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Abstract

We study the dynamics of epidemics in a networked metapopulation model. In each subpopulation, rep-
resenting a locality, the disease propagates according to a modified susceptible-exposed-infected-recovered
(SEIR) dynamics. In the modified SEIR dynamics, individuals reduce their number of contacts as a func-
tion of the weighted sum of cumulative number of cases within the locality and in neighboring localities.
We consider a scenario with two localities where disease originates in one locality and is exported to the
neighboring locality via travel of exposed (latently infected) individuals. We establish a lower bound on the
outbreak size at the origin as a function of the speed of spread. Using the lower bound on the outbreak
size at the origin, we establish an upper bound on the outbreak size at the importing locality as a function
of the speed of spread and the level of preparedness for the low mobility regime. We evaluate the critical
levels of preparedness that stop the disease from spreading at the importing locality. Finally, we show how
the benefit of preparedness diminishes under high mobility rates. Our results highlight the importance of
preparedness at localities where cases are beginning to rise such that localities can help stop local outbreaks
when they respond to the severity of outbreaks in neighboring localities.
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1. Introduction

Early detection of disease outbreaks at their loca-
tion of origin provide a chance for local containment
and time to prepare in other locations. Such prepa-
ration may enable locations connected to the origin
to become more aware of the outbreak and develop
a stronger response to the disease especially when it
is not contained. The success of containment strate-
gies is highly dependent on the ability of prompt-
ly detecting most infectious individuals in a given
location. The recent outbreak of the COVID-19
virus has shown that successful containment e↵orts
are highly challenging when many latently infect-
ed and asymptomatic but infectious individuals can
travel undetected between locations [1, 2, 3, 4].
In the ongoing COVID-19 outbreak, localities in

the US are continuing to see alarming surges in the
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number of cases and hospitalized individuals at dif-
ferent times, driven in part by di↵erences in intro-
duction and lift-o↵ of the epidemic in local com-
munities [5, 6]. Reducing mobility between local-
ities can delay the overall epidemic progression.
However, prior research suggests that the final out-
break size is not strongly a↵ected by travel restric-
tions unless combined with a strong reduction in
transmission within the locality [2, 7, 8, 9]. In
the US, local authorities have implemented non-
pharmaceutical interventions, e.g., declaring emer-
gency or issuing stay at home orders, at di↵erent
times. Community response to these interventions
di↵er across localities [10, 11, 12, 13, 14, 15, 16].
Hence, there is growing concern that mismatched
timing of response e↵orts could lead to a failure of
containment [17].

Here we develop a simplified model to assess the
combined e↵ects of mobility, local response to dis-
ease prevalence, and the level of alertness prior
to disease surge in a locality. To do so, we con-
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sider a networked-metapopulation model [18, 19,
20, 21, 22]. Prior metapopulation models have
focused on the heterogeneity of the populations [21],
hierarchical connectivity structures among popula-
tions [18], and local responses of populations [22].
These models are fitted to various childhood dis-
eases [18], e.g., measles, pertussis, as well as, the
common cold [22] and SARS [23]. More recently,
the e↵ects of local lockdowns on the COVID-19 out-
break have been investigated using metapopulation
models [15, 10]. Here, we assume the disease pro-
gresses according to susceptible-exposed-infected-
recovered (SEIR) dynamics within each population
or locality (similar to [24]). Within each population
susceptible individuals can become exposed via con-
tact with infected individuals in the same locality.
SEIR models are a standard approach to model epi-
demiological dynamics including pandemic influen-
za [25] and COVID-19 [26, 27].
In the present context, we extend SEIR mod-

els to include the e↵ects of behavior changes on
local disease progression. We assume individuals
change their behavior and reduce their contacts
proportional to disease prevalence, i.e., the ratio of
infected and recovered [28, 29]. In addition, behav-
ior in a locality can be influenced by the disease
prevalence in neighboring localities. That is, we
introduce awareness-driven social distancing mod-
els that account for interaction between localities
not just in terms of the flow of individuals, but
also in terms of the flow of information that leads
to raised awareness (social distancing and prepa-
ration). While prior works considered local social
distancing e↵orts determined by local disease preva-
lence [22, 15, 10], we include a mechanistic mod-
el of the influence of the outbreak sizes at neigh-
boring localities. Our aim is to quantify the com-
bined e↵ects of inter-locality mobility, and behav-
ior changes in response to local and external disease
prevalence. As we show, behavior changes driven by
the awareness of outbreaks in neighboring localities
can reduce the spread of a newly imported disease
in connected populations.

2. Methods

We consider a networked metapopulation model
of epidemic dynamics. At each population, the dis-
ease propagates according to SEIR dynamics given
a homogeneous population. In addition, we assume
there is constant travel in and out of each popula-
tion. The flow of travelers constitute only healthy

(susceptible) individuals, and those that are latent-
ly infected (exposed). The dynamics at locality i
are given as follows:
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İi = µEi � �Ii (3)

Ṙi = �Ii, (4)

where �i is the transmission rate at location i,
�ij is the flow of individuals from location i to
neighboring location j, µ denotes transition rate
from exposed (pre-symptomatic) to infected (symp-
tomatic), and � is the recovery rate. We denote
the neighboring localities of i with Ni. We assume
total flow in and out of a location are equal, i.e.,
�ij = �ji. The total mobility flow from i to j
include susceptible and exposed individuals propor-
tional to their size in the population. We assume
infected individuals are successfully detected, and
thus cannot travel between localities. The model
does not include mobility of recovered individuals.
Mobility of recovered individuals may reduce the
outbreak in localities as they may serve as barriers
and reduce the outbreak [30]. Here, we neglect pos-
sible barrier e↵ects of recovered mobility individuals
in order to focus on the e↵ects of awareness-based
social distancing.

The transmission rate at location i depends on
the inherent infection rate �0 and social distancing
due to cumulative disease prevalence,
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(5)
In the social distancing model, individuals reduce
their interaction with others proportional to the
ratio of cumulative cases, defined as the ratio of
infectious and recovered in the population, at locali-
ty i and neighboring localities of i [28, 29, 31]. Here,
we consider social distancing in a broader sense as
the impact of all individual and public health mea-
sures that reduce social contact between individuals

2
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�ij = 1% �ij = 0.01% �ij = 0.001%

Figure 1: Networked SEIR model with no-distancing. Two localities are connected with travel rates �ij 2 {1%, 0.01%, 0.001%}.
The disease propagates in both localities according to SEIR dynamics with no response to disease prevalence, i.e., ↵i = 0. Blue
and red lines show the ratio of susceptible and infected individuals in a locality, respectively. The di↵erences in time of peaks
are 10, 38, 51 days respectively for �ij 2 {1%, 0.01%, 0.001%}. Final outbreak sizes of localities 1 and 2 are almost identical
for low mobility regimes.

(e.g. in the case of COVID-19 this may include
six feet physical distancing, restriction on social
and economic activities, and partial lock downs).
The term inside the parentheses is the awareness at
locality i caused by disease prevalence. The weight
constant !ii 2 [0, 1] determines the importance of
disease prevalence at locality i versus the impor-
tance of disease prevalence at neighboring Ni local-
ities, !ij 2 [0, 1]. We assume the weights sum to
one, i.e.,

P
j2Ni

S
i !ij = 1. The exponent constant

↵i represents the strength of response to the disease
awareness. It determines the overall distancing at
locality i based on the awareness. If ↵i = 0, there is
no distancing response to the awareness at locality
i. Note that the awareness term inside the paren-
theses is always less than or equal to 1. Thus, the
larger ↵i is, the larger is the distancing response at
locality i to disease prevalence. We refer to the case
with ↵i = 1 as the linear distancing model.

In the following, we consider two localities with
equal population sizes N1 = N2, unless otherwise
stated. The disease starts at locality 1 with 0.1% of
the population in exposed state, and spreads over to
locality 2 via undetected exposed individuals trav-
eling from 1 to 2. The travel between localities does
not change the population sizes, i.e., we assume
�12 = �21. We set �0 = 5

8 , µ = 1
3 , and � = 1

4
based on the rates estimated at [1] for the COVID-
19 outbreak in China. The reproduction number at
locality i is Ri =

�0

� = 2.5 for i 2 {1, 2}. Note that
the standard SEIR model is recovered when ↵i = 0
and �ij = 0 for all localities.
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Figure 2: Percentage reduction in outbreak size and ratio of
infected at peak with respect to increasing social distancing
exponent (↵i). We measure the reduction with respect to
the no-distancing case (↵i = 0). In both cases, the mobility
per day is �12 = �21 = 0.001% of the population.

3. Results

3.1. Mobility and Social Distancing

As a baseline we consider no distancing response,
i.e., ↵i = 0 for all i = {1, 2} (Figure 1). We find
that Locality 2 follows an almost identical disease
trajectory as Locality 1 approximately 38 days after
Locality 1 when �ij = 0.01%. The di↵erence in
peak times of the two localities increases from 10
days to 51 days as �ij decreases from 1% to 0.001%
(Figure 1). Moreover, as the mobility rate increas-
es, the outbreak at Locality 1 becomes larger than
the outbreak at Locality 2 while Locality 1 expe-
riences a lower peak than Locality 2—see Figure
1(Left). The intuition is that the duration of the
epidemic in Locality 1 is longer due to the large
number infected individuals traveling from Locality

3
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2 after the peak time of Locality 1. This di↵er-
ence in outbreak sizes is negligible compared to the
e↵ects of social distancing.
Next, we consider the e↵ect of social distancing.

For this, we assume localities only put weight on
disease prevalence at their own locality, i.e., !ii = 1
for i 2 {1, 2}. Figure 2 shows the percentage reduc-
tion in final outbreak size and peak ratio of infected
at Locality 2 as localities become more responsive,
i.e., as ↵i increases. When the distancing is linear
↵i = 1, the reductions in peak and outbreak size
are near 25%. Reduction in both metrics reach-
es 70% when ↵i = 5. This range of values of the
impact of social distancing on disease transmission
is consistent with empirical estimates for COVID-
19 in Europe and the US [32, 33]. While outbreak
size continues to decrease with ↵i increasing, there
does not exist a critical threshold of ↵i that stops
the disease spread in a locality. The failure to stop
an outbreak with awareness is due to the propor-
tionality of the social distancing to the cumulative
number of cases [28].

3.2. A lower bound on the outbreak size at the ori-
gin

Final size relationships for SEIR dynamics with-
out mobility connect the strength of an epidemic
(reproduction number) to the number of individu-
als not infected at the end of the epidemic S(1).
In the present case, such relationships constitute an
analogous lower bound for the outbreak size at the
origin in a scenario without mobility (�ij = 0) and
!12 = 0,

S(1)�
✓
1 + ↵1R1(1� S(1))

◆� 1
↵1

= 0, (6)

where R1 = �0

� is the reproduction number at the
origin. Above, we assume compartments (S, E,
I, R) in the model dynamics represent the frac-
tion of population in the corresponding stage of the
disease. In obtaining the relation in (6), we con-
sider a modified social distancing model in which
we also include fraction of exposed E in the dis-
tancing term—see Appendix A. When individuals
reduce their interactions proportional to the cumu-
lative number of exposed cases, the social distanc-
ing is stronger than (5). Thus, the solution to (6)
for S(1) is an upper bound for the fraction of final
susceptible individuals, which means it is a lower
bound for the fraction of final recovered individuals
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Figure 3: Upper bound values of S(1) obtained by solving
(6) for k = 1 and k = 3. We let R1 = 2.5. Lines correspond
to the left hand side of (6). Circle dots show the solution to
(6). Diamond dots are S(1) values obtained by simulating
the SEIR model in (1)-(4) with �i given in (5). For k = 0, we
use standard speed-size relations for the SEIR model without
social distancing [34]. Note that the relation for the standard
SEIR model is exact. Thus, diamond and circle dots overlap
for k = 0. The di↵erence between the upper bound for S(1)
(Ŝ(1)) and the simulated S(1) is relatively constant for
di↵erent values of ↵1.

(R(1)). For the linear distancing case ↵1 = 1, we
obtain the closed form solution to (6),

S(1) = R�1
1 , R(1) = 1�R�1

1 . (7)

Figure 3 compares the actual outbreak sizes with
the upper bound for S(1) obtained by solving (6)
for di↵erent values of ↵1. We observe that the upper
bound solution, denoted with (Ŝ(1)), is loose by
a constant amount that is approximately equal to
0.04 in both k = 1 and k = 3. We also note that
this upper bound provides a good approximation of
the outbreak size at Locality 2 when mobility is low
and !21 = 0.

3.3. Adopted awareness

We analyze the e↵ect of awareness at Locality 2
caused by the outbreak in Locality 1. We denote
the weight !21 associated with this awareness as the
adopted awareness weight. We assume Locality 1’s
awareness is not shaped by the outbreak at Local-
ity 2, i.e., !11 = 1. In this scenario, the adopted
awareness should be interpreted as individuals in
Locality 2 reducing contacts, e.g., practice social
distancing, based on the awareness created by the
outbreak at Locality 1. When the disease starts in
one location (Locality 1) and moves to a neighbor-
ing locality (Locality 2) via travel of exposed, the

4
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adopted awareness distancing term at Locality 2 is
a measure of its preparedness.

We begin by using the lower bound for the out-
break size at the origin (R̂1(1)) to obtain an upper
bound for the outbreak size at Locality 2 as a func-
tion of !21. There exists a time T > 0 such that
for all t > T , we have R̂1(1) < I1(t)+R1(t) where
R̂1(1) is obtained by solving (6) for Ŝ1(1) and
setting R̂1(1) = 1 � Ŝ1(1). Consider the social
distancing model �2(t) in (5). For t > T , we have

�2(t) < �0

⇣
1� !21R̂1(1)� !22(I2 +R2)

⌘↵2

.

(8)
As mobility slows down, i.e., �12 ! 0, the thresh-
old time T approaches zero as well. Thus, in the
slow mobility regime, the inequality above holds for
almost all times. By ignoring the social distancing
based on local awareness, we obtain the following
upper bound on the infection rate at the importing
locality (Locality 2),

�2(t) < �0

⇣
1� !21R̂1(1)

⌘↵2

. (9)

Note that the right hand side is a constant that
depends on the lower bound of the outbreak size at
the origin and the strength of response at Locality
2 (↵2). Given the constant upper bound in (9), we
use the speed-outbreak size relation for the stan-
dard SEIR model, e.g., see [34, 35], to obtain a
lower bound for S2(1) at neighboring locality,

1� S̃2(1) + R̃�1
2 log(S̃2(1)) = 0. (10)

where we define

R̃2 :=
�0

�

⇣
1� !21R̂1(1)

⌘↵2

. (11)

The solution to (10) given by S̃2(1) provides a low-
er bound for S2(1) in the SEIR model with social
distancing (1)-(5). Note that we obtain the speed-
outbreak size relation for the standard SEIR model
when ↵2 = 0. In Appendix B, we demonstrate
how the solution to (10) changes as a function of
strength of responses at localities—see Figures S1-
S2.

We compare the outbreak size at Locality 2 from
simulating (1)-(5) with the upper bound obtained
by solving (10) for a range of adopted awareness
values !21 2 [0, 1] (Figure 4). We observe that the
upper bound is loose when the adopted awareness
is close to zero. This is reasonable since in deriving

the bound we removed the social distancing with
respect to local disease prevalence. The accuracy of
the upper bound improves as the adopted awareness
constant increases. Indeed, as per our assumptions,
as �21 ! 0, the upper bound would tend to the
actual outbreak size when !21 = 1.

Both the outbreak size at Locality 2 and the
associated upper bound monotonically decrease as
adopted awareness (w21) increases for the given
strengths of response at the origin ↵1 2 {1, 3}.
This means Locality 2 is better o↵ reacting to
the outbreak at Locality 1, as this will lead to an
early strong response to the disease. Indeed, the
decrease of the outbreak size at Locality 2 with
respect to the adopted awareness constant is faster
when the response at Locality 1 is weak—compare
blue and black lines within Top and Bottom panels
in Figure 4. The reason for this is that a weak-
er response at Locality 1 results in a higher ratio
of cumulative cases, which means higher awareness
at Locality 2. Going in the other direction, if the
strength of response at Locality 1 further increas-
es (↵1 > 3), it is possible that increasing adopted
awareness increases the outbreak size at Locality 2.
This means the monotonic decrease in the outbreak
size at Locality 2 with respect to increasing adopted
awareness is contingent on the strength of response
at Locality 1 and the mobility constants.

The preparedness at Locality 2 can result in stop-
ping the outbreak from spreading at Locality 2.
Indeed, we observe in Figure 4 (Bottom) that there
exists a critical threshold for the adopted aware-
ness constant w21 > 0.4 above which outbreak size
is near zero for Locality 2.

Next, we use the upper bound for the outbreak
size at Locality 2 to compute an upper bound for
the critical threshold value of the adopted aware-
ness constant given ↵1 and ↵2 values. In order to
obtain this threshold, we rely on the result that
when R2 < 1, the disease will die out in a standard
SEIR model. Note that R2 < R̃2 with R̃2 is as
defined in (11). Thus, the disease will not spread
at Locality 2 if R̃2 < 1. Solving this condition for
!21, we get the following threshold

!21 >
1�R�1/↵2

1

R̂1(1)
(12)

where R1 = �0

� is the reproduction number and

R̂1(1) is the lower bound on the outbreak size
at the origin obtained by solving (6). From (12),

5
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Figure 4: Outbreak size at Locality 2 with respect to adopt-
ed awareness !21. (Top) Weak (↵2 = 1) and (Bottom)
Strong (↵2 = 3) responses at Locality 2. Mobility is set
to � = 0.001%. Weak and strong responses at Locality 1
correspond to ↵1 = 1 (black) and ↵1 = 3 (blue), respective-
ly. The outbreak size at Locality 2 decreases with increasing
adopted awareness values. The decrease is sharper when
response at the origin is weak. Corresponding theoretical
upper bound values (shown by dashed lines) are tighter at
larger adopted awareness values. In the Bottom figure, the
critical threshold values !⇤

21 above which disease does not
propagate approximately equal to 0.5 and 0.8 respectively
for weak (black) and strong (blue) responses at the origin.

we see that the critical threshold value for adopt-
ed awareness (!⇤

21) increases with increasing ↵1 and
decreases with increasing ↵2. In Figure 4 (Bottom),
we see that the theoretical critical threshold values
are close to the actual (simulated) !21 values above
which the disease does not propagate in Locality 2.

For ↵1 = 1, we obtain a close form solution for
R̂1(1) in (7), which yields

!21 >
1�R�1/↵2

1

1�R�1
1

. (13)

The threshold value above is an increasing function
of ↵2. That is, Locality 2 can avoid an outbreak

with a smaller adopted awareness constant (!21) as
↵2 increases. For ↵2 = 1, we have the right hand
side equal to 1. This means there does not exist
a level of preparedness, i.e., a value of !21 2 [0, 1],
such that the disease is eliminated at Locality 2.
This confirms the results shown in Figure 4 (Top)—
see solid and dashed black lines decreasing toward
0 as !21 goes to 1. At !21 = 1, the adopted aware-
ness is equal to the right hand side of (13) where
the prediction is that the disease can still spread in
Locality 2.

3.4. E↵ect of adopted awareness on total outbreak
size

While the above analyses show that Locality 2
can benefit from a heightened awareness due to a
weak response at Locality 1, this awareness is a
direct result of the lack of control at Locality 1.
Indeed, a larger outbreak at Locality 1 yields a low-
er outbreak size at Locality 2. Here, we address
conditions in which the reduction in the outbreak
size at Locality 2 due to the increase in the out-
break size at Locality 1 is larger than the increase
in the outbreak size at Locality 1.

We begin by focusing on the total outbreak size
defined as the sum of outbreak sizes in both locali-
ties, i.e., R1(1)+R2(1), as a global measure of the
e↵ects of adopted awareness. We find that when the
response at Locality 2 is weak (↵2 = 1), there exists
a level of preparedness (!21 ⇡ 0.7) above which the
total outbreak size is smaller when the response at
Locality 1 is weak—see blue line dip below the black
line around !21 ⇡ 0.7 in Figure 5 (Top). In con-
trast, when the response at Locality 2 is strong,
there does not exist an adopted awareness constant
value where a weak response at Locality 1 is bet-
ter than a strong response at Locality 1 in terms of
total outbreak size—see Figure 5 (Bottom). Last-
ly, the total outbreak size is always lower when the
response at Locality 2 is strong—compare Figures
5 (Top) and (Bottom). These observations indicate
that we obtain the best outcome in terms of total
outbreak size when both localities respond strongly,
and Locality 2 has an adopted awareness constant
value above the critical threshold value.

In Figure 5, we also provide a theoretical approx-
imation of the total outbreak size computed by
adding the upper bound for the outbreak size in
the origin (R̂1(1)) to the lower bound for the
outbreak size at Locality 2 (R̃2(1)). This total
(R̂1(1) + R̃2(1)) is neither an upper bound nor
a lower bound. We see that the approximation
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Figure 5: Total of outbreak sizes at localities 1 and 2 with
respect to adopted awareness !21. (Top) Weak (↵2 = 1) and
(Bottom) strong (↵2 = 3) responses at Locality 2. Mobility
is set to � = 0.001% . Weak and strong response at Local-
ity 1 correspond to (↵1 = 1) and (↵1 = 3), respectively.
There exists a critical adopted awareness constant value in
Top where the total outbreak size is lower in the scenario
where both localities respond weakly compared to the sce-
nario where Locality 1 has a strong response. The critical
value for the adopted awareness constant value can be found
by looking at the intersection of the solid black line with the
solid blue line for the corresponding mobility value. When
both localities respond strongly to the disease in Bottom
figure, such a critical adopted awareness constant value does
not exist.

error is mostly dominated by the error in the upper
bound R̃2(1) for small values of the adopted aware-
ness constant. The approximation is a lower bound
of the total outbreak size for all adopted awareness
values above the critical adopted awareness con-
stant computed using (12)—see dashed lines in Fig-
ure 5(Bottom) lying below the corresponding solid
lines.

3.5. E↵ects of mobility rates

Thus far, we have focused our analysis on the
e↵ects of adopted awareness given a slow mobili-
ty regime (�12 = 0.001%). As per the discussion
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Figure 6: Benefit of adopted awareness with respect to
mobility rates. (Top) Weak and (Bottom) strong responses
at the origin. The strength of response at Locality 2 is weak
↵2 = 1. The benefit is measured as the reduction in final size
with respect to the zero-adopted awareness constant scenario
!21 = 0. Let F2(!21,�12) denote the final outbreak size at
Locality 2 with respect to !21 and �12. The benefit of alert-
ness is defined as F2(0,�12) � F2(!21,�12). Weak response
at the origin, higher adopted awareness leads a smaller out-
break size at Locality 2 (Top). Given a strong response at
the origin, higher adopted awareness can lead to higher out-
break sizes (Bottom). Strong response at the origin reduces
the magnitude of the benefit of adopted awareness.

in Section 3.1, the outbreak times between locali-
ties get closer as mobility increases. Given higher
mobility rates, the cumulative number of cases at
Locality 1 will be lower by the time disease begins
to spread at Locality 2. Thus, we expect the ben-
efit of adopted awareness at Locality 2 to be lower
with increasing mobility.

We measure the benefit of adopted awareness
(!21) by comparing the outbreak size at Locality
2 given a positive adopted awareness value !21 > 0
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with the outbreak size when adopted awareness
constant is zero, i.e., !21 = 0. Following the dis-
cussion above, given a positive adopted awareness
constant value !21 > 0, the potential benefit of
adopted awareness reduces as mobility increases
(Figure 6). We see that the decrease in the ben-
efit of preparedness is slow up until a mobility rate
value. After a certain mobility value �12 ⇡ 0.05%,
the decrease in the benefit of adopted awareness
is sharper. Regardless, we observe that when the
response at the origin is weak, it is better to have
a higher level of adopted awareness—see Figure 6
(Top). The magnitude of benefits of adopted aware-
ness is reduced when the response at the origin
is strong—see Figure 6 (Bottom). Indeed, low-
er adopted awareness values can yield smaller out-
break sizes at Locality 2 for high mobility—observe
that the benefit value dips below zero at higher
mobility rates in Figure 6 (Bottom). The reason
for the negative benefit is that the disease severity
at Locality 2 quickly exceeds the outbreak size at
Locality 1 when the response at the origin is strong
at high mobility rates, which means that Locality 2
is better o↵ social distancing based on the local out-
break size rather than the outbreak size at Locality
1.
Thus far, we assumed the total flow of individuals

from one locality to another is fixed and does not
depend on the severity of the outbreak. An alterna-
tive is to let mobility rates be dependent on aware-
ness. Flow to a locality that is experiencing a severe
outbreak can reduce, and similarly flow from locali-
ties with widespread outbreaks toward regions with
less severe outbreaks can increase—see Appendix
C for one such awareness driven mobility dynam-
ics. Another alternative is to reduce the overall
flow to and from locality based on the current size
of the outbreak. In a two locality setting where one
locality is the origin, such awareness-driven mobil-
ity dynamics delay the time disease takes-o↵ in the
neighboring locality, increasing the time for neigh-
boring locality to be better prepared. In turn, the
benefit of awareness increases similar to the e↵ect
of reduction in mobility rates discussed above.

3.6. E↵ects of population sizes

We consider scenarios where the two localities
have di↵ering population sizes N1 6= N2. In the
model dynamics given in (1)-(5), we assume the
populations mix at a fixed rate �ij . Thus, the
population size di↵erences would not a↵ect the
flow implying that former results would continue

to hold even when N1 6= N2. We consider an
alternative mobility model where the mobility con-
stants �ij represent the flow rates in order to ana-
lyze the e↵ects of population size di↵erences—see
Appendix C. In this alternative model, the amount
of flow from one locality to another depends on
the size of the originating compartment (S1, E1, S2,
or E2) This model provides identical results when
N1 = N2. When the initial population sizes are dif-
ferent (N1 6= N2), the mobility dynamics will gener-
ate flows such that the population sizes will change
over time. In turn, this will a↵ect the ratio of the
cumulative infected R2(1)/N2(1) where we note
that N2(1) represents the size of the population in
Locality 2 at time t = 1.
The e↵ect of population di↵erences is negligible

when mobility is low (Fig. S4). The small di↵er-
ences in outbreak sizes are caused by the change
in population sizes. For instance, when the pop-
ulation size at Locality 1 is larger than Locality
2 (N1 > N2), individuals flow from Locality 1 to
Locality 2 increasing the population size of Locali-
ty 2. In turn, the fraction of recovered individuals
in Locality 2 gets lower because its final population
size is larger N2(1) > N2. A secondary e↵ect of
di↵erent population sizes manifests when the origin
goes through a worse outbreak and the importing
locality is prepared. In this case, there is a larger
migration of susceptible individuals from Locality
2 to Locality 1. This magnifies the outbreak ratio
in Locality 2. All of the aforementioned e↵ects are
more pronounced when mobility rate is higher.

4. Conclusions

We developed a mathematical model to analyze
the impact of social distancing e↵orts on disease
dynamics among interconnected populations. We
assumed that social distancing e↵orts at a given
location is a function of both disease prevalence
within the population and outbreak dynamics at
neighboring localities. The inclusion of influence of
outbreak size at neighboring localities distinguishes
the model considered here from existing metapop-
ulation models that only consider social distancing
based on local disease prevalence [22, 15]. Our
analysis showed that it is beneficial to reduce trav-
el between localities given the inability to detect
latently infected individuals (consistent with ear-
lier findings [1]). However, this benefit is contin-
gent on how prepared neighboring localities are
for the importation of cases. We used the term
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adopted awareness to determine the importance
given to preparedness at neighboring localities. We
assumed the preparedness at importing localities is
an increasing function of the outbreak size at the
origin. The increasing function assumption implied
that neighboring localities increase their levels of
preparedness as the severity of the disease at the
origin increased. That is, the severity of the out-
break at the origin triggers social distancing e↵orts
at neighboring localities by local authorities mak-
ing non-pharmaceutical interventions, e.g., declar-
ing state of emergency or issuing stay at home
orders. We derived an upper bound on the outbreak
size at importing localities as a function of the out-
break size at the origin and strength of response
at the importing locality. Using this upper bound,
we identified a critical threshold for the adopted
awareness weight that would eliminate the disease
at importing localities.
It is not surprising that increased levels of pre-

paredness reduces the outbreak size at localities
neighboring the origin. However, the level of pre-
paredness is dependent on the outbreak size at the
origin. Thus, levels of preparedness increase at
a locality when a neighboring locality has a larg-
er outbreak size. Our results show that increased
levels of preparedness at neighboring localities can
yield lower total outbreak sizes even when the
response at the origin is weak (Figure 5(Top)). The
theoretical and numerical results mentioned above
hold under a low mobility regime in which there is a
lead time for increased alertness levels at importing
localities based on the outbreak size at the origin.
We identified that when the response at the ori-
gin is strong, adopted awareness may hurt, rather
than benefit, the neighboring localities under higher
mobility rates (Figure 6 (Bottom)). The neighbor-
ing localities may have, in e↵ect, a false sense of
security. In contrast, weak responses at the origin
can paradoxically benefit neighboring localities that
adjust their distancing based on adopted awareness.
We also find that the benefit of adopted awareness
is robust to small variations in mobility, awareness-
driven mobility dynamics (Appendix C), hetero-
geneous population sizes (Section 3.6) and to vari-
ation in the inherent infection rate of the disease
(Appendix D).
Overall, our findings imply that if there are multi-

ple localities with outbreaks, the jurisdictions with
less severe outbreaks should be looking at their
worse-o↵ neighbor rather than their best-o↵ neigh-
bor, and implementing social distancing measures

accordingly. This finding provides further sup-
port for related work showing that coordination
of responses can stop outbreaks when discordant
responses do not [17]. The e↵ects of awareness-
driven social distancing and disease preparedness
of connected communities during an epidemic out-
break should be further assessed using epidemio-
logical models that account for important biolog-
ical features of the disease. For instance, exper-
iments on temporal viral shedding of COVID-19
estimate nearly half of the secondary cases hap-
pen by being in contact with individuals in pre-
symptomatic stage [36]—see [4, 37] for other analy-
sis of the impact of asymptomatic spreading. Here,
we do not make a distinction between symptomat-
ic and asymptomatic infected individuals; further
extensions could incorporate such di↵erences, e.g.,
[1, 37]. In addition, the current model does not
account for the mobility of recovered individuals
and their impact on reducing transmission, given
disease-specific modification of behavior [30]. Such
holistic approaches to modeling that include mech-
anistic social distancing terms in complex epidemi-
ological models can provide an essential perspec-
tive on e↵ective control of the pandemic [32]. This
paper takes a step in this direction by providing
analytical and numerical results on the importance
of awareness-driven behavior and preparedness, and
mobility.

Appendix A. A lower bound on the out-
break size at the origin

We derive a closed form solution for the outbreak
size at the origin for the SEIR model in (1)-(4) when
mobility is not included (�ij = 0). We modify the
social distancing model at the origin (Locality 1)
by

�̂1 = �0 (1� (E1 + I1 +R1))
↵1 = �0S

↵1
1 (A.1)

where we assumed N1 = 1 to simplify notation.
The social distancing model above assumes that
individuals distance with respect to the cumulative
number of cases including the exposed individuals
which were not included in (5). We note that this
assumption is for analysis purposes only and allows
us to compute a lower bound on the outbreak size
for the original model in (5).

We define the following quantity to be the weight-
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ed sum of exposed and infected individuals

Y (t) := E(t) + I(t). (A.2)

The force of infection is given by

�(I) := �0I. (A.3)

Given the force of infection and the reproduction
number R1 = �0

� , we can show that

Ẏ = �(I)

✓
S↵1+1 � 1

R1

◆
(A.4)

Then we have the constant of motion of the SEIR
model ((1)-(4)) with the distancing model (A.1) as

Y (t) + S(t)+
1

R1

S(t)�↵1

↵1
=

Y (0) + S(0) +
1

R1

S(0)�↵1

↵1
(A.5)

for any t. In identifying the above constant of
motion, we divide dY/dt by dS/dt in (1), simpli-
fy terms, and integrate the resultant relation from
time 0 to t. These steps are similar to the steps used
to establish speed-outbreak size relations for stan-
dard SEIR models without social distancing, e.g.,
see [34, 35]. Now letting t ! 1 and using the fact
that S(0) = 1, Y (0) = 0, Y (1) = 0, we obtain the
speed of spread versus final size relation in (6) for
↵1 > 0.

The social distancing function in (A.1) includes
exposed individuals. That is, we have �̂1(t) < �1(t)
for all t where �1(t) is as defined in (5). Thus the
final size R(1) in (7) is a lower bound on the out-
break size at the origin.

Appendix B. An upper bound for the out-
break size at the importing
locality

Figures S1 and S2 show the lower bound on S(1)
obtained by solving (10). Top and bottom figures
illustrate the change in the lower bound as a func-
tion of the strength of response at the origin. In
accordance with the SEIR model (1)-(5), a strong
response at the origin leads to a larger outbreak
at Locality 2—compare diamond points in top and
bottom panels in Figures S1 and S2. Similarly, the
lower bound values S̃2(1) are lower in the bottom
figures. Indeed, in both figures a weak response
at the origin compounded by a strong response

Weak response at the origin (↵1 = 1)
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Figure S1: Lower bound values for S(1). We assume low
adopted awareness !21 = 1/2. We let R1 = 2.5 and � =
0.0001%. (Top) Weak and (Bottom) strong response at the
origin. Lines correspond to the left hand side of (10). Circle
dots show the solution to (10), i.e., intersection of lines with
zero. Diamond dots are S(1) values obtained by simulating
the SEIR model in (1)-(4) with �i in (5).

at Locality 2 guarantee that the disease does not
spread in the Locality 2—see blue circles and dia-
monds in top figures.

The adopted awareness constant (!21) is smaller
in Figure S1 than in Figure S2. We observe that
the lower bound for S(1) is tighter when !22 is
smaller. This is expected since as !22 decreases
the importance given to prevalence at Locality 2
(I2 + R2) in (8). Thus the di↵erence between the
right hand sides of social distancing approximations
in (8) and (9) decreases.

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 2, 2021. ; https://doi.org/10.1101/2020.04.24.20078808doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20078808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Weak response at the origin (↵1 = 1)
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Figure S2: Lower bound values for S(1). We assume high
adopted awareness !21 = 3/4. We let R1 = 2.5 and � =
0.0001%. (Top) Weak and (Bottom) strong response at the
origin. Lines correspond to the left hand side of (10). Circle
dots show the solution to (10), i.e., intersection of lines with
zero. Diamond dots are S(1) values obtained by simulating
the SEIR model in (1)-(4) with �i in (5).

Appendix C. Alternative mobility dynam-
ics

Awareness-driven mobility dynamics: We
consider a model where the flows between areas
increase or decrease proportional to the ratio of cur-
rent number of infected between localities, i.e.,

�ij(t) = �ij

✓
1 + Ii(t)

1 + Ij(t)

◆

, (C.1)

where �ij and  are positive constants.  deter-
mines the strength of mobility change as a function
of the disease severity ratio. In the above model,
the mobility flow from i to j increases as the ratio
between the current outbreak size at locality i and

locality j increases.
Fig. S3 shows how the ratio in (C.1) changes

over time, indicating an increased flow at first from
Locality 1 to Locality 2, and then an increased flow
from Locality 2 to Locality 1 later. The di↵erence
in peak times of localities reduces as  increas-
es. For instance, if  = 5, the reduction in the
di↵erence between peak times of localities ranges
from 2% to 8% as adopted awareness constant !21

increases from 0 to 1. This reduction in the dif-
ference between peak times do not lead to a mean-
ingful change in the final outbreak sizes—see Fig.
S3(Right).
Population size dependent mobility dynam-
ics: The modified model is as follows,

Ṡi = ��i
SiIi
Ni

+
X

j2Ni

�jiSj
Sj

Sj + Ej
� Si

Si + Ei

X

j2Ni

�ijSi

(C.2)

Ėi = �i
SiIi
Ni

� µEi

+
X

j2Ni

�jiEj
Ej

Sj + Ej
� Ei

Si + Ei

X

j2Ni

�ijEi

(C.3)

İi = µEi � �Ii (C.4)

Ṙi = �Ii. (C.5)

We note that the population sizes are changing over
time when N1 6= N2 even if �ij = �ji. We refer
to the population size at locality i at time t using
Ni(t).

Given this modified model, we consider di↵erent
population sizes for the origin (N1) with the ratio
of the initial population sizes (N1/N2) ranging from
0.1 to 100 in Fig. S4. When the ratio (N1/N2) is
smaller than 1, the model above yields a positive net
flow from locality 2 to locality 1. When the ratio is
larger than 1, the model above yields a positive net
flow from locality 1 to locality 2.

Appendix D. Sensitivity of benefit of
awareness to variation in the
infection rate

We consider the sensitivity of benefit of aware-
ness with respect to variability in the inherent infec-
tion rate of the disease (�0). The infection rate
a↵ects the peak time and outbreak size at both
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Figure S3: (Left) Population size and mobility flow changes over time. Left y-axis shows the population sizes of localities.
Right y-axis shows relative mobility flow from locality 1 to locality 2 over time. (Right) Outbreak size at Locality 2. The flow
�12(t) is as given in (C.1) with  = 5. The rest of the parameters of the model (1)-(4) are �0 = 5/8, µ = 1/3, � = 1/4, and
�12 = 0.001%, N1 = N2 = 1, ↵1 = ↵2 = 1 and !21 = 0.5.
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Figure S4: Outbreak size at locality 2 as a function of
the population size ratio. Population size ratio is given by
the ratio of initial population sizes between localities, i.e.,
N1/N2. The epidemic and mobility dynamics are given by
(1)-(4) and eq. (5) in the revised manuscript. Parameters:
�0 = 5/8, µ = 1/3, � = 1/4, �12 = �21 = 10�7, and
↵1 = ↵2 = 1.

localities which makes the direction of its e↵ect on
the benefit of awareness non-trivial. In particular,
if infection rate �0 increases, the di↵erence in peak
times of two localities decreases, e.g., compare peak
time di↵erence values at �0 = 0.5 and �0 = 0.75 on
the purple line in Fig S5. This creates less time
for Locality 2 to prepare. At the same time, when
the infection rate �0 is high, the outbreak size at
the origin increases which leads to an increase in
awareness at the Locality 2. We find that the lat-
ter e↵ect slightly dominates the former e↵ect yield-
ing a minor increase in the benefit of awareness as
the infection parameter �0 increases—see Fig. S5.
Moreover, the benefit of awareness is larger at larger
values of the adopted awareness constant regardless
of the mobility and infection rate values—compare
the y-axis values of di↵erent colored lines in Fig.
S5.
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