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Abstract

We show that the standard SIR model is not effective to predict
the 2019-20 coronavirus pandemic propagation. We propose a new
model where the logarithm of the detected population number follows
a linear dynamical system. We estimate the parameters of this system
and compare models obtained with data observed from different coun-
tries. Based on the given estimator and results obtained with the Pr.
Raoult’s treatment, we affirm with a reasonable degree of confidence
that his “test-treat-noconfine” policy was less expensive in human lives
than the“confine and wait for a proved treatment” policy adopted by
the French government.

1 Introduction

The forecast of the spread of the Covid epidemic is very important to take
governmental decisions such as containment policy. In France, the decision
of the population containment has been taken on the basis of the possible
risk of 500 000 deaths forecasted by the Ferguson model (a student of Fer-
guson belonged to the scientific committee dedicated to Covid epidemic).
At the same committee, Pr. Raoult’s recommendation was not to confine
the population but to test, confine and treat infected people. In the end,
the political decision has been the containment given the dramatic risk of
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500 000 deaths. In our opinion, Pr. Raoult’s treatment was the correct one,
able to reduce the mortality to a regular influenza epidemic.

The Ferguson’s model [3] is a renewal stochastic model using the SIR
(Susceptible-Infected-Recovered) with a time-varying reproduction number
that predicts the average number of secondary infections at a given time.
Ferguson said : “The renewal model is related to the Susceptible-Infected-
Recovered model, except the renewal is not expressed in differential form”.

Here, after having shown that SIR deterministic dynamical models are
not effective to forecast the number of infected-detected people, we will pro-
pose a new model. It is a dynamical linear model forecasting the logarithm
of the cumulated infected-detected population. A first-order linear time-
invariant model fits well with the observations. Explicit formulas can be
given which are quite good at least when the policy test to detect infected
people or the containment policy does not change too much.

2 SIR models are not effective to forecast the epi-
demic evolution

The SIR (Susceptible-Infected-Recovered) model distinguishes three kind of
people in a given population. We can denote by S the proportion of the
susceptible population to be infected, I the proportion able to infect and by
R the proportion which has recovered and which is not able to transmit the
infection. We have S + I + R = 1. This model assumes that the number
of newly infected people is proportional to the product of the number of
infected by the number of susceptible ones. Based on this assumption the
following differential equations describing the evolution of the three variables
are proposed:

Ṡ = −αSI, (1)

İ = αSI − βI, (2)

Ṙ = βI. (3)

Where α can be seen as a reproduction number by unit of time and β is a
recovering factor by unit of time.

We think that this standard SIR model must be improved a little bit. It
says nothing on the immune population at the end of the epidemic on the
contrary to the following discrete-time model:

In+1 = αIn(1 − In −Rn) − βIn, (4)

Rn+1 = Rn + βIn. (5)

2



In equilibrium we have R = limnRn and I = limn In, then R satisfies
1 = α(1 − R) − β which gives R = 1 − (1 + β)/α. This is the well-known
formula when β = 0 for the proportion of the infected people at the end of
the epidemic. The continuous-time version of this model gives the following
differential equations:

İ = α(1 −R− I)I − (1 + β)I, (6)

Ṙ = βI. (7)

Using the new variable T = I +R instead of I, the system can be written :

Ṫ /(T −R) = α− 1 − αT, (8)

Ṙ/(T −R) = β. (9)

This form is useful to estimate parameters of α and β. The variable T will
be called infected-recovered people1.

In more sophisticated models, we can distinguish the infected in classes
according to the time since they have been infected. In other cases, we cut
out the space into zones. In stochastic models, after a stochastic random
time, a stochastic reproduction appears. Sometimes it is supposed that the
α and β coefficients depend on time. But the main point is bilinearity :
the new infected are proportional to the product of susceptible and infected
people. The collective immunity corresponds to the fact that the recovered
people cannot become able to contaminate.

For a given epidemic, to be able to forecast the evolution, we have to
estimate the two numbers α and β. The problem is that we are not able to
observe any of the two variables T,R. We can test some people or observe
some symptoms but we cannot observe precisely the number of infected
people.

At the beginning of the infection, as nobody has recovered, we can sup-
pose that R = 0. If we suppose that the number of observed infected-
recovered people is proportional to the infected-recovered ones (y = NT
where N is an unknown parameter and y denotes the observed infected-
recovered cases) we obtain the evolution equation of y :

ẏ/y = α− 1 − αy/N. (10)

This equation can be written:

ẏ/y = b− ay ; (11)

1in fact the I variable is the contagious people not the infected people which is rather
T .
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with b = α − 1 and a = α/N which can be easily estimated from the
observation y by a simple linear regression.

Let us see the results on the French data for the covid epidemic. The
Figure-1 gives the observation in green of ẏ/y, the regression b − ay(t) in
black as function of time. We observe that the result is very bad. A bet-
ter regression is easily obtained noticing that y(t) grows exponentially and
therefore that log(y(t)) is almost proportional to time. The blue line gives
the corresponding regression B −A log(y(t)).

Figure 1: Green : observed ẏ(t)/y(t). Black: b−ay(t). Blue: B−A log(y(t)).

Therefore a better model than the SIR model is given by :

ẏ/y = B −A log(y). (12)

If we see the term “−A log(y)” as a brake on the exponential epidemic grow-
ing. This brake cannot be explained in immunology terms as the standard
brake of the SIR model “−ay”. It is not clear to understand its origin. A
possible explanation is a sociological reaction of the population. During an
epidemic, people react to avoid being infected and this reaction would be
proportional as the log of the affected population.

Using the new variable z = log(y) we obtain the simple model:

ż = B −Az. (13)

Therefore we have:
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The main point of the paper.

The logarithm of the observed number of people infected during the
covid epidemic denoted by z(t) can be well approximated by a first-order
time invariant stable linear dynamical system ż = −Az+B and therefore
the observed number of infected people y(t) can be parameterized by the
three numbers A,B, T with the explicit formula:

y(t) = exp

[
B

A

(
1 − e−A(t+T )

)]
with A > 0.

In [2] Bhardway proposed a linear dynamical model:

ẏ = − exp(−at+ b)y,

where he fitted a and b from observations. The main difference is that this
model is time-variant and the fit is done according to time. Our model is
time-invariant and the fit is according to the logarithm of the observation.
The logarithm of the observation is not completely linear with respect to
time. We can observe this curvature in Figure-1. Observations in green do
not follow exactly a straight line but a little curved one. The blue line is
better than any straight line. In [2] a fit with an exponential time is done.
In the end, the two points of view give the same parameterization.

In Figure-2a we compare, in the French case, the cumulated numbers
of observed positive people given by our model in blue with the SIR ones
(when β = 0) in black and the observed ones in green.

(a) Green: observed y(t). (b) Green: observed y(t+ 1) − y(t).

Figure 2: Black: SIR estimation. Blue: our estimation.

In Figure-2b we compare, in the French case, the daily numbers of ob-
served positive people given by our model in blue with the SIR ones (when
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β = 0) in black and the observed ones in green. The estimated parameters
for the SIR model are α = 1.327, N = 340 000, β = 0.02. In the simulation
we have neglected β (β = 0). This comparison shows that it is difficult
to have confidence in the SIR model to forecast the evolution of the covid
epidemic.

3 Forecast for some countries

Before using the proposed model to forecast it is useful to have an idea
of the robustness of the prevision. The prediction of the logarithm of the
cumulated infected-detected people number is in general very good. But a
small errors on the logarithm can produce large errors on the quantity itself.
The estimated parameters A and B differ a little according to the sample
used. In the French case, let us show the difference in the daily forecast of
infected people between the estimation when we use respectively the 28 first
samples (Figure-3a) and the 28 last samples (Figure-3b).

(a) Blue: Estimation based on the 28
first observations.

(b) Blue: Estimation based on the 28
next observations.

Figure 3: Green: Observed daily infected people in France.

The parameters (A,B, T ) are equal respectively to (0.050, 0.617, 5) and
(0.079, 0.944, 24). Considering the changes of policy in France, we find that
the result is quite robust. The forecast of the total number of infected
people at the end of the epidemic is given by expB/A that is in the two
cases 214 000 and 145 000 respectively.

It is important to notice that the French containment policy has been
decided March 17 which is day 22 on Figure-3a and Figure-4. On this date,
it was decided to change the covid test policy. France entered in what is
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called phase2 3 which is not to try to detect anymore all infected people but
only the severe cases.

In Figure-4 we also clearly see the forecast difference and the impact of
containment policy. The containment is not as crucial as it is often said.

Figure 4: Blue: Daily infected people estimation based on the 28 first ob-
servations. Black: estimation based on the 31 last observations.

Let us give the prediction and observation of the daily infected-recovered
people obtained with this simple model for two other countries: Germany
and Italy.

(a) Red: Italy estimate based on 58
data.

(b) Black: Germany Estimate based
on the 38 last data.

Figure 5: Green: Observed daily infected-recovered people in Italy and
Germany (last data 22 April).

2The three phases of the French covid policy were: – in phase 1 we try to find the first
positive case, – in phase 2 we no longer try to find anymore the initial case but all the
positive ones, – in phase 3 we no longer try to find any more all the positive cases but
only the severe ones that require hospitalization.
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4 Analysis of French containment policy based on
these epidemic estimations

Let us discuss if the French decision of containment taken on the 17th of
March 2020 was justified. This is why we have to estimate the number of
deaths avoided by this decision. From this discussion above, we can first
determine the avoided number of infected-recovered people O. It can be
obtained easily by O = exp(B/A) − exp(B′/A′). On the one hand (B,A)
are parameters provided before the containment, and on the other hand,
(B′, A′) are parameters at the present time based on observations since the
containment decision time has decided. It is approximately equal to O =
exp(0.617/0.05) − exp(0.943/0.079) = 76 000.

Now, to give an estimate of avoided death number, we have to use a death
rate defined as the number of death in hospitals divided by the number of
observed infected-recovered people counted in hospitals. But this death rate
changes a lot over time (see Figure-6). We can see the rate is approximately

Figure 6: Covid Death Rate in France as function of time.

constant and equals to 0.02 during phase 1 and phase 2 of the French covid
policy where active research of infected people was done. During phase 3,
only severe covid cases were detected and the death rate is increasing almost
linearly. If we take the final death rate of 0.1, we obtain 7 600 avoided deaths.

Pr. Raoult’s study obtains a death rate of 0.004 at the date of April 23,
2020, from 3040 patients having followed his care [8]. Because Pr. Raoult
was very active in testing patients, this rate must be compared with the
French rate before phase 3 which is 0.02, five times the rate obtained by
Pr. Raoult. What would have happened if the French government had
followed his advice “test-treat-no confine” instead of following the advice of
the scientific committee? The human cost would have been 1 500 deaths for
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the absence of containment. But the 12 000 deaths in hospitals would have
been divided by 5 that is 9 500 deaths avoided. At the end, follow-up on the
advice of Pr. Raould would have saved 8 000 of hospital deaths.

5 Conclusion

SIR models are not effective to estimate covid epidemic. An alternative way
to obtain a correct prediction is to fit a linear time-invariant first-order dy-
namical model on the logarithm of the number of observed infected-recovered
people. Based on this predictor and the efficiency of the Pr. Raoult’s treat-
ment we can assert with a reasonable degree of confidence, that the “contain
and wait for a proved treatment” policy decided by the French government
is an error expensive in human lives.
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