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Abstract 
Computational prediction of immunogenic epitopes is a promising platform for therapeutic and 
preventive vaccine design. A potential target for this strategy is human immunodeficiency virus 
(HIV-1), for which, despite decades of efforts, no vaccine is available. In particular, a therapeutic 
vaccine devised to eliminate infected cells would represent a key component of cure strategies. 
HIV peptides designed based on individual viro-immunological data from people living with 
HIV/AIDS have recently shown able to induce post-therapy viral set point abatement. However, 
the reproducibility and scalability of this method is curtailed by the errors and arbitrariness 
associated with manual peptide design as well as by the time-consuming process.  
We herein introduce Custommune, a user-friendly web tool to design personalized and population-
targeted vaccines. When applied to HIV-1, Custommune predicted personalized epitopes using 
patient specific Human Leukocyte Antigen (HLA) alleles and viral sequences, as well as the 
expected HLA-peptide binding strength and potential immune escape mutations. Of note, 
Custommune predictions compared favorably with manually designed peptides administered in a 
recent phase II clinical trial (NCT02961829).  
Furthermore, we utilized Custommune to design preventive vaccines targeted for populations 
highly affected by COVID-19. The results allowed the identification of peptides tailored for each 
population and predicted to elicit both CD8+ T-cell immunity and neutralizing antibodies against 
structurally conserved epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2).  
Overall, our data describe a new tool for rapid development of personalized or population-based 
immunotherapy against chronic and acute viral infections. 
 
 
Introduction 
The rapid development of automated platforms for data generation and analysis are increasingly 
making precision medicine a concrete option for several diseases. Due to its potential for high 
selectivity and efficacy, immunotherapy is an optimal choice for the design of personalized 
therapeutic interventions1. While most efforts in this direction have focused on cancer1–3, viral 
infections can be a relevant application as well, particularly chronic infections characterized by 
extensive genetic diversity, in part due to in-host viral evolution.  
Human immunodeficiency virus (HIV-1) is case in point, as the large number of circulating strains 
and its high replicative mutation rates have hampered the development of effective vaccines, both 
preventive and therapeutic4,5. Several lines of evidence highlight the relevance of immune control 
in HIV-1 infection. Spontaneous long-term control of HIV-1 replication can be accompanied by 
the presence of broadly neutralizing antibodies6,7 or, more frequently, effective cell-mediated 
immune responses8. Moreover, protective Class I HLA alleles have been identified both in people 
living with HIV/AIDS (PLWHA) and macaques infected with the HIV homolog simian 
immunodeficiency virus (SIV)9–14. In line with this, temporary depletion of CD8+ T-cells is 
associated with a rapid viral load increase, while their replenishment can revert this effect15–18. 
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A therapeutic vaccine based on cell-mediated immunity might offer the advantage of decreasing 
the number of infected cells. On the one hand, HIV-1 latently infected cells, which constitute the 
main barrier to a cure19–21, are not targeted by antiretroviral drugs or CD8+ T-cells22. On the other 
hand, effective cell-mediated immune responses could preserve drug-free control of the infection 
by keeping viral load low/undetectable and by eliminating the infected cells undergoing 
spontaneous HIV-1 reactivation from latency. Such therapeutic vaccines could also be combined 
with strategies aimed at purging the HIV-1 latent reservoirs by inducing pharmacologic 
reactivation of latently infected cells23. 
The strong correlation between the host’s genetic background and immune-mediated control of 
the infection suggests that effective immunity is mainly directed against a subset of HIV-1 
epitopes. Consistently, several studies have shown that cell-mediated immune responses against 
the HIV-1 Gag protein correlate with lower viral loads in PLWHA and with post-therapy control 
of the infection in macaques18,24–27. The peculiar efficacy of anti-Gag immunity might be partially 
explained by the higher fitness cost associated with mutations in this viral protein28. In particular, 
specific regions of Gag, which are essential for HIV-1 packaging and assembly, are structurally 
and evolutionarily conserved, displaying low Shannon entropy both in humans and primate 
lentiviruses29. However, it is noteworthy that low diversity is not sufficient per se to induce viral 
load control, as vaccine approaches designed exclusively by selecting epitopes based on their 
evolutionary conservation have shown only modest effects30,31. 
A recent phase II clinical trial (NCT02961829) has attempted to induce anti-Gag immunity against 
conserved epitopes using a personalized approach based on patient HLA sequences32. Although 
the study enrolled only a small number of  PLWHA and tested multiple interventions, preliminary 
results suggest that therapeutic vaccination with autologous dendritic cells pulsed with individually 
designed peptides decreased the viral set point in some patients during analytical treatment 
interruption (ATI)32. 
In the present work we describe and test a new automated, user-friendly web-based tool to design 
personalized peptides for vaccination. The tool, named Custommune, was principally interrogated 
to develop therapeutic vaccine candidates for HIV-1. To this aim, by intersecting input data from 
patient-specific viral sequences and HLA alleles, Custommune provides an output of epitopes of 
desired length filtered for their predicted specificity, immunogenicity and mutation potential. Of 
note, in our simulations, Custommune performance was superior to that of manual vaccine design 
(applied in clinical trial NCT02961829) in terms of prediction of clinical response. 
One advantage of Custommune over traditional vaccine design techniques is the ability to quickly 
adapt the tool for different targets and strategies. In this regard, we applied Custommune to the 
novel pandemic COVID19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)33. Due to the acute manifestations of the disease, the design of a population-targeted 
preventive vaccine was chosen as a more practical approach as compared to a personalized 
therapeutic vaccine. Moreover, to broaden the expected coverage and increase the likelihood of 
achieving herd immunity34, a strategy able to potentially evoke both neutralizing antibodies and 
cell-mediated immunity was preferred. Using input regions of SARS-CoV-2 identified as viable 
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targets, Custommune was able to design vaccine candidates specific for regionally prevalent HLA 
genotypes. In addition, Custommune selected those HLA Class II restricted epitopes that could 
induce neutralizing antibodies and thus provide a two-layered protection against the infection. 
Taken as a whole, our results show the potential of the Custommune algorithm to quickly design 
personalized or population-specific peptides for preventive and therapeutic vaccination. Due to its 
intuitive and scalable approach, Custommune might provide an effective tool for rapid vaccine 
development against chronic and acute conditions.  
 
Results 

Custommune pipeline for prediction of candidate vaccine peptides 

The Custommune web tool (available at: http://www.custommune.com) was written in Python 
(http://www.python.org) using the Django framework (https://www.djangoproject.com) and 
provides the user with an easy online interface for accessing and downloading prediction datasets 
without any coding knowledge requirements. The tool utilizes a pipeline (Figure 1) to design 
epitopes for preventive and therapeutic vaccines.  
For HIV-1 therapeutic vaccine design, Custommune crosses input data from patient-specific viral 
sequences (DNA in FASTA format or raw DNA sequencing inputs) and patient's HLA-I and/or 
HLA-II alleles, providing an output of epitopes of desired k-mer length. To facilitate the allele 
input step, the tool provides two links directing the user to a list of supported Class I and Class II 
HLA alleles, respectively. These lists mirror those of the netMHCpan 4.0 algorithm35, for either 
HLA class. Although the approach could potentially be extended to encompass entire HIV-1 
sequences, we decided to limit the search for viable epitopes to the gag gene only, because of the 
previously described distinctive efficacy of anti-Gag cell-mediated immunity18,24–27. 
The tool pipeline (Figure 1) starts by translating input gag genomic sequences to protein 
sequences. Custommune then performs multiple sequence alignment using the Clustal Omega 
(REST) web service Python client36 and builds a consensus translated sequence. The consensus 
sequence is then used to predict epitopes restricted to patient-specific HLA-alleles for both classes. 
The HLA-specific epitopes provided as final output by Custommune are pre-filtered by the 
algorithm. This pre-filtering follows a set of parameters that compute epitope affinity in terms of 
sequence variation and conservation degree, allele-restricted affinities, and previous clinical 
evidence of immune response (Figure 1). For calculating evolutionary conservation, each epitope 
is compared, in terms of similarity, to an internal database of Gag amino acid sequences 
(Supplementary File 1) collected mainly from curated alignments retrieved from the Los Alamos 
HIV sequence database (http://www.hiv.lanl.gov/). Moreover, to verify whether antigenicity has 
already been reported for the candidate epitopes, the tool compares potential epitopes to those 
already described in the Los Alamos HIV immunology site 
(http://www.hiv.lanl.gov/content/immunology). 
To further refine the structural assessment of epitope binding to HLA-alleles, Custommune 
performs structural epitope modelling followed by epitope-HLA docking to determine the 
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structural stability of the HLA-predicted epitope binding (Figure 1). The Custommune pipeline 
also computes some related physicochemical parameters of the personalized epitope sequence to 
aid in the assessment of the structural stability of candidate peptides.  
Overall, the tool is optimized to identify immunogenic peptides characterized by the lowest 
variability (mutation potential). In line with this, the tool specifically highlights potential epitopes 
that are contained in regions which were previously described as essential for viral fitness29,37. This 
is a novel and fundamental feature of this approach, as RNA viruses are characterized by a high 
ability to mutate38. 
The Custommune pipeline can be applied to other vaccine strategies by following a parallel 
workflow (Figure 1). An example of these applications are acute infections, such as COVID-19. 
In this case, an approach combining neutralizing antibody responses and recognition by HLA 
haplotypes most represented in a given population might provide a reasonable compromise 
between specificity and scalability. To this aim, using Bepipred-2.039, Custommune can identify 
potential neutralizing epitopes which overlap with epitopes consistent with recognition by 
population-specific Class II HLA haplotypes. At the same time, Custommune can predict another 
set of epitopes optimized for recognition by HLA Class I haplotypes of the same population, thus 
providing two levels of potential immune recognition. 
Overall, the Custommune pipeline provides a flexible and fast tool to generate epitope predictions 
according to the genetic diversity of the virus and the genetic HLA profile/s of the host or 
susceptible populations. 
 

Correlation between Custommune predictions and therapeutic vaccine efficacy in PLWHA 

We tested Custommune predictions against manual epitope selection using results from an ongoing 
multi-interventional phase II clinical trial enrolling PLWHA (NCT02961829)32. In this trial, 
autologous dendritic cells were pulsed with a personalized vaccine designed manually from Gag 
sequences generated from each patient´s circulating virus. In the study groups (G5 and G6) that 
had received this vaccine (along with other interventions), the patients showed variable responses 
including two individuals who displayed significant control of viral load during ATI32. When viral 
and HLA sequences of patients from G5 and G6 were used as input for Custommune, the epitopes 
predicted by the tool generally displayed some overlap with those administered in the study (Figure 
2A).  
Therefore, to investigate the potential therapeutic efficacy of Custommune predictions, we 
stratified patients based on the virologic response during ATI, which was defined as > 1 Log10 ∆ 

viral load set point (i.e. the difference between median pre- and post-therapy copies of 
HIV-1 RNA/mL of plasma). Of note, non-responders were the only patients for whom there was 
no overlapping prediction between epitopes calculated by Custommune and those administered in 
vivo (Figure 2B). Conversely, patients who had been administered vaccine epitopes highly 
overlapping (>50%) with those predicted by Custommune, were characterized by higher viral load 
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abatement (Figure 2C). These data suggest that Custommune can predict epitopes with therapeutic 
potential and could improve both efficacy and speed of personalized vaccine design. 
 
Identification of input SARS-CoV-2 sequences for Custommune 

As the ongoing COVID-19 outbreak is an urgent challenge for vaccine development40, we decided 
to test the potential of Custommune for rapid identification of vaccine targets. In order to utilize 
Custommune for SARS-CoV-2 predictions we first decided to identify the viral regions that could 
act as optimal input for the tool. 
Due to the recent evolution of SARS-CoV-2, there is no equivalent of HIV-1 Gag, i.e. a validated 
viral target for effective immunity. However, SARS-CoV-2 shares approximately 80% sequence 
identity with SARS-CoV41, the causative agent of an epidemic burst of acute respiratory distress 
syndrome (ARDS) in 2003. Therefore, we decided to use previously described strategies 
successfully targeting SARS-CoV replication as a template to restrict Custommune predictions. In 
particular, our efforts were directed at two validated sub-targets within the S-glycoprotein 
necessary for viral attachment to host cells42: 1) the portion of the S-glycoprotein that mediates the 
main protein-protein interaction with the cellular entry receptor, i.e. angiotensin converting 
enzyme 2 (ACE2), as this was described as an optimal target for neutralizing antibodies43; 2) the 
viral S-glycoprotein region binding the glycosylated portion of ACE2, an interaction inhibited by 
pretreatment with chloroquine44,45, a drug recently shown to effectively hamper SARS-CoV-2 
replication in vitro and in patients46,47. 

In order to translate these approaches into vaccine design: 

1) We performed a thorough analysis for molecular complexes of the viral S-glycoprotein 
with the entry receptor ACE2. Considering the configuration of ACE2, we 
superimposed complexes of S-glycoprotein/ACE2 in both states of the receptor, i.e. 
free or bound (in this case with the competitive inhibitor MLN-4760)48. Our analyses 
indicated that the receptor-binding domain (RBD) surface of S-glycoprotein interacting 
with the bound configuration of ACE2 is relatively smaller than (though 100% 
overlapping with) that interacting with the unbound configuration of ACE2 (Figure 
3A,B). In light of this, we decided to restrict the Custommune input to the RBD 
sequence interacting with bound ACE2 and the linker amino acids (henceforth RBDp) 
(Figure 3A,B). It is expected that this approach will be able to evoke antibodies against 
the RBDp irrespective of the ACE2 bound/unbound configuration.  

2) We inspected the possible contribution of oligosaccharide moieties of ACE2 to the S-
glycoprotein/ACE2 binding interface. The oligosaccharide moiety of ACE2 was 
described as fundamental for optimal binding of the S-glycoprotein of SARS-CoVs44. 
So far, in published structures, only partial ACE2-bound oligosaccharide data is 
available.  Therefore, we decided to study this phenomenon by analyzing a published 
structure of inhibitor-bound ACE2 (1R4L), which presents an N-acetylglucosamine 
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(NAG) covalently bound to residue Asn90 and remaining from the oligosaccharide 
originally attached to this protein49. This evidence suggests that the NAG present in the 
1R4L structure is a marker of the position of the oligosaccharide originally attached to 
ACE2 before being altered by the crystallization process. By superimposing this 
structure to the structure of  the S-glycoprotein with ACE2 and measuring the atomic 
distances at the binding interface between NAG and the S-glycoprotein, we were able 
to determine the specific segment of the S-glycoprotein RBD that could be responsible 
for the interaction with the ACE2-bound oligosaccharide. Two specific residues of the 
S-glycoprotein (Gly416 - Lys417) were found to interact with NAG, being within a 10 
Å radius from NAG, i.e. a distance associated with significant intermolecular 
interactions (Figure 3C,D). Using S-glycoprotein Gly416 as a starting point, we 
selected a core peptide spanning 20 amino acids in both directions of the translation 
frame. This led to the identification of a segment of the S-glycoprotein RBD, which we 
henceforth name RBDg, as a bona fide target for vaccine epitope design (Figure 4A). 

Of note, a structure of the SARS-CoV-2 S-glycoprotein and ACE2 interaction (PDB: 6M17) was 
recently published while the present report was in preparation50. The authors concluded that the 
binding interface to ACE2 is similar for SARS-CoV and SARS-CoV2, and their conclusions are 
largely overlapping with the results of the present analyses. 
Overall, this evidence shows that the RBDp and RBDg DNA sequences of SARS-CoV-2 can be 
used as optimal inputs for Custommune. 

Custommune epitope predictions for population-targeted SARS-CoV-2 vaccines   

To mimic the approach described for HIV-1, we first analyzed the variability of RBDp and RBDg 
by multiple alignment of all SARS-CoV-2 S-glycoprotein sequences available at NCBI and 
GISAID (including isolates from humans, bats and pangolins) (Supplementary File 2, 3 and Figure 
4A). In line with the predicted key structural role of RBDp and RBDg, both sequences displayed 
very limited variability, mostly deriving from non-human isolates (Supplementary File 2 and 3). 
Moreover, every amino acid variant (except one in RBDg) fully preserved the main physico-
chemical characteristics of the consensus residue (according to the scoring system of 51). These 
results suggest that both RBDp and RBDg represent bona fide equivalents of the conserved Gag 
sequences used as privileged targets for Custommune HIV-1 predictions.   
To adapt Custommune predictions to some of the populations most affected by the SARS-CoV-2 
pandemic (at the time at which these analyses were performed), we retrieved the relative HLA 
allele frequencies in individuals from Northern Italy and South Korea (Supplementary File 4) 
(Allele Frequency Net Database; http://www.allelefrequencies.net)52. Moreover, we applied the 
same approach to HLA alleles of individuals from Southern China and from the city of Wuhan, 
where the outbreak had initially spread (Supplementary File 4).  
When the RBDp and RBDg sequences were used as inputs along with population-specific HLAs, 
Custommune returned a set of epitopes (Supplementary File 5) for either Class I or Class II HLAs. 
The HLA Class II specific epitopes were further filtered to highlight those predicted as targets for 
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neutralizing antibodies using Bepipred-2.039. This was done to ensure that a unique peptide may 
provide the double stimulus necessary for optimal B-cell activation and antibody production 
(Supplementary File 5).  
In line with the Custommune pipeline, and in order to improve the likelihood of immune 
recognition, the binding stability and affinity of the most promising epitopes was validated by 
molecular docking. In particular, epitopes were selected for docking if they had been predicted to 
bind with an IC50 < 600 nM53 to HLA alleles described at four digit resolution for the population 
of interest in the Allele Frequency Net Database (Supplementary File 5 and Figure 4B,C). 
Interestingly, the identified epitopes included key residues involved in hydrogen bond formation 
between the S-glycoprotein of SARS-CoV-2 and ACE2 (e.g. Gln 474 in epitope 
STEIYQAGSTPCNGVEG, Gln498 in epitope LQSYGFQP and Lys417 in epitope 
IRGDEVRQIAPGQTGKIADYNYKLPD of S-glycoprotein, engaged, respectively, in hydrogen 
bonds with residues Gln24, Tyr41, Asp30 of ACE2). Since hydrogen bonds were recently 
described as crucial for the stability of the virus-receptor interaction50, epitopes containing the 
hydrogen-bonding residues might be particularly suitable targets to evoke immunity against 
structural determinants of SARS-CoV-2 infection. Moreover, in order to ensure the best coverage 
likelihood of the target population, we also included the predicted epitopes for the most prevalent 
Class I HLA antigens. Our results show that a peptide set specific for both neutralizing 
antibody/HLA Class II and for HLA Class I could provide a good population coverage upon 
simultaneous delivery, potentially achieving herd immunity (Fig 4C). Of note, one of the most 
promising epitope candidates designed by Custommune for two of the populations examined (i.e. 
epitope KLPDDFTGC for Southern China/Wuhan and Northern Italy) (Supplementary File 5 and 
Figure 4C) is equivalent to a highly immunogenic peptide previously identified by stimulating 
cells of patients who had successfully recovered from SARS infection54.  
Taken as a whole, these results show the application of Custommune to predict epitopes for 
specific populations and highlight a set of vaccine candidates to curb the spread of SARS-CoV-2 
in highly affected areas. 

 

Discussion 

The precision medicine era, albeit still in its early stages, is expected to supersede traditional, one-
size-fits-all therapeutic approaches. The development of personalized, yet scalable, treatments 
would allow accounting for the genetic variability of individuals, pathogens, or cancer profiles, 
and pave the way for more accurate efficacy predictions while reducing side effects. The 
implementation of our Custommune pipeline in the context of HIV/AIDS shows that the tool 
algorithm may be used to predict novel immune-based treatments with in-vivo potential. Even 
though the pipeline was applied to the HIV-1 Gag protein in the present work, it can potentially 
be extended to other HIV genomic regions or other chronic viral infections. Crucial pre-
requirements of the personalized Custommune approach are the identification of a key structural 
component of the target pathogen and the obtainment of sequencing data from both the host HLA 
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alleles and the infecting virus. While cost considerations might represent a limiting factor in some 
settings, the quick advances in sequencing technology, coupled to the steep reduction in price55, 
make the approach already feasible in developed countries. Moreover, a personalized intervention 
aimed at a cure could make the cost-benefit analysis attractive also in developing countries, which 
often bear the main burden of chronic viral infections56.  
In terms of potential efficacy, the Custommune approach relies on minimizing epitope diversity 
while maximizing predicted binding strength and immunogenicity of said epitopes. It is 
noteworthy that, when compared to a real clinical scenario, epitopes predicted by Custommune 
correlated with treatment response. This was likely aided by the large amount of immunologic data 
available on HIV-1 (e.g. Los Alamos HIV immunology site). Therefore, due to its low cost and 
scalability, Custommune could be immediately applied to the design of therapeutic HIV peptide 
vaccines57 or autologous dendritic cell vaccines pulsed with tailored Gag peptides. Compared to 
previous attempts at streamlining vaccine design in the context of cancer58, the Custommune 
pipeline includes multiple layers of epitope ranking with scoring parameters accounting for: 
mutational potential, structural conservation, HLA docking, escape mutations, location of the neo-
mutation and previous evidence of antigenicity. These partially redundant filtration stages are 
envisaged to maximize the chances for durable and potent epitope recognition. Moreover, other 
filters such as predicted epitope processing and cleavage have been included to the pipeline when 
this manuscript was in preparation, confirming the versatility of the Custommune approach.  
Our implementation of Custommune was here extended to include vaccine design for SARS-CoV-
2. Current predictions suggest that traditional vaccine strategies might be too slow to address the 
spread of the pandemic and mitigate the death toll59. Furthermore, immune responses developed 
during natural infection might be insufficient to provide long-term protection against reinfection60. 
The approach herein proposed is aimed at a flexible response customized for the populations most 
affected at a given time. As a novel pathogen will necessarily lack the wealth of immunologic data 
available for heavily studied viruses like HIV-1, our vaccine strategy attempts both induction of 
cell-mediated immunity and neutralizing antibodies. Indeed, early evidence indicates that a broad 
immune response might correlate with successful clearance of the infection61. Custommune 
predicted epitopes would further combine this broad immune stimulation with a design based on 
the most common HLA alleles in the population of interest, potentially providing enough immune 
coverage for the induction of herd immunity. Moreover, the choice of a highly conserved viral 
target as a source of vaccine epitopes should ensure a broadly effective response in those 
individuals for whom the vaccine should prove immunogenic. By utilizing Custommune, the 
whole vaccine design process should last less than a working day. Therefore, this approach, if 
successful, could be quickly adopted to blunt the pandemics during its spread or, ideally to pre-
empt it. 
The binding affinities predicted by Custommune for epitopes derived from RBDp and RBDg were 
generally higher for HLA Class I alleles in the populations here considered. While this is not 
sufficient to predict that cell mediated immunity would be preferentially induced by the proposed 
vaccine, previous evidence in mice suggests that memory CD8+  T-cells might alone be sufficient 
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to provide effective protection against SARS-CoV62. Corroborating this hypothesis, one of the 
peptides designed by Custommune was equivalent to an epitope associated with clearance of 
SARS-CoV infection during the previous epidemics and with immunogenicity in mice when used 
as a vaccine54.  
Our estimate of the probability to reach herd immunity in the populations considered is based on 
the assumption that the development of immune responses against each of the vaccine peptides 
would be per se sufficient to guarantee some level of protection. While this prerequisite might 
prove optimistic, it is noteworthy that the viral targets selected for vaccine design (i.e. RBDp and 
RBDg of the S-glycoprotein) display exceptional evolutionary conservation and that no 
polymorphism in these regions was detected in the viral isolates from either Italy, South Korea or 
China. This conservation, coupled with the generally moderate mutation rate of SARS-CoV63 and 
SARS-CoV-264 as compared to other RNA viruses, yields credibility to the idea of achieving 
protection by targeting single immunodominant epitopes62. Moreover, the expected population 
coverage of each of the vaccines designed in the present study is theoretically sufficient to achieve 
herd immunity based on the estimated reproductive number of SARS-CoV-234,65. 
In the current work, to simplify administration schedule and increase scalability, we envisage, 
among other possibilities, a strategy synthesizing one multi-epitope peptide for each target 
population. This peptide would link Class II HLA-restricted and neutralizing antibody epitopes as 
well as Class I HLA-restricted CD8+ T-cell epitopes. However, this approach will require 
empirical validation and could be modified, e.g. by administering HLA Class I and Class II 
restricted epitopes in separate formulations. While reduced immunogenicity is a well-known 
caveat of epitope-based vaccines, recent advances in adjuvant and delivery technology might allow 
overcoming this limitation66. Apart from classical adjuvants, the use of an “adjuvant” drug such as 
chloroquine, is of particular interest for SARS-CoV-2. This treatment option could enhance 
vaccine immunogenicity67,68 while possibly providing per se some protection against the virus69. 
In terms of delivery, carriers such as liposomes and nanoparticles, or strategies employing 
chemical conjugation or cell-penetrating peptides could increase epitope presentation by antigen 
presenting cells66,70. Finally, in our current model, we envisaged the use of linker sequences with 
protease cleavage sites between different epitopes71. This strategy might increase the chances of 
presenting peptides of optimal size to both HLA alleles of Class I and Class II. However, covalent 
linkage of epitopes has also been described to increase immunogenicity66. In-vivo studies will be 
required to optimize these strategies for inducing immunity against SARS-CoV-2. Due to the 
ongoing rapid expansion of the epidemics and the relatively good safety profile of peptide 
vaccines66, pilot clinical testing in significantly affected areas might be envisaged.   
Overall, our study describes a novel tool to improve multi-epitope vaccine design specificity while 
drastically reducing the associated time and cost. The pipeline herein described can be directly 
applied for testing personalized therapeutic vaccines for HIV-1 and to identify the core epitopes 
of preventive vaccines aimed at populations heavily affected by SARS-CoV-2.  
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Materials and Methods  

Custommune design and pipeline implementation: 

a) Web application 

The web application of Custommune is available at http://www.custommune.com. Written in 
Python (v3.7) using Django (v2.2.6) Custommune is a tool that provides an integrated pipeline 
(Figure 1) for prediction and filtration of personalized epitopes. 

b) Sequence processing 

The Biopython package72 is used for translating input sequences. Alignment of translated 
sequences is then performed using the Python client of Clustal Omega (REST) web service36. A 
consensus of the aligned sequences is generated using the Biopython module with a 50% similarity 
cutoff. The Biopython “ProteinAnalysis” function is used to estimate physicochemical parameters 
and secondary structure of the consensus sequence, including: molecular weight, gravity, specific 
count of amino acids, isoelectric point and fractions of secondary structures.  

c) Epitope prediction and filtration layers 

Custommune is connected with RESTful interface (IEDB-API)73 which serves as a platform for 
using NetMHCpan v4.035 for Class I and II HLA predictions as well as Bepipred v2.039 for 
antibody epitope predictions. The Pandas package (McKinney et al. 2010) is then used to structure 
epitope sorting tables and allow for comparative filtration. The primary filtration is based on IC50 
values, a cutoff of 1000 nM is used to prevent loss of potentially false negatives.  
The Los Alamos HIV database (http://www.hiv.lanl.gov/content/immunology) was used to create 
internal HLA class-specific datasets of previously reported immunogenic epitopes against HIV 
Gag. Using Pandas74, high-affinity epitopes are compared to these datasets to highlight epitopes 
with previously described immunogenicity. Moreover, another filtration layer is designed to report 
escape variants by comparing each epitope to an internal database collected from various literature 
sources including: dataset of HLA-associated polymorphisms in HIV-1 Gag as reported in Ref.75, 
as well as the datasets reported in Ref.76 and the datasets of CTL/CD8+ and T Helper/CD4+ epitope 
variants and escape mutations reported in the Los Alamos HIV database 
(http://www.hiv.lanl.gov/content/immunology/). Additional filtration is obtained by comparing 
the epitope location within the Gag sequence, to Gag regions essential for viral assembly and 
packaging, which tend to be structurally and evolutionarily conserved, as reported in Ref.29. To 
further refine this filtration, Custommune computes the degree of conservation for each epitope by 
comparing the epitope sequence to the HIV Sequence Compendium database77 which includes 680 
alignments of HIV-1/SIVcpz Gag protein sequences. The degree of conservation (Cscore) of each 
epitope is calculated as a fraction represented by the subset of sequences{𝑠}in which the epitope 
scored a local alignment of more than 80% using Clustal Omega36 over the total sequences 𝑆𝑡𝑜𝑡𝑎𝑙 
in the internal database. 
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𝐶𝑆𝑐𝑜𝑟𝑒 =
{𝑠}

𝑆𝑡𝑜𝑡𝑎𝑙 

The next layer of filtration selects only epitopes that rank high for multiple alleles in case a 
multiple-allele input was selected by the user for both HLA classes. For further assessment of the 
impact of predictable mutations, Custommune computes the effect of these mutations (retrieved 
from the internal Gag sequence database; Supplementary File 1) on the binding affinity of epitopes 
to the patient HLAs. This refined analysis is performed only on the top three ranking epitopes 
initially predicted by the tool. By computing affinities to the same allele the user can estimate the 
impact of mutations in this specific segment on the affinity to the restricted allele. The degree of 
deviation of the mutated version is estimated based on 𝑆𝐷𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑖𝑒𝑠, which are calculated as a 
standard deviation (SD) of the set of IC50 values for the candidate epitope and its mutant versions. 
The deviation value is therefore considered to negatively reflect the binding stability of this peptide 
segment to a restricted allele, in respect to a set of predicted mutant versions of the same segment.  

d) Structural validation and epitope reporting  

The Python package PeptideBuilder78 is used for generation of 3D models of top epitopes, while 
the package LightDock79,80 is implemented to perform epitope-HLA docking based on the 
Glowworm Swarm Optimization (GSO) algorithm81. Solved structures of HLA alleles were 
collected from the pHLA3D database82 and The Protein Data Bank (PDB)83. Homology modelling 
of structurally unsolved HLA alleles was generated using SWISSMODEL84. Distance-scaled, 
finite ideal-gas reference (DFIRE) function85 is used to calculate mean force potential of all atoms 
in a residue-specific manner within a resolution of less than 2 Å, which has been found to 
accurately predict stabilities of structural (HLA-epitope) complexes. DFIRE was implemented as 
a scoring function for LightDock simulations and docking scores were added in the final filtration 
layer for the highest ranking epitope candidates. 

e) Final scoring and annotation 

For highly ranking epitope candidates, a scoring function is designed to account for each filtration 
layer. In this function each continuous parameter (𝐼𝐶50, 𝐷𝐹𝐼𝑅𝐸, 𝐶𝑆𝑐𝑜𝑟𝑒	𝑎𝑛𝑑	𝑆𝐷𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑖𝑒𝑠) is 
represented by a quantitative value, according to the following rules: 1) the IC50 value is rescaled 
by calculating its reciprocal multiplied by a weighting factor of 104; 2) docking scores are preceded 
by a negative sign to weight the negative binding energies of the DFIRE scoring function of 
LightDock; 3) CScore is considered as a percentile of the Cscore fraction weighted by a factor of 
103; 4) SDaffinities are preceded by a negative sign to weight the positive values of deviation 
values. Categorical parameters (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒and	𝐷𝑂𝑣𝑒𝑟𝑙𝑎𝑝	) are represented by binary values 
weighted by a factor of 500 for favorable states while non favorable states are given null values.  
Overall the formula to calculate the final ranking (S) can be calculated as follows: 

 

S = 10000 * (IC50)-1 - DFIRE + EscapeM *500 + CScore *1000 + LocationScore * 500 -   
       SDaffinities + DOverlap *500 
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The top three epitopes ranked by S score are further analyzed based on their possible overlap    with 
epitope data sets previously associated with: post-ART control, efficacy in vaccine studies and the 
lack of reported escape mutations. Finally, predicted antibody epitopes estimated by Bepipred 2.039 
are reported if they overlap with the top candidate epitopes ranked by S score. To allow manual 
inspection of results, sequence processing data and unfiltered predictions are provided in a separate 
section of the results page with a downloading link for a text file. 

Multiple sequence alignment and analysis 

S-glycoprotein sequences were retrieved from NCBI 
(https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/) and GISAID86. Multiple alignments 
were performed using Clustal Omega web service36. Consensus sequences and sequence 
conservation scores and histograms were generated with Jalview (v. 2.11)87 according to the amino 
acid conservation scoring criteria described in51. 

Population-specific HLA allele frequencies 

Class I and II HLA allele frequencies were retrieved from the Allele Frequency Net Database 
(http://www.allelefrequencies.net/hla.asp)52 using the “HLA classical allele freq search” option. 
Population-specific datasets (shown in Supplementary File 4) were employed to identify the most 
represented HLA alleles in areas heavily affected by SARS-CoV-2 spread, namely Northern Italy, 
South Korea and China (Wuhan and Southern China). For all alleles analyzed, each data set 
provided values of frequency, which were determined as the number of copies of a given allele 
(X) divided by the total number of alleles in the population (of size N) assayed (i.e. frequency = 
X/2N). For each population of interest, only HLA alleles with frequency ≥ 0.1 in at least one 
dataset of the same population were considered for further analysis. When a given HLA allele was 
represented in more than one dataset of the same population, a weighted frequency was calculated. 
Specifically, given an allele of interest represented in n datasets with population sizes N1, N2...Nn, 
with a frequency of F1, F2...Fn, the weighted frequency (Fw) of the allele was calculated as:  
 

Fw = F1* [N1/(N1+ N2…+ Nn)] + F2* [N2/(N1+ N2…+ Nn)]...+ Fn* [Nn/(N1+N2…+Nn)].  
 
As the datasets employed included HLAs characterized at different resolutions, allele frequencies 
were considered separately in case a 2 or ≥4 digit resolution88 was available (Supplementary File 
4). Alleles at 4 digit resolution and ≥ 0.1 (weighted) frequency were used as direct input for 
Custommune. Alleles at 2 digit resolution and ≥ 0.1 (weighted) frequency were instead analyzed 
with Custommune by including all potential second field88 options currently supported by 
Custommune. 
 
Estimation of candidate SARS-CoV-2 vaccines population coverage 

Class I and Class II HLA alleles which were predicted by Custommune to bind RBDp and RBDg 
epitopes of SARS-CoV-2 were used to estimate potential vaccine coverage in the populations of 
interest. To this aim, only (weighted) frequencies of HLA alleles available at four digit resolution 
in the population of interest were included (Supplementary File 4). Moreover, among these alleles, 
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only those with high predicted binding affinity (IC50 < 600 nM) for an RBDp or RBDg epitope 
were included in the vaccine design (Supplementary File 5). To estimate the percentage of 
individuals (P) of a given population expected to carry an HLA allele, the (weighted) frequency of 
that allele (F) in the same population (Supplementary File 4) was used, according to the formula: 
 

P = F + F - (F*F).  
 
For heterodimers (e.g. HLA-DQA1 and DQB1) an overall frequency of the heterodimer was first 
calculated as: frequency of heterodimer 1 * frequency of heterodimer 2. This overall heterodimer 
frequency was then used to calculate P as described above. 
Given a vaccine of N epitopes recognized by HLA alleles carried respectively by a percentage of 
individuals of the target population P1, P2...PN, the maximum theoretical population coverage (M) 
of the vaccine was calculated as:  
 

M = {1- [(1-P1) * (1-P2)…* (1-PN)]} * 100.  
 

HLA alleles of the population that were predicted to recognize more than one epitope of the 
vaccine were considered only once in the calculation of M. 
 
Clinical data 

HIV-1 viral loads of individuals enrolled in trial NCT02961829 were measured by q-PCR as 
described in89. 

Statistical analysis 

Clinical data were analyzed by unpaired t-test using Graphpad Prism (v. 6 GraphPad Software, 
La Jolla California USA). 
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Figure Captions:  

Figure 1. Illustrated workflow of Custommune epitope prediction pipeline. (Input) the Custommune 
pipeline starts by validating user inputs for sequences, alleles and desired epitope length. (Sequence 
analysis) input sequences are then translated to build an alignment of amino acid sequences from which a 
consensus sequence is generated and used for further epitope prediction. (First epitope assessment) using 
the netMHCpan 4.0 algorithm35, Custommune initially ranks epitope predictions based on their IC50 values. 
(Epitope scoring) additional scoring layers are then applied by Custommune based on: location of the 
epitope (by assigning a LocationScore to epitopes located in an evolutionary conserved region); 
evolutionary conservation of the epitope residues (C-Score) assessed by using an internal sequence database 
(Supplementary File 1) or the Basic Local Alignment Search Tool (BLAST; 
https://blast.ncbi.nlm.nih.gov/Blast.cgi); presence of reported escape mutations; overlap with previously 
reported immunogenic epitopes (D-Overlap) retrieved using an internal database. (Multiple HLA affinity) 
following these filtration layers, Custommune identifies whether any predicted epitope displays high-
affinity to multiple HLA alleles and (Final epitope filtration) discards any epitopes that have reported 
escape mutations and/or are not located in an evolutionary conserved region. (Affinity robustness) among 
remaining candidates, Custommune restricts further analyses on the three top scoring epitopes for both 
HLA classes. For these, Custommune computes the HLA binding affinities of potential mutant versions, 
though not classified as escape mutations, to estimate the impact of these mutations on epitope recognition 
(SDaffinities). (HLA-epitope docking) on the same three top ranking epitopes, Custommune computes 
epitope-HLA allele docking scores, calculated using the LightDock79 python package and scored using the 
DFIRE85 scoring function. (Final output and annotation) in a parallel process, the Bepipred 2.039 algorithm 
is implemented to predict neutralizing antibody epitopes from the initial consensus sequence, that can be 
further intersected with Class II restricted epitopes to increase immunogenicity. As a final output, for both 
Class I and II HLAs, Custommune ranks the top 3 epitopes according to a score (CustoScore) which 
accounts for all aforementioned filtration parameters. 
 
Figure 2. Potential therapeutic efficacy of Custommune-predicted vaccine candidates. (A) Percentage 
of personalized peptides predicted by Custommune which overlap with those administered as vaccines to 
people living with HIV/AIDS (PLWHA) in clinical trial NCT02961829. Each letter indicates a trial 
participant. (B) Percentage of overlap between epitopes predicted by Custommune and epitopes 
administered in the trial in virologic responders and non responders. Virologic responders were defined as 
individuals with ∆ viral load set point ≥ 1 Log10 copies of HIV-1 RNA/mL of plasma. Data were analyzed 
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by two-tailed Student t-test. Panel C) ∆ viral load set point in trial participants who received peptides with 
high or low overlap to Custommune predictions (≥ 50%  or < 50% overlap, respectively). 
The ∆ viral load set point was calculated as the difference between pre- and post-therapy viral load set 
points, with post-therapy viral load set point calculated as the median of all available measurements (up to 
9 weeks post-treatment interruption). Each data point in panels B and C indicates a trial participant. 

Figure 3. Identification of vaccine targets in the receptor binding domain (RBD) of the SARS-CoV-2 
Spike (S) glycoprotein. (A) Partial sequence of the SARS-CoV-2 S-glycoprotein (derived from structure 
QHD4341690). Residues constituting the protein-protein interaction surface of the S-glycoprotein (magenta) 
with ACE2 are shown in different gradations of blue. Residues responsible for binding of the S-glycoprotein 
only in the presence of unbound catalytic site of ACE2 are shown in dark blue.  The residues underlined 
correspond to the receptor binding domain 1 (RBDp), as described in the main text. (B) Interaction of 
SARS-CoV-2 S-glycoprotein (magenta) with superimposed structures of unbound ACE2 (yellow) or ACE-
2 bound to the competitive inhibitor MLN-4760 (green). The specific segment in the receptor binding 
domain (RBD) of the S-glycoprotein that was found to overlap with both configurations of ACE2, i.e. 
unbound catalytic domain or catalytic domain bound with inhibitor MLN-4760, is shown in cyan. Residues 
binding only to unbound ACE-2 are shown in dark blue. (C) Proximity of N-acetyl-D-glucosamine (NAG) 
(shown in CPK) to the interaction interface between the spike glycoprotein and ACE2. Asn90-bound NAG 
in ACE2 was found to interact with Lys26 of ACE2 and Gly416 and Lys417 of the S-glycoprotein. 
 
Figure 4. Population-targeted vaccine design against the RBDp and RBDg regions of SARS-CoV-2. 
(A) Evolutionary conservation of RBDp and RBDg regions of the S-glycoprotein of SARS-CoV-2. 
Consensus sequence and evolutionary conservation were calculated based on the multiple sequence 
alignments in Supplementary Files 2 and 3 using Jalview87. The conservation score is based on51. (B) 
Example of epitope-HLA docking pose generated using LightDock79. The Custommune-predicted epitope 
"KIADYNYKL" (magenta) is shown restricted by the HLA class I histocompatibility antigen A-2 α-chain 
(HLA-A*02:01, green), which is highly expressed in Northern Italy (Supplementary File 4). Also shown is 
the invariant β2-microglobulin (cyan). The docking pose was scored using the DFIRE function85 as listed 
in Supplementary file 5. (C) Custommune vaccine predictions and expected coverage for each target 
population. Predicted epitopes were selected from those on which docking was performed (Supplementary 
File 5). Maximum expected population coverage was calculated based on allele frequencies in each 
population (listed in Supplementary File 4) according to the formula described in the “Materials and 
Methods” section. Linker regions between vaccine peptides are an example of a vaccine strategy based on 
a single, multi-epitope, formulation.  
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