical (n = 4), subcortical 

(n = 4), or both cortical and subcortical lesions (n = 2). Specific details regarding the 

location of stroke lesions, as determined by physicians after reviewing T1-weighted MRI 

scans, are provided in supplementary materials (Table S1). And in Table 1 below, we 

present demographics and baseline characteristics of participants who completed the 

study. Additionally, the average grip and pinch strengths for our participant pool were 

11.13 ± 8.7kg and 4.48 ± 2.3kg, respectively. According to (Woytowicz et al., 2017) 

classification of impairment severity, the participants can be further grouped as severe-
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moderate impaired (baseline FMA-UE ∈ [16, 34]) or moderate-mild impaired (baseline 

FMA-UE ∈ [35, 53]), which is also highlighted in Table 1.  

B Study Protocol and Experiment Design 

The clinical trial protocol consisted of 14-15 sessions and 5 functional 

assessments (Fig. 2A). The initial 2 sessions were used for calibrating the BMI algorithm 

(see Sec. 2C) to each participant. Participants P2 and P8 underwent an additional 

calibration session to fine-tune the BMI classifier’s parameters. Once calibrated, the BMI-

exoskeleton therapy was provided for 12 sessions, 3 times per week, for 4 weeks. 

Participant P10 was unavailable during weekdays and hence, his sessions were 

conducted on the weekends for 6 weeks. The functional assessments were performed 

twice at baseline as described earlier and once post-treatment, as well as at 2-weeks and 

2-months follow-ups. The primary outcome measures were functional improvement in 

Table 1. Demographics and baseline assessments of study participants 
 

Pat. 

I.D. 

Gen

-der 

Age (y) Stroke Type 

& Location 

Months 

since 

stroke 

Paretic 

arm 

FMA-

UE 

ARAT JTHFT 

(item/s) 

NIHSS 

P1 M 71 Hem., C 72 Right 51 43 2.08 3 

P2 F 49 Isch., C 106 Left 26 4 0 3 

P3 F 54 Isch., SC  72 Left 48 45 1.85 3 

P4 F 50 Isch., C 14 Left 21 4 0 3 

P5 M 58 Isch., SC 10 Right 43 39 1.49 4 

P6 M 61 Hem., C & SC 9 Right 45 30 1.73 2 

P7 M 41 Hem., C & SC 21 Right 38 25 0.52 7 

P8 M 57 Hem., C 38 Left 49 42 2.29 4 

P9 M 64 Isch., SC 15 Left 20 9 0 3 

P10 M 44 Hem., SC 17 Right 37 12 0.5 2 

Stroke type - Hem. = Hemorrhagic stroke, Isch. = Ischemic stroke 
Lesion location - C = Cortical, SC = Subcortical 
FMA-UE = Fugl-Meyer Upper Extremity (0 – 66), ARAT = Action Research Arm test (0 – 57)  
JTHFT = Jebsen-Taylor Hand Function test, NIHSS = NIH Stroke Scale (0 – 42, lower is 
normal) 
    severe-moderate impaired,  moderate-mild impaired (Woytowicz et al., 2017)   
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arm and hand movements using FMA-UE test, changes in neural activity as measured by 

EEG, and improvement in movement quality as determined from the exoskeleton’s 

kinematics. The secondary outcomes assessed motor recovery using additional clinical 

scales such as Action Research Arm test (ARAT), Jebsen-Taylor Hand Function test 

(JTHFT), pinch and grip strengths. FMA-UE score is comprised of 8 scoring items, namely 

arm movements involving flexor synergy, extensor synergy, combined synergies (e.g. 

move hand to lumbar spine), out of synergy (e.g. shoulder abduction to 90°, while elbow 

Fig. 2.EEG-based BMI control of MAHI exoskeleton for stroke rehabilitation. A) Timeline for the clinical 
study protocol. B) Schematic representation of the experiment setup, showing a stroke participant’s 
impaired elbow being trained by the MAHI Exo-II, while EEG and EMG activity are recorded. In this BMI 
scheme, successful detection of motor intent from EEG is validated against residual EMG activity from 
impaired arm, before a Go or Wait command is issued to the exoskeleton. A computer screen in front of 
the participant, cues start and end of trial and provides simultaneous visual feedback of the movement.  
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is at 0° and forearm is pronated), hand, wrist, speed/co-ordination, and reflexes (K. J. 

Sullivan et al., 2011). Likewise, ARAT scores are the aggregate of 4 subscales: grasp, 

grip, pinch, and gross movements (Yozbatiran et al., 2008). Additionally, we recorded 

surface electromyography (EMG) from biceps and triceps muscles of both impaired and 

unimpaired arms to determine if participants exhibited global synkinesis or motor 

irradiation (Hwang et al., 2005), but also to provide a ‘ground truth’ for the BMI output 

(Fig. 2B). 

Each therapy session lasted 3 to 3.5 hours and included EEG preparation (~45 

min.), daily kinematic assessment (~15 min.), therapy time (~ 2 hours), and breaks as 

needed. During therapy, participants were presented with a center-out reaching task on 

a computer screen to train their elbow flexion and extension movements, while their 

impaired arm was supported by the MAHI Exo-II exoskeleton (Fitle et al., 2015). To 

perform the movement, the participants were instructed to “first think about the movement 

and then gently attempt to move their arm”. Each trial lasted up to 15 seconds, and the 

participants could attempt to move multiple times in a trial. If the BMI algorithm 

successfully detected the motor intention, which was corroborated by EMG activity in the 

prime muscles, then the exoskeleton was triggered to assist in the movement; otherwise 

the exoskeleton remained stationary and resisted the movement. This protocol enforced 

the participants to remain mentally engaged in the task in order to maximize the benefits 

of the BMI-exoskeleton therapy. Once the target was hit, the exoskeleton automatically 

returned to center, and after a randomized resting interval (4 – 6s), the next trial was 

presented. Typically, participants practiced 60 – 180 trials per session, and the number 
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of repetitions increased once they became proficient in controlling the BMI and their 

fatigue diminished.  

C BMI Algorithm  

Our BMI algorithm was based on methods developed previously, wherein an EEG-

based classifier’s predictions were gated with residual EMG activity from the impaired 

arm, before triggering an exoskeleton’s movement (Bhagat et al., 2016). To detect motor 

intent we identified movement related cortical potentials (MRCPs) from delta-band EEG 

rhythms (0.1 – 1Hz), using a Go vs. No-go Support Vector Machine (SVM) classifier (Lotte 

et al., 2007). The classifier was trained for each participant using pre-recorded calibration 

data, in which they voluntarily moved or triggered movement of the exoskeleton with their 

impaired arm, while performing motor imagery. Unlike the previous study, wherein we 

handpicked the EEG channels that were fed to the classifier, here we automated the 

channel selection process. First, we visually short-listed EEG channels that contained 

MRCPs from grand averaged movement epochs. Next, we used backward elimination 

and dropped channels that were less relevant for classification, as determined from the 

mutual information between class labels and feature vectors (Lan et al., 2005; Peng et 

al., 2005). The training algorithm also automatically selected the optimal feature 

extraction window length using ROC curves (Fawcett, 2006). This was achieved by 

training the classifier offline for different window lengths ranging from 100ms to 1s, in 

100ms increments. In each iteration, an ROC curve was obtained using confusion 

matrices and eventually, the window length corresponding to the classifier with maximum 

area under ROC curve was considered optimal for that participant.  
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The online BMI performance was further improved by tuning 2 parameters: the 

classifier’s prediction probability estimate (𝜏𝑐) and number of consecutive Go predictions 

required before intent is asserted (𝑁𝑐) (Bhagat et al., 2016). Parameters 𝜏𝑐 and 𝑁𝑐 were 

initially set at 0.5 and 3 respectively, and increased up to 1 and 10 until the participants 

achieved high accuracy. Once tuned, the BMI classifier and its parameters were fixed for 

12 therapy sessions. For configuring the EMG-gate, a simple threshold detection 

technique was employed. Under this technique, RMS values for EMG signals from 

impaired hand were baseline corrected by subtracting the mean value over a 30 seconds 

resting period. The resulting signals were then compared against an empirically 

determined threshold, typically 5 – 30 units above baseline. The EMG thresholds 

however, did require to be readjusted between sessions and sometimes within a session, 

to overcome offsets from poor contact with the skin or from brushing against the 

exoskeleton’s braces.   

D Computation of Post-treatment MRCP Changes 

To quantify changes in neural activity as a result of therapy, we looked at 

differences in grand averaged MRCPs between the initial and final closed-loop BMI 

therapy sessions. MRCPs were calculated with respect to movement onset times 

identified from EMG activity of the impaired hand. For this, EMG signals were denoised 

using Teager-Kaiser energy operator, low-pass filtered (0.5Hz, 4th order Butterworth), 

standardized, and then compared against a threshold of 0.5 standard deviation to identify 

intervals of either flexor or extensor contraction (Tenan et al., 2017). Contraction intervals 

larger than 1 second were retained for further analysis and their time of onset was utilized 

to segment EEG epochs for calculating MRCPs. This approach ensured that the MRCPs 
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were measured with respect to true movement onset and independent of the classifier’s 

predictions. To obtain a sufficient number of trials for averaging, we combined EEG 

epochs from the first 2 and final 2 therapy sessions and then computed their difference. 

Further, we looked at difference in MRCP peak amplitudes and latency from scalp EEG 

electrodes located over the motor cortex, specifically, central (Cz, C1- C4), fronto-central 

(FCz, FC1 – FC4) and centro-parietal electrodes (CPz, CP1 – CP4). Further, to account for 

left hand vs. right hand impairment, the electrode locations were flipped for individuals 

with right hand impairment. Finally, MRCP latency was defined as time difference starting 

from 50% of peak amplitude until the time of movement onset (see supplementary 

materials, Fig. S1) (Müller-Gethmann et al., 2000).   

E Data Analysis and Statistics 

The benefit of BMI-enabled exoskeleton therapy was assessed with two 

objectives, namely improvement in patient engagement (measured as a participant’s 

ability to reliably operate a BMI) and improvement in motor function (measured via 

changes in neural activity, clinical scores, and movement kinematics). BMI performance 

was quantified per session in terms of prediction accuracy, false positives, early detection 

time, and user feedback. Prediction accuracy was determined based on the fraction of 

successful trials from total trials, while to calculate false positives, we used catch trials 

that asked participants to intentionally remain idle during those trials. Our early detection 

time metric measured how far in advance the BMI could predict movement before a 

participant tried to move their impaired arm (as seen from EMG activity). The participants’ 

approval rating of the BMI’s decisions was assessed using a 3-point Likert Scale, with a 

scoring scale of 3 = Approve, 2 = Not sure, and 1 = Disapprove. To compare offline vs. 
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online BMI performance metrics we used Wilcoxon rank sum test, since the data was 

non-normal and had unequal sample sizes. 

To test for statistical significance of motor recovery based on clinical assessments, 

one-way mixed effects analysis with repeated measures was used. The assessment 

intervals were taken as fixed effect with four levels (Baseline, post-treatment, 2-weeks, 

and 2-months follow-up). Whereas a between-subject intercept was considered as the 

random effect. Mixed effects models were selected over conventional repeated measures 

ANOVA, to compensate for the missing follow-up sessions (Wainwright, 2007). 

Additionally, an in-depth analysis of FMA-UE and ARAT subscales was conducted to 

assess which of their scoring items improved amongst participants and how long were 

the improvements retained post-intervention.  

Movement quality improvements were evaluated by comparing kinematic data 

from initial 2 with final 2 therapy sessions. These metrics included Average Speed, 

Spectral Arc Length (a frequency-domain measure that increases in value as movements 

become less jerky (Balasubramanian et al., 2015)), and two metrics related to the shape 

of the velocity profile: Number of Peaks (a higher number of peaks corresponds to jerkier 

movement), and Time to 1st Peak (which is usually less than the ideal value of 0.5, or 

50% of the total movement duration, when a movement has more than one peak). Due 

to the non-normality of the data, Wilcoxon signed rank tests were used on the paired 

differences for each movement quality metric.  

All data analysis were performed in MATLAB R2018b, with the exception of mixed 

effects analysis which was carried out in R (R Core Team, 2017) and its ‘lme4’ package 

(Bates et al., 2015). The statistical significance criteria was set at p-values less than 0.05.  
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3. Results  

A BMI Performance across Participants 

During the 4-6 weeks long therapy regime, on average, participants completed 132 

± 22 repetitions per session by triggering the exoskeleton’s movement via the BMI. As 

seen in Fig. 3A top plot, the average BMI’s prediction accuracy was consistently better 

than random chance (= 50%) across sessions. Inter-subject variability in accuracy 

reduced with training and during the last 5 therapy sessions, 4 participants achieved 

Fig. 3. BMI performance in 10 chronic stroke survivors over 12 therapy sessions, averaged by 
session in sub-plot A and averaged by online testing vs. calibration in sub-plot B. From top to 
bottom, mean ± s.d. values for BMI’s prediction accuracy, false positives, early detection time, and 
user approval rating are shown. Results from 2 participants (P9 and P7) with best and worst BMI 
accuracy are overlaid on the plots. Dotted lines indicate statistically significant trends in accuracy 
and user rating. 
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greater than 90% accuracy. Overlaid on the plots are BMI performance traces for 

participants with best (P9) and worst (P7) accuracies across sessions. The remaining 

plots in this figure demonstrate the BMI’s performance in terms of its ability to avoid false 

positives, its early detection time, and users’ approval rating. The dotted lines are best fit 

lines for which the slope was non-zero and statistically significant (p < 0.05).  

Fig. 3B compares the BMI’s online performance with its offline performance at 

calibration. Overall the BMI’s accuracy was similar during online and offline testing (79 ± 

18% vs. 81 ± 8%, n.s.). The average false positives in the online scenario were 

significantly smaller than offline (23 ± 20% vs. 34 ± 14%, p < 0.05). In offline testing, motor 

intent could be detected as early as 723 ± 740ms before onset of movement, while in the 

online case the early detection of intent could be made only 66 ± 86ms in advance (p < 

0.001). Finally, the average approval rating was high and consistent across users at 2.6 

± 0.4 points on a 3-point Likert scale. 

B Clinical Outcomes 

Fig. 4 shows changes in clinical metrics from baseline evaluated at different time 

points: post-treatment, 2-weeks, and 2-months follow-ups. The average change in FMA-

UE and ARAT during the entire course of the study were 3.92 ± 3.73 and 5.35 ± 4.62, 

respectively. Repeated measures mixed effects model analysis confirmed that there were 

significant improvements from baseline in FMA-UE (F (23.03, 3) = 5.54, p < 0.01) and 

ARAT (F (23.018, 3) = 6.25, p < 0.01). Post-hoc analysis revealed that FMA-UE and 

ARAT scores after treatment and at follow-ups where significantly better than at baseline. 

Moreover, as shown in Table S2 (supplementary materials), overall 8 participants 
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achieved minimal clinically important difference (MCID) after therapy or at follow-ups, 

based on their FMA-UE and ARAT scores. MCID thresholds for FMA-UE was set as 5.2 

points and for ARAT as 5.7 points change from baseline (Lee et al., 2001; Page et al., 

2007). No change in JTHFT scores was observed. Marginal improvements in grip and 

pinch strengths were noted, but these did not reach statistical significance.  

 

 

 

Fig. 4. Clinical outcome metrics assessed post-treatment (post-tt) and at 2-week (2wk f/u) and 2-
months (2mon f/u) follow-ups relative to baseline. Shaded regions indicate the 4 – 6 weeks long 
intervention period. 
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 Changes in FMA-UE and ARAT scores by subscales 

In Fig. 5, we breakdown the FMA-UE and ARAT scores into its constituent 

subscales. For each of the spider charts shown in the figure, the black outer polygon 

Fig. 5. Breakdown of FMA-UE and ARAT scores by subscales, shown by averaging across 
participants (subplot A & B) and individually (subplots C-F) for participants that achieved minimal 
clinically important difference. Subplots C-F, further group participants based on their FMA-UE and 
ARAT outcomes at 2 months follow-up. The arrows in subplots A & B indicate the order of 
administering the test, starting at the first item and then progressing counter-clockwise.    
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represents maximum score achievable under each subscale. The maximum score in each 

scoring item is also stated next to each vertex in subplots A & B, as well as in all remaining 

subplots. The colored polygons represent the 4 different assessment time points, namely 

baseline, immediately after treatment, 2-weeks and 2-months follow-ups.  

Fig. 5A & Fig. 5B show the mean ± s.d. scores for FMA-UE and ARAT subscales. 

On average participants improved in movements involving arm synergies, speed, co-

ordination, wrist and hand components of FMA-UE, as well as grasp and pinch 

components of ARAT. The improvements were greatest at 2-weeks assessment, but later 

regressed and at 2-months follow-up the scores were similar to that of post-treatment, 

albeit better than baseline. Subplots C-F in Fig. 5 track progress of individual participants 

that were able to achieve MCID during any of the follow-up assessments. For participants 

that did not attend a follow-up visit (i.e. P5, P7, and P9), their score was assigned zero in 

the plots and their most recent assessment score were used for further groupings. 

Specifically, subplot C groups individuals that retained gains in both FMA-UE and ARAT 

scores at 2-months follow-up (with the exception of P7). Fig. 5D groups individuals that 

retained gains in FMA-UE, but either regressed or did not improve their ARAT scores. 

Similarly, Fig. 5E shows a participant who retained his ARAT scores, but regressed on 

FMA-UE. Finally, subplot F shows a participant that regressed on both FMA-UE and 

ARAT scales at 2-months follow-up.  
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C Behavioral Outcomes 

 Motion Kinematics 

In Fig. 6, boxplots compare movement quality metrics between the start and end 

of therapy sessions. Using a single-sided Wilcoxon signed rank test, the median values 

for Average Speed, Spectral Arc Length, Number of Peaks and Time to 1st Peak were 

significantly higher at the end of the therapy. Median values for Average Speed increased 

from 13.6 deg/s to 23 deg/s (p < 0.05) and Spectral Arc Length increased from -2.29 to  

-2.17 (p < 0.05). The median Number of Peaks decreased from 2.11 to 1.68 (p < 0.001), 

which suggests that movements at the end of therapy were less jerky. Also, the median 

Time to 1st Peak increased from 0.36 to 0.45 (p < 0.001), which indicates well-balanced 

movements (ideal value = 0.5) were achieved post-therapy completion.   

Fig. 6. Improvement in movement quality between start and end of therapy. Movement quality was derived 
from joint angle velocity using various kinematic metrics. For all metrics except Number of Peaks, an 
increase in value corresponds to improvement.  
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 Presence of Global Synkinesis 

Bilateral surface EMG analysis revealed that the involuntary co-activation of 

unimpaired arm when using paretic arm, also known as global synkinesis phenomenon, 

existed in 2 participants: P4 (baseline FMA-UE = 21, ARAT = 4) and P8 (baseline FMA-

UE = 49, ARAT = 42). As seen from the normalized bilateral EMG traces in Fig. S2 

(supplementary materials), synkinesis was primarily observed during elbow extension, 

while it was absent during elbow flexion. Moreover, no change was observed in the extent 

of co-activation of the unimpaired arm between the start and end of therapy.  

D Correlation of MRCP Amplitude and Latency with Clinical Outcomes 

We correlated changes in FMA-UE and ARAT scores post-treatment with 

differences in MRCP signals, corresponding to initial and final therapy sessions. As seen 

in Fig. 7 top row, MRCP amplitude from the contralateral EEG electrodes highly correlated 

with functional assessment scores. Specifically, change in average MRCP amplitude for 

contralateral central electrode (i.e. C1 or C2 depending on impaired side and abbreviated 

as C1/2) significantly correlated with ARAT scores (ρ = 0.72, p < 0.05). Likewise, 

correlation between MRCP amplitude from contralateral fronto-central electrode (i.e. FC1 

or FC2 depending on impaired side and abbreviated as FC1/2) and FMA-UE scores, was 

tending towards significance (ρ = 0.63, p = 0.051). No significant correlation between 

MRCP latencies and clinical outcomes was observed. The bottom row in Fig. 7A & Fig. 

7B, plots the averaged MRCP signals from the initial and final therapy sessions for all 

participants, corresponding to central and fronto-central EEG electrodes. 
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4. Discussion 

Cortical reorganization and motor recovery following stroke are contingent on 

ensuring active user engagement and participation during rehabilitation, to promote 

activity-dependent neuroplasticity (Venkatakrishnan et al., 2014). Towards this extent, 

BMI-based neurorehabilitation therapies have performed arguably better at engaging the 

user and achieving better functional outcomes than any other contemporary rehabilitation 

therapies (e. g. CIMT, robot-assisted or neuromuscular stimulation alone, etc.) (Cervera 

Fig. 7 Correlation (ρ) between MRCP amplitude and functional assessment scales. Top row compares 
MRCP amplitudes from central and fronto-central EEG electrodes with clinical outcomes. In these figures, 
numbers represent participant I.Ds. Bottom row shows MRCPs recorded from all the participants at start 
and end of therapy. Note, MRCPs are aligned with respect to movement onset (t = 0s).  
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et al., 2018). In the same light, this study confirmed that BMI-enabled robot-assisted 

upper-limb therapy resulted in improved motor function for a majority of the participants 

with chronic stroke, as determined from post-treatment, 2-weeks, and 2-months 

assessments.  

Specifically, functional metrics that are typically associated with arm/hand 

movements and co-ordination, i.e. FMA-UE and ARAT, improved as a result of therapy 

(7 participants with moderate-mild impairment and 1 with severe-impairment showed 

some level of motor recovery by the end of the intervention). Whereas, metrics associated 

with hand strengthening and speed, such as JTHFT, grip and pinch strengths remained 

stable. Since the BMI-enabled MAHI Exo-II exoskeleton was primarily targeting elbow 

training, this result is expected. However, as seen in Fig. 5A & Fig. 5B, the effects of elbow 

training generalized to positive improvements in wrist and hand subscales of FMA-UE 

and pinch and grasp subscales of ARAT outcomes.  Moreover, no adverse events directly 

related to the intervention were reported, although one participant (P5) experienced 

unexplained tiredness, forgetfulness, and excessive decline in motor performance, 2 

months after therapy (see Fig. 5F). 

While clinical outcomes are indisputable evidence of motor relearning, often these 

are imperceptive to cortical changes at sub-clinical levels. Hence, to determine the 

efficacy of any neurorehabilitation therapy, it is important to identify neural correlates or 

biomarkers that can explain and even predict post-treatment clinical outcomes. Indeed, 

previous studies have identified neural correlates based on the BOLD response (Ramos-

murguialday et al., 2013), white matter tract anisotropy (Song et al., 2015), and brain 

symmetry index (Ang et al., 2014). Our analysis of MRCPs from start to end of therapy 
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showed that participants who improved in motor function were characterized by changes 

in the MRCP amplitudes from the contralateral EEG electrodes that were highly and 

positively correlated with functional assessment scores. More specifically, MRCP 

amplitudes from the primary motor cortex and supplementary motor area (Brodmann 

Areas 4 & 6) contralateral to the impaired arm, correlated with ARAT (ρ = 0.72, p < 0.05) 

and FMA-UE (ρ = 0.63, p = 0.051) scores, respectively (Koessler et al., 2009). However, 

no significant correlation with MRCP latency was observed. Since MRCP amplitude is 

believed to encode information about computational effort and attention (Cui & 

Mackinnon, 2009), increase in MRCP amplitude suggests higher activation of the ipsi-

lesional hemisphere. Thus, MRCPs can serve as a viable neural correlate for predicting 

clinical outcomes of any neurorehabilitation therapy. 

 Interestingly, even though our participants performed a small number of physical 

movements per session (132±22), their functional and kinematic outcomes were 

comparable to high-intensity robot-only therapies (Klamroth-Marganska et al., 2014; Lo 

et al., 2010). This was likely facilitated by the BMI’s consistent decoding accuracy (avg. 

= 79 ± 18%), low false positives (23 ± 20%) and early detection latency (-66 ± 86ms). This 

in turn allowed the exoskeleton to seamlessly respond to the participant’s volitional 

movement intent and provide causal afferent sensory feedback, thereby promoting 

cortical plasticity.  

Our study did have a few shortcomings. Firstly, the absence of a control group 

prevented us from understanding the individual benefits of BMI and robotic therapy alone. 

However, we ensured that the participants enrolled had a stable baseline and any 

improvements can be attributed to the combined effect of BMI plus robotic therapy. 
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Secondly, our sample size was small (n = 10), which prevents us from generalizing the 

outcomes to a larger sample. This was in part to our narrow inclusion criteria, which 

excluded about 75% of the participants that were screened. Lastly, the BMI control was 

limited to one-dimensional (Go vs. No-go), which might not have been engaging enough 

for some of the participants (e.g. P7). For future participants, it will be our priority to 

achieve multi-dimensional BMI control and combine it with virtual or augmented reality, 

to provide an immersive learning environment. Nonetheless, our study found compelling 

evidence and an MRCP-based neural correlate for clinical efficacy of BMI-enabled robot-

assisted rehabilitation. 
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