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Abstract 
Substantial amount of data about the COVID-19 pandemic is generated every day. Yet, data 20 
streaming, while considerably visualized, is not accompanied with advanced modelling 
techniques to provide real-time insights. This study introduces a unified platform which 
integrates visualization capabilities with advanced statistical methods for predicting the virus 
spread in the short run, using real-time data. The platform is backed up by advanced time series 
models to capture any possible non-linearity in the data which is enhanced by the capability of 25 
measuring the expected impact of preventive interventions such as social distancing and 
lockdowns. The platform enables lay users, and experts, to examine the data and develop several 
customized models with different restriction such as models developed for specific time window 
of the data. Our policy assessment of the case of Australia, shows that social distancing and 
travel ban restriction significantly affect the reduction of number of cases, as an effective policy. 30 
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Introduction 
The outbreak of coronavirus disease 2019 (COVID-19), caused by acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), has been recognized as a pandemic by World Health Organization 
representing the most serious public health threat during the last century [1]. The global impact 
of COVID-19 has been profound. As of 12 April 2020, more than 1.87 million cases of COVID-5 
19 have been reported in over 200 countries, resulting in 118,851 deaths as reported by the 
European Centre for Disease Prevention and Control (ECDC) [2].  
 
Forecasting the imminent spread of COVID-19 informs policymaking and enables an evidence-
based allocation of medical resources, arrangement of production activities and economic 10 
development [3]. Therefore, it is urgent to establish efficient trend prediction models, on the 
latest available data, to provide a point of reference for the governments to formulate adaptive 
responses based on reliable predictions on the impending progress of the pandemic.    
  
The classical Susceptible-[Exposed]-Infected-Recovered (SEIR/SIR) epidemic models [4] , have 15 
been widely developed to simulate the transmission dynamics of COVID�19 [5, 6] and the 
impact of non-therapeutic interventions -e.g., travel and border restrictions [7, 8], quarantines 
and isolations [5, 9-11], or social distancing and closure of facilities- on the spread of the 
outbreak, and in some cases, on the healthcare demand [5, 9, 11-13].These studies have been 
mostly focused on calibrating models for a specific country/region based on the data at the time 20 
of the model-development and assuming a multitude of parameters initialized upon prior 
knowledge such as social contact structure, rate of compliance with the policy and incubation or 
infection period among others. Complementing upon SEIR mathematical models, and owing to 
the increased amount of data and consistency of reports, some recent efforts have been focused 
on developing statistical [3, 14] or machine learning methods [15] to predict the near-future 25 
spread of COVID-19 (in terms of the number of confirmed cases or deaths) based on the 
historical data. 
  
While reliable predictions of the pandemic trend are essential for policymaking and resource-
allocation, there is a lack of an adaptive real-time modelling platform which evolves as new data 30 
arrives. In response to this urgent need, we present an advanced time-series models for the 
progression of COVID-19 using the Autoregressive Integrated Moving Average (ARIMA) 
formulation [16] statistical analyses combined with several non-linear transformation approaches 
[17], and complemented with an interactive online dashboard which efficiently generates 
country-wise predictive models, in real-time, based on the latest ECDC report of COVID-19 35 
cases worldwide.  
 
The proposed modelling approach neither relies on strict modelling assumptions (e.g., linearity, 
stationarity, or existence of an epidemic steady state) nor on any initial parameters requiring a 
priori knowledge. It offers a transparent mathematical function to better understand the trend and 40 
to predict future points in the series. Different types of transformation have been examined to 
capture the nonlinearity in the time-series data followed by multiple differencing steps to 
eliminate the non-stationarity status. Notably, we enhanced the time-series model to capture the 
effect of previous interventions using an exogenous variable which can be used to predict the 
impact of future interventions. Further, when no record of intervention is provided, the model 45 
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can infer previous interventions from data and incorporate its estimated impact into future 
predictions. 
 
The main objective of this study is to introduce an easy-to-use and readily available statistical 
tool to develop rigor models for time series data of COVID-19 as data becomes available on a 5 
real time basis. In this article it is demonstrated that the proposed modelling tool is reliable to 
estimate accurate model parameters and is capable of being used for policy assessment. The tool 
is perfectly tailored for modelling COVID-19 data which an option of assessing the performance 
of any interventions to control the spread, such as lockdown, social distancing rules, and airport 
restrictions. 10 

Model Development and Performance  
Multiple transformation operations are investigated to stabilise variance, coupled with recursive 
differencing until eliminating non-stationarity in the time-series data, i.e., p-value < 0.05 based 
on augmented Dickey–Fuller test [16]. Upon each transformation, the best ARIMA model is 
obtained for each country, according to Akaike information criterion (AIC) value using 15 

maximum likelihood estimation. The optimal model for each transformation is then recorded 
based on the overall model Root Mean Square Error (RMSE) on the last 20% of observations 
reported as a surrogate estimate of out-sample prediction performance. The predictive power of 
the best model per country is compared against estimations provided through 1) exponential 
growth in number of cases, 2) doubling time of two days, 3) doubling time of 3 days and 4) 20 

doubling time of one week, as well as a conventional linear univariate regression on log-
transformed data. Table 1 shows the parameters of the optimal ARIMA model per country and 
the corresponding RMSE measures (of the last 20% of observations) compared with 
conventional trends (based on ECDC data on April 13, 2020). While, the purpose of this study is 
not to develop the most accurate time-series predictive model, statistics of Table 1 clearly show 25 

that using a more sophisticated statistical model significantly improves the prediction accuracy 
of COVID-19 spread in the near future (t-test p-value << 0.001 comparing residuals’ 
distributions), which signifies the urgency of such studies for policy appraisal. In other words, 
having access to tools, such as the one introduced in this study, enables experts with limited 
knowledge about details of statistical specifications to readily use such specifications to nowcast 30 

and forecast the effectiveness of policies they envision and propose for controlling the spread of 
COVID-19, or similar outbreaks. 
 
 

Effect of Transformation  35 
Different time-series transformation operations, namely power transformation, logarithmic 
transformation and ratio transformation, have been applied to pre-process the data prior to the 
differencing step. We have observed that the type of transformation can significantly improve the 
performance of a model (in terms of the estimated out-sample RSME) as there is no a priori 
knowledge about the best-performing transformation (except that power transformation always 40 
performs poorly). Figure 1A shows some countries, as case studies, whose ARIMA models (as 
of April 13, 2020) are significantly affected by the type of transformation. As Figure 1A shows 
some countries such as Canada has significantly better performance (t-test p-value < 0.05) 
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without any transformation. Italy’s model performs better (p-value < 0.06) by using ratio or 
logarithmic transformations and for USA, transformations do not significantly affect the 
performance (p-value > 0.6 for all comparisons). The case Greece, quite interestingly, shows that 
the ratio transformation stands above the other two while there is no statistically significant 
evidence that the logarithmic transportation performs any better than the no transformation case. 5 
Overall, the results signify the value of a performance-driven transformation selection approach 
upon trying multiple operations, as implemented in this platform. 
 
Dynamic Model Estimation  
The nonlinear dynamic system underlying COVID-19 spread is producing a regularly disrupted 10 
pattern making static predictions increasingly unreliable. Accordingly, a powerful feature of the 
platform is dynamic model estimation, that is, all models are re-optimised temporally with 
availability of new daily observations. Accordingly, the latest reports on COVID-19 case 
numbers are reflected in model estimation which accounts for the impact of new interventions 
improving the reliability of the future forecasts. As a case study, we have chosen to show the 15 
value of this feature on prediction of future case numbers in Iran. Iran’s trend shows significant 
fluctuations in the last 10 days (as of April 13, 2020) offering an interesting case study. We 
assumed that the model has access to data up to April 03, and then reported the next 10 days 
predictions and the RMSE of predicted number on April 13th. This procedure was repeated 10 
times, where new observations became available to the model, one at the time. Figure 3 shows 20 
how such dynamic re-estimation adjusts the model with emerging pattern in time-series trend 
and improves prediction accuracy.      
 
Intervention Detection  
The modelling platform developed in this study can identify unreported interventions to adjust 25 
the estimated models based on any exogenous fluctuations in the data. In other words, assume 
that some fluctuations occurred in the time-series (for instance, due to quarantines, changes in 
the reporting or testing methods, or facility closures), for which are reliable reported information 
is not available. These fluctuations can be inferred by using the platform to add the inferred 
interventions as an external regressor to the model to correct the bias in the parameter estimation 30 
which will be used later for prediction purposes.  
 
The procedure for detecting intervention is to iteratively add interventions on potential dates, re-
estimating the model and monitoring changes in the specification of the ARIMA model. As soon 
as major changes are observed in the model structure, i.e., values of (p, i, q), such alterations can 35 
be interpreted as an intervention in the data and the identified days would be associated with the 
dates of inferred interventions. The external regressor, corresponding to the interventions, is 
basically a binary variable which, for each day, is 0 (default) indicating no intervention and 1, 
otherwise. The coefficient and the significance of the intervention variable reflect the average 
impact of the recorded interventions. The online platform, as it is further discussed in the next 40 
subsection, enables users to incorporate the effect of known interventions into model 
specifications, and to detect unknown potential interventions which can capture observed 
fluctuations in the disease spread time-series.   
 
The proposed intervention modelling approach is examined on the data provided for China as 45 
reported dates of interventions are officially available. To examine the effectiveness of the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.24.20078923doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20078923


 

5 
 

proposed intervention detection procedure, three models are developed, on the number of cases 
reported from the end of December to the 20th of February, with 1) no intervention, 2) reported 
interventions, and 3) inferred interventions. The model with no interventions returns the RMSE 
of 6.52, the one with reported interventions returns the RMSE of 6.53 and the one with the 
inferred interventions returns the RMSE of 6.40.  In the reported intervention model, three days 5 
are obtained from the available information online about major interventions in China happening 
on 23th , 24th, and 27th of January 2020, while the inference approach identified the following 
intervention days as 20th ,24th ,26th ,29th ,30th of January 2020, which are generally lagged 
compared to the reported ones, possibly because the impact of these quarantine decisions are 
reflected in the system with a delay. The proposed intervention inference approach, that 10 
automates identification of the interventions, finds a statistically significance coefficient for the 
average impact of the inferred interventions and can successfully improve the goodness-of-fit of 
the model. 
   
The estimated coefficient of -0.04 (which is statistically significant  at the 80% confidence level 15 
unlike the parameter of the model with reported interventions in the inferred intervention model 
has a major impact on reduction of number of cases (almost no increase) if used to predict the 
number of cases to the stable situation of China. Therefore, we performed some sensitivity 
analysis on the impact of this variable on the prediction results which are presented in Figure 2. 
The left graph shows the impact of an intervention applied on different days in the next 10 days 20 
where the intervention parameter is set to -0.005 and the right graphs shows the situation that a 
coefficient of -0.01 is considered. The main take away message of the diagrams of Figure 2 is 
that it is better to apply the interventions as early as possible even if the impact of the 
intervention is as small as the one considered in the right graph. Further, stronger interventions, 
not only have a larger immediate impact, but they result in a more stable long-term impact as 25 
shown in Figure 2.  
 

Assessing the Effectiveness of Containment Policies (in Australia) 
To further assess the effectiveness of policies using the proposed platform, we have looked at the 
response of the Australian government to COVID-19, given the access of the authors to detail 30 
information on timeline of interventions by the Australian government. The first case in 
Australia was confirmed on January 25th by a passenger travelling from Wuhan which was 
followed by a travel ban from mainland China on February 1st. Other travel bans were followed 
by, Iran arrival blocking on March 1st, south Korea on March 5th, Italy on March 11th, self-
isolation for overseas travelers and cruise ships blocked on the 15th of March, border closure on 35 
March 19th, ban of travelling overseas on 24th, and mandatory isolation in hotels for travelers on 
28th [18]. Upon including travel bans in the model (data from 5th March to 20th of April), the 
estimated coefficient of the intervention variable would be -53.89 (with standard error, SE = 
26.94) implying that on average the travel bans could reduce the number of infected people by 
53 cases. The model predictive power would be significantly improved in terms of the goodness 40 
of fit of the model (RMSE = 8.88, significant compared to ‘no intervention’ residuals). Other 
than the coefficient of the travel ban intervention, an ARIMA (1, 1, 2) is estimated reflecting the 
importance of incorporating the observation of three days before into prediction, which also 
requires one differencing to make the data stationary reflecting the non-linearity of time-series 
data. The first order of integration (i=3 in the ARIMA model) also implies that the slope of the 45 
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number daily cases is critical in the model, not just the accumulated total number of reported 
cases. 
  
Another type of intervention practiced in Australia has been restrictions on gathering in public 
places. Australia imposed restrictions on outdoor gathering of people to less than 500 on the 16th 5 
of March, indoor gathering to less than 100 individuals on 18th of March, Pubs clubs closed, 
restaurants take-away only on 23rd of March, and all gathering limited to 2 persons on 30th of 
March [18]. By considering these interventions except for the 23rd which over laps with a major 
spike in the data, the parameter of intervention variable is estimated as -16.24 (SE = 38.46) 
imply that the gathering bans in Australia reduced the number of cases by -16 cases per day, 10 
while the coefficient is not significant. The corresponding ARIMA models is (3,3,0), with RMSE 
10.31 (not significant compared to ‘no intervention’ residuals).    
 
Once all restrictions are included in one model to examine the effect of interventions in one 
model with the aim of finding the best fit to the data (on 6th, 12th, 15th, 16th, 19th, 24th , and 28th of 15 
March and 3st  of April) an ARIMA (1,1,2) model is obtained with RMSE of 8.68, where the 
coefficient of intervention variable is -45.4 (SE=21.86, p-value = 0.03) and the model is only 
marginally improved to the first model. In other words, the intervention strategies of the 
government of Australia could result in a reduction of 45 cases per day during March and early-
to-mid April 2020. As a result, by considering the first model and the last model which is 20 
developed to find the best fit to the data we can say that the preventive strategies helped reducing 
the number pf infected cases in Australia by 45-53 cases.  
 
 
Online Dashboard   25 
We have developed an interactive online dashboard (https://unsw-data-
analytics.shinyapps.io/covid19_analytics) to facilitate real-time model development for lay users 
as well as data scientists. Users can select the country of interest from the left panel and observe 
an interactive visualisation on cumulative counts of confirmed cases in the middle panel. Upon 
pressing the ‘Predict’ button’, the platform provides users with optimal models fitted to the latest 30 
reports of COVID-19 spared as provided by ECDC. For any country of interest, the interactive 
user-interface enables users to re-estimate models by 1) adding observed interventions in 
previous days, 2) customising the range of days to be included in the model and 3) incorporating 
the effect of future interventions in predictions. The right panel visualises the cumulative number 
of confirmed cases since the 1000th case of top 10 countries in terms of total number of cases, 35 
plus predictions of growth trajectories in the next 10 days. Similarly, the middle-button panel 
shows the world map color-coded with predicted number of cases per 100K, together providing a 
global comparative view of the forthcoming COVID-19 spread. 

Discussion and Conclusion  
Real-time COVID-19 data analytics have been mainly focused on visualizing the spread [19] 40 
with limited effort in developing models to dynamically analyze the data. Epidemiological 
models, i.e., SIR/SIER models, have a strong foundation in analyzing epidemic growth/decline, 
and have been substantially explored for modelling the speed of infectious disease progression. 
Yet, such models are often offline/static, require assumptions for the parametric formulation of 
the model and rely on multitude of initial parameters.  45 
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We developed a time-series based statistical model to dynamically predict the future trend of 
COVD-19 spread. It is built upon the strength of SIR/SIER models in considering the speed of 
progression and coupled with the capacity of time-series models in 1) considering higher orders 
of  derivatives of the number of cases in previous time intervals, 2) accounting for the impact of 
residuals of the previous time intervals, and 3) incorporating intervention effect as external 5 
variables. We presented an automated modelling platform that delves into multiple layers of 
information in the COVID-19 time series data to find the best fit with the aim of providing 
robust forecasts. The platform—unlike numerous counterparts that are primarily limited to 
disseminating the existing patterns—measures the average impact of previous interventions to 
reduce the growth of the infected cases. This measure is then used for predicting the future 10 
spread when similar interventions are considered to further control the outbreak. 
 
The presented platform was shown to be effective in estimating the trend of outbreak for each 
country. We elaborated the importance of data transformation as a preprocessing step and shown 
that there is no transformation operation which consistently provides the best fit to the data. 15 
Hence, exploring multiple options are recommended to stabilize variations prior to modelling 
using conventional econometrics formulations. A unique aspect of the presented platform is that 
it facilitates real-time model development incorporating latest reported data into modelling. We 
have shown that such adaptive model estimation significantly improves the prediction power and 
therefor, forecasting reliability.    20 
 
One major challenge ahead of governments and policymakers, is the uncertainty around the 
effectiveness of containment policies in controlling the outbreak. Yet, authorities can observe the 
effectiveness of what they have done in the past few days, weeks, and months and learn from the 
impact of their previous decisions to enhance their intelligence in proposing new mechanisms to 25 
control the outbreak. We have shown that examining the effect of controlling policies can inform 
policymakers on number and types of controlling policies required to achieve their objective in 
reducing the number of infected cases. We have shown for Australia, as a case study, that 
containment policies not only decline the number of infected cases right after implementation, 
but also reduce the slope of progression. The latter is a more outstanding factor, especially when 30 
such policies are coupled with economic related policies given the recession or depression that is 
expected to happen during or after the COVID-19 pandemic. Overall, given the unknown nature 
of SARS-CoV-2 spread, we need to relax the boundaries of potential methods, beyond classical 
epidemic models, to further explore the behavior of data to account for unknown aspects the 
virus spread.  35 
 
 
 
 
 40 
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available date was April 03 2020 to April 11 2020 (last obsereved date at the time of analysis: April 13). B. RMSE 
comparing predictions with obsereved data at April 13.
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Country Transform
ation 

Model 
ARIMA(p, i, q) Parameters (SE) ARIMA Linear Regression Doubled in 2 days Doubled in 3 days Doubled in 7days 

Australia Ratio  ARIMA(1,2,2) 
AR1: -0.512 (0.18), MA1: -
1.312 (0.19), MA2: 0.396 (0.2) 50.76 5830.71 (1.55E-03) 365042.98 (1.55E-03) 2728.15 (1.55E-03) 6043.16 (1.55E-03) 

Austria Without  ARIMA(4,5,0) 
AR1: -0.393 (0.15), AR2: -
0.118 (0.16), AR3: 0.082 
(0.16), AR4: 0.402 (0.14) 

86.4 11429.25 (5.83E-04) 128626.51 (5.83E-04) 10665.14 (5.83E-04) 12916.79 (5.83E-04) 

Canada Without  ARIMA(0,4,1) MA1: -0.48 (0.13) 133.38 11180.07 (5.83E-04) 122299.91 (5.83E-04) 17162.77 (5.83E-04) 19510.36 (5.83E-04) 

China Ratio  ARIMA(0,1,1) MA1: -0.726 (0.07) 20.64 280692.59 (5.96E-11) 
2.51759E+14 (5.96E-
11) 3157347232 (5.96E-11) 74300.1 (5.96E-11) 

France Ratio  ARIMA(0,1,2)  
MA1: -1.328 (0.18), MA2: 
0.441 (0.19), INTERCEPT: -
0.009 (0) 

1329.8 97137.98 (1.75E-04) 1907006.52 (1.75E-04) 70032.2 (1.75E-04) 82691.58 (1.75E-04) 

Germany Without  ARIMA(0,4,1) MA1: -0.378 (0.18) 960.29 152545.37 (4.11E-05) 1886859.27 (4.11E-05) 95897.65 (4.11E-05) 108521.16 (4.11E-05) 

Greece Logaritmic  ARIMA(0,2,1) MA1: -0.562 (0.2) 20.89 642.31 (5.83E-04) 97052.71 (5.83E-04) 701.73 (5.83E-04) 1872.59 (5.83E-04) 

Iceland Without  ARIMA(0,4,1) MA1: -0.598 (0.11) 8.28 647.89 (5.83E-04) 97321.26 (1.75E-02) 779.17 (1.75E-02) 1585.79 (5.83E-04) 

Iran Without  ARIMA(0,4,2) MA1: -0.909 (0.14), MA2: 
0.354 (0.14) 250.61 52502.63 (4.11E-05) 5536118.99 (4.11E-05) 38379.54 (4.11E-05) 62048.14 (4.11E-05) 

Iraq Ratio  ARIMA(1,1,1) 
AR1: -0.533 (0.15), MA1: -0.77 
(0.13) 73.44 187.33 (2.16E-03) 36466.36 (2.16E-03) 343.45 (2.16E-03) 1168.51 (2.16E-03) 

Italy Logaritmic  ARIMA(0,2,3) 
MA1: -0.812 (0.12), MA2: -
0.194 (0.17), MA3: 0.62 (0.12) 432.34 158551.98 (1.08E-05) 

10499769.78 (1.08E-
05) 98692.2 (1.08E-05) 134369.1 (1.08E-05) 

Japan Ratio  ARIMA(4,0,0)  

AR1: 0.507 (0.13), AR2: -
0.455 (0.14), AR3: 0.491 
(0.14), AR4: -0.416 (0.14), 
INTERCEPT: 1.09 (0.01) 

431.49 371.84 (2.84E-06) 114429661.6 (2.84E-
06) 201685.67 (2.84E-06) 3964.28 (2.84E-06) 

Norway Without  ARIMA(0,4,1) MA1: -0.566 (0.13) 51.71 25.86 4303.38 (1.55E-04) 365023.96 (1.55E-04) 2666.24 (1.55E-04) 

Singapore Ratio  ARIMA(0,1,1) MA1: -0.749 (0.11) 155.26 264.49 (7.40E-07) 309923455 (7.40E-07) 392790.3 (7.40E-07) 1263.96 (7.40E-07) 

South 
Korea Ratio  ARIMA(3,1,0)  

AR1: 0.164 (0.13), AR2: -
0.358 (0.14), AR3: -0.578 
(0.15), INTERCEPT: -0.013 
(0.01) 

29.79 6466.12 (2.17E-05) 29989620.31 (2.17E-
05) 

76833.4 (2.17E-05) 10214.61 (2.17E-05) 

Spain Ratio  ARIMA(0,1,3) 
MA1: -0.65 (0.14), MA2: -
0.256 (0.16), MA3: 0.362 
(0.16) 

763.79 200633.37 (3.11E-04) 927627.11 (3.11E-04) 135512.96 (3.11E-04) 144107.03 (3.11E-04) 

Sweden Ratio  ARIMA(0,1,0)   157.69 2516.42 (1.17E-03) 189750.17 (1.17E-03) 5588.52 (1.17E-03) 8497.51 (1.17E-03) 

Switzerland Without  ARIMA(1,4,0) AR1: -0.485 (0.14) 223 23676.88 (1.55E-04) 350861.71 (1.55E-04) 18990.29 (1.55E-04) 23163.8 (1.55E-04) 

UK Ratio  ARIMA(0,1,1) MA1: -0.667 (0.15) 2222.5 35552.09 (1.55E-04) 317174.36 (1.55E-04) 55564.92 (1.55E-04) 60024.61 (1.55E-04) 

USA Without  ARIMA(1,5,3) 
AR1: 0.914 (0.08), MA1: -
1.398 (0.25), MA2: 0.275 
(0.22), MA3: 0.363 (0.15) 

3525.5 471365.84 (4.11E-05) 5231573.73 (4.11E-05) 384278.2 (4.11E-05) 410846 (2.88E-04) 

 

RMSE (p-value vs ARIMA) 

Abbreviations: ARIMA: Auto Regressive Integrated Moving Average, SE: Standard Error, RMSE: Root Mean Square Error, AR: Autoregression coefficients, MA: Moving 
average coefficients, (p, i, q): p the order, i.e., number of time lags, i the degree of differencing, and q is the order of the moving-average model 

Table 1: Model specifications and performance. Only countries with 
more than 35 days after the observation of the 50th case are included.  
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