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Abstract 

The pandemic spread of the COVID-19 virus has, as of 20th of April 2020, reached 

most countries of the world. In an effort to design informed public health policies, many 

modelling studies have been performed to predict crucial outcomes of interest, 

including ICU solicitation, cumulated death counts, etc… The corresponding data 

analyses however, mostly rely on restricted (openly available) data sources, which 

typically include daily death rates and confirmed COVID cases time series. In addition, 

many of these predictions are derived before the peak of the outbreak has been 

observed yet (as is still currently the case for many countries). In this work, we show 

that peak phase and data paucity have a substantial impact on the reliability of model 

predictions. Although we focus on a recent model of the COVID pandemics, our 

conclusions most likely apply to most existing models, which are variants of the so-

called “Susceptible-Infected-Removed” or SIR framework. Our results highlight the 

need for performing systematic reliability evaluations for all models that currently 

inform public health policies. They also motivate a plea for gathering and opening richer 

and more reliable data time series (e.g., ICU occupancy, negative test rates, social 

distancing commitment reports, etc).  
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1. Introduction 

As with the situation almost exactly one hundred years ago -with the Spanish flu- the 

pandemic spread of the COVID-19 virus has, as of 20th of April 2020, reached most 

countries around the world (Johnson and Mueller, 2002). The entire scientific 

community is now addressing the many issues that the virus poses, with an 

unprecedented collaborative spirit. One of these issues is of primary importance for 

guiding national and international decision makers: namely, predicting the health 

requirements and outcomes of the current epidemiologic event (Siedner et al., 2020; 

Wang, 2020). Over the past two months, about a thousand modelling papers have 

been deposited on preprint servers such as ArXiv or MedRXiv (Nature, 2020). This, if 

anything, demonstrates how fast and efficiently the scientific community can be set in 

motion towards a common goal. However, it is now apparent that models have not 

reached consensus, e.g., when it comes to predicting the population levels acquired 

immunity within the next months (Moran et al., 2020). This is unfortunate, since this -

and related predictions- are critical for designing suppression or mitigation strategies 

that aim at limiting the human cost of the current pandemic (Canabarro et al., 2020; 

James et al., 2020; Rodriguez et al., 2020). 

Most models that attempt to furnish such predictions are variants of the SIR framework 

(Kermack et al., 1927). In brief, these models assume that the population is divided 

into, e.g., ‘Susceptible’, ‘Infected’, and ‘Removed1’ compartments, through which 

individuals transit at a pace that is characteristic of the time course of the infection and 

associated socio-medical measures. Under mild assumptions, all SIR models predict 

that the population dynamics will eventually reach so-called ‘disease-free equilibria’, 

which signal the end of the epidemic outbreak by exhaustion of the ‘susceptible’ 

compartment. This means that the signature of an epidemic lies in the transient 

dynamics of observable health reports such as confirmed case numbers and 

mortalities. These models have proven very useful in predicting, e.g., the prevalence 

or the duration of an epidemic. When properly adjusted to observable epidemiologic 

data, they also can serve to predict the impact of candidate health policies such as 

vaccination or social distancing (Ganem et al., 2020; Jeria et al., 2020; Kissler et al., 

2020; Moghadas et al., 2020). Given the past success of these models, it may then 

                                                           
1 “Removed” individuals are either cured (immune) or dead. 
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come as a surprise that, despite relying on the same data sources, these models do 

not make the same predictions. In this note, we argue that this lack of consensus arises 

because modellers use the same dataset2, which comprises cumulative counts of 

death and positive COVID testing. The critical question here is: can these data 

sufficiently constrain estimates of SIR cycles? If not, then subtle variants of SIR models 

may make dramatically different predictions, despite showing almost no difference in 

terms of the fit accuracy on the available data so far (Salomon, 2020). Also, model 

predictions may depend sensitively upon the current phase of the epidemic event: 

more precisely, whether the outbreak peak has been reached or not (Lin et al., 2020). 

This is because the ramping phase of the epidemic transient may not evince all the 

processes that are relevant for estimating unknown model parameters (and hence 

making reliable model-based predictions).  

In this note, we assess the impact of outbreak peak phase and data paucity on the 

reliability of predictions derived from SIR-type models. In particular, we evaluate the 

prediction accuracy of a recent SIR-type model that follows from augmenting the set 

of data to be explained (in particular, we focus on ICU occupancy and negative testing 

rates3, in addition to positive test results and death rates records), depending on 

whether the outbreak has already been observed or not. 

 

2. Methods 

 

a. The DCM-covid model 

In what follows, we will focus on a specific SIR model, namely: the so-called dynamic 

causal model of COVID pandemics or DCM-covid (Friston et al., 2020; Moran et al., 

2020). In brief, the model considers four interacting factors describing location, 

infection status, test status and clinical status, respectively. Within each factor people 

may probabilistically transition among four distinct states. Given a set of 21 model 

parameters (see below), the model describes the temporal dynamics of the marginal 

probabilities of belonging to each state within each factor. The location factor describes 

                                                           
2 Most modelling studies actually use the Johns Hopkins University Center COVID database, which gathers data 
from WHO and other national and international health organizations. It produces daily reports of deaths, 
positive tests and remission cases for most countries in the world (https://coronavirus.jhu.edu/map.html).  
3 These kinds of data are made openly available by some governmental organizations (e.g., Santé Publique 
France). 
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if an individual is at home, at work4, in an intensive care unit (ICU) or in the morgue. 

The infection status is the closest to native SIR models, and includes susceptible, 

infected, contagious or immune states. Note that, at this point, the model assumes that 

the immune state is absorbing, i.e. people cannot get the disease twice. The clinical 

status factor comprises asymptomatic, symptomatic, acute respiratory distress 

syndrome (ARDS) or deceased. Finally, the diagnostic status captures the fact that a 

given individual can be untested, waiting for the results of a test, or declared either 

positive or negative. Model transitions amongst states are controlled by rate constants 

(inverse time constants) and probability constants (e.g., the probability of dying when 

in ICU). The ensuing set of state probabilities can then be related to some specific 

observable epidemiologic outcomes, such as the number of deceased people per day 

or the number of people newly infected who have been tested positive. Figure 1 below 

summarizes the causal structure implicit in conditional transition probabilities. We refer 

the reader to Friston et al. (Friston et al., 2020) for a complete mathematical description 

of the model.  

 

 

Figure 1: Causal structure of the DCM-COVID model (adapted from Friston et al. 2020). In brief, 
this compartmental model generates timeseries data based on a mean field approximation to ensemble 

                                                           
4 Here, being at “work” essentially means being neither at home, at the hospital or in the morgue (cf., e.g., 
children at school). 
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or population dynamics. The implicit probability distributions are over four latent factors, each with four 
levels or states (see main text). In particular, this model assumes that (i) there is a progression from a 
state of susceptibility to immunity, through a period of (pre-contagious) infection to an infectious 
(contagious) status, (ii) there is a progression from asymptomatic to ARDS, where people with ARDS 
can either recover to an asymptomatic state or not. With this setup, one can be in one of four places, 
with any infectious status, expressing symptoms or not and having test results or not. Note that—in this 
construction—it is possible to be infected and yet be asymptomatic. Crucially, the transitions within any 
factor depend upon the marginal distribution of other factors. For example, the probability of becoming 
infected, given that one is susceptible to infection, depends upon whether one is at home or at work. 
Similarly, the probability of developing symptoms depends upon whether one is infected or not. The 
probability of being testing negative depends upon whether one is susceptible (or immune) to infection, 
and so on. Finally, to complete the circular dependency, the probability of leaving home to go to work 
depends upon the number of infected people in the population, mediated by social distancing. At any 
point in time, the probability of being in any combination of the four states determines what would be 
observed at the population level. For example, the occupancy of the deceased level of the clinical factor 
determines the current number of people who have recorded deaths. Similarly, the occupancy of the 
positive level of the testing factor determines the expected number of positive cases reported. From 
these expectations, the expected number of new cases per day can be generated. A more detailed 
description of the generative model can be found in Friston et al (Friston et al., 2020). 

 

Parameter estimation and model comparison relies on a variational Bayesian 

approximation scheme (Daunizeau, 2018; Friston et al., 2007) which is adopted in 

established computational neuroscience toolboxes (Ashburner, 2012). In this particular 

work, we have chosen to implement the DCM-covid model from scratch, and make it 

available for another open academic model-based data analysis toolbox (Daunizeau 

et al., 2014). We did this to provide software validation for subsequent data analyses 

performed with the DCM-covid model. 

In addition to semi-informed prior distributions, model inversion –in the current 

implementation- places hard constraints on parameters to ensure that they stay within 

admissible ranges. More precisely, rate constants and probability constants are 

derived by passing unbounded parameters through an exponential mapping and 

sigmoid mapping, respectively5. Table 1 below recapitulates the unknown model 

parameters, in terms of its prior mean and associated hard constraint. 

 

Number Parameter Mean Description 

1  expn n   1 Number of initial cases 

2  N N countrys N    1/2 Initial number of susceptible people (

countryN  is the corresponding country 

                                                           
5 Astute readers will notice a few minor changes from the original model inversion scheme proposed by Friston 
et al. (Friston et al., 2020). In particular, the hard sigmoid constraint on transition probability parameters 
ensures that these cannot be greater than one.  
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population size6, in millions) 

Location    

4  out outs   1/3 Prob(work | home): prob of going out 

5  expsde sde   1 Social distancing exponent 

6  cap caps   128/1000

00 

ICU capacity threshold (per capita) 

Infection    

7  expRin Rin   3 Effective number of contacts: home 

8  expRou Rou   48 Effective number of contacts: work 

9  trn trns   1/4 Prob(contagion | contact) 

10 1exp( )
inf

inf 
    5inf   Infected (pre-contagious) period (days) 

11 1exp( )
con

con 
    3con   Infectious (contagious) period (days) 

Clinical     

12  dev devs   1/3 Prob(symptoms | infected) 

13  sev sevs   1/100 Prob(ARDS | symptomatic) 

14 1exp( )
sym

sym 
    5sym   symptomatic period (days) 

15 1exp( )
rds

rds 
    12rds   acute RDS period (days) 

16  fat fats   1/3 Prob(fatality | CCU) 

17  sur surs   1/16 Prob(survival | home) 

Testing    

18  tft tfts   500/1000

00 

Threshold: testing capacity (per capita) 

19  sen sens   1/100 Rate:       testing capacity (%) 

20 1exp( )
del

del 
    2del   Delay:     testing capacity (days) 

21  tes tess   1/8 Relative Prob(tested | uninfected)  

Table 1: Summary of priors for DCM-covid model parameters. Note that prior variances were fixed 
to 1 for all unbounded model parameters 

 

                                                           
6 Country population sizes are taken from available online governmental data. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.24.20078485doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20078485
http://creativecommons.org/licenses/by-nd/4.0/


We will pay particular attention to estimates of N  , i.e. the initial number of susceptible 

people among the country’s population. This is because this parameter eventually 

controls the quantitative predictions regarding specific outcomes of interest, e.g. 

acquired immunity ratio at the end of this epidemiologic event. Note that this type of 

prediction is critical, because it determines the likelihood of multiple rebounds (i.e. 

waves) of the COVID pandemic are when or if confinement measures are relaxed 

(Moran et al., 2020). 

 

b. Observable outcomes 

Most modelling studies to date actually rely on daily WHO7 or ECDC8 data reports, 

which gathers cumulative death, positive test and remission counts across countries. 

These dataset are made openly available as part of a global collaborative effort to fight 

against the COVID pandemic (see: https://github.com/CSSEGISandData/COVID-19). 

However, remission rates are typically considered unreliable, as is evident from 

established international worldwide data repositories that prefer to report consolidated 

death and confirmed positive test counts only (see: https://github.com/owid). This 

effectively reduces the available data to the death and positive test counts, on which 

most model predictions rely, including outcomes of interest that are only indirectly 

informed by these data (e.g., acquired population immunity at the end of the current 

epidemic outbreak). However, a few governmental agencies have recently made an 

effort to assemble and make openly available richer datasets, including, e.g., ICU 

occupancy and confirmed negative test counts (see, e.g., for France: 

https://www.data.gouv.fr/fr/datasets/). This is particularly relevant in this modelling 

context, because recent SIR models comprise multiple compartments that capture 

modern health care practices that are only partially observable (see, e.g.: 

https://ecosys.versailles-grignon.inra.fr/SpatialAgronomy/covid19/). 

As with most modelling studies currently performed on the COVID pandemic, previous 

applications of the DCM-covid model only fitted daily death (hereafter (1)o  ) and positive 

test ( (2)o ) counts. However, the structure of the model and its associated inversion 

                                                           
7 World Health Organization (https://www.who.int/). 
8 European Centre for Disease Prevention and Control (https://www.ecdc.europa.eu/en). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.24.20078485doi: medRxiv preprint 

https://github.com/CSSEGISandData/COVID-19
https://github.com/owid
https://www.data.gouv.fr/fr/datasets/
https://ecosys.versailles-grignon.inra.fr/SpatialAgronomy/covid19/
https://www.who.int/
https://www.ecdc.europa.eu/en
https://doi.org/10.1101/2020.04.24.20078485
http://creativecommons.org/licenses/by-nd/4.0/


scheme makes it very easy to augment the generated outcome data with remission9 (

(3)o ), ICU occupancy ( (4)o ), and negative test ( (5)o ) rates: 

 

(1) 6

(2) 6

(3) 6

1,3

(4) 6

(5) 6

10

10

10

10

10

clin

N deceased

test

N positive

loc loc

N ICU

loc

N ICU

test test

N positive negative

o p

o p

o T p

o p

o p p











   


  


   


  
      


       (1) 

where   1,3 1 home | ICUloc

t tT P loc loc    is the daily probability of transiting from ICU 

to home given that the previous clinical status was ARDS and now yesterdayp p p   is the 

daily change in the corresponding marginal probability (with a slight abuse of 

notation)10. The particular form Equation 1 takes for confirmed cases and death counts, 

derives from the fact that model inversion focuses on fitting newly (daily) counts, as 

opposed to cumulative counts (with the exception of remission rates and ICU 

occupancy). 

One can see from Equation 1 that observable outcomes provide only partial information 

regarding internal (latent or hidden) model states. At this point, we note that, in 

principle, nothing prevents such SIR models to be fitted to other types of observable 

data. However, at the time of writing this manuscript, no other data type was reliably 

and regularly accessible. We therefore focus on these five observable outcomes. 

 

c. Numerical assessment of prediction accuracy  

At the time of writing, most western European countries (including, e.g., UK, Germany, 

France, Italy, Spain, Ireland and Switzerland) have either passed the peak of the 

pandemic event or are about to pass it. Available data typically start on January the 

20th, yielding approximately a hundred daily data points up until the current time. But 

the transient dynamics of the COVID pandemic will not approach disease-free 

equilibria states for a further 6 to 8 months. This means that one has to predict what 

                                                           
9 Here, we are restricting remissions to people leaving ICU and returning home. 
10 Note that marginal probability 

loc

ICUp  on the third line of Equation 1 is evaluated on the day before, such that 

1,3

loc loc

ICUT p  is the current transition rate towards the location status ‘home’. 
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will happen over the next 200 days, given what has happened during the past 100 

days. As we will see, the accuracy of the ensuing model predictions actually depends 

upon how far the country is with respect to the peak of its epidemic outbreak, in terms 

of the death rate. The accuracy of these predictions will also depend upon what type 

of data is actually provided to the model inversion.  

We thus simulated 1000 datasets with varying phases of the peak, which could emerge 

either before or after the first (available) 100 data samples. We did this by randomly 

sampling the parameter set around the estimated parameters for the French gouv.fr 

dataset (up to the 12th of April, see below), which gathers the five outcomes of interest. 

For each parameter set, we simulated the DCM-covid model over a duration of 300 

days. This yielded realistic variations of epidemic outbreak dynamics. Figure 2 below 

depicts a representative subset of simulated time series, as well as Monte-Carlo 

histograms of simulated cumulative death counts, initial number of susceptible people 

and death rate time-to-peaks.  

 

Figure 2: Summary of simulated outcomes of interest. These simulations were drawn from small 
variations around the model parameters estimated from the full French data available on the 12th of 
April. Upper-left panel: simulated daily death rate dynamics (y-axis) are plotted against time (x-axis, in 
days). Dots depict time-to-peaks. Upper-right panel: the distribution of simulated cumulated death 
counts. Lower-left panel: the distribution of simulated time-to-peaks. Lower-right panel: the distribution 
of simulated initial number of susceptible people (in millions). 
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One can see that all generated outcome dynamics exhibit a simple transient, eventually 

reaching the disease-free equilibrium state (where 0inf

susceptiblep  ). In addition, one can 

see that simulations are collectively reminiscent of the variability observed across 

different countries. 

Each simulated data time series was then truncated up to the 100th day, and then fitted 

using the DCM-covid VB inversion scheme. We considered two inversion variants: 

 VB0: the full dataset (comprising the five observable outcomes) is provided (up 

to the 100th day) to the VB inversion scheme. 

 VB1: remission, ICU and negative test time series are omitted (this is the typical 

situation for most modelling studies so far). 

For each simulated dataset, we thus obtained two sets of estimated parameters, one 

from each VB inversion schemes. We derive the ensuing predictions by simulating the 

model for the remaining 200 days, given each of those estimated parameter sets. 

We then estimated the following estimation/prediction accuracy metrics: 

 Peak date estimation error, which we define as follows: 

ˆ
peak peak              (2) 

where peak  and ˆ
peak  are the simulated and estimated outbreak peak, 

respectively. 

 Cumulated death count prediction error: 

300 300
(1) (1)

1 1

ˆ
t t

t t

c o o
 

             (3) 

where (1)

to  and (1)ˆ
to  are the simulated and estimated daily deceased rates, 

respectively. 

 Initial susceptible ratio estimation error: 

ˆ
N NN              (5) 

where N  and ˆ
N  are the simulated and estimated daily deceased rates, 

respectively. 

 Maximum ICU occupancy: 

(4) (4)ˆmax maxt t
t t

I o o           (4) 
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where (4)

to  and (4)ˆ
to  are the simulated and estimated daily ICU occupancy, 

respectively. 

We then analysed the impact of the time-to-peak ( peak ) and data paucity (cf. the two 

VB variants) onto the four prediction/estimation error scores above. 

 

3. Results 

 

a. Influence of date-to-peak and dataset availability on 

prediction/estimation accuracy 

Figure 3 below depicts the relationship between simulated and estimated outcomes 

(more precisely: epidemics’ peak date, cumulative death count, maximum ICU 

occupancy and initial number of susceptible people). 

 

Figure 3: Relationship between simulated and estimated/predicted outcomes of interest. Upper-
left panel: estimated time-to-peaks (y-axis, in days) are plotted against simulated time to peaks (x-axis, 
in days), for both VB0 (blue, augmented data) and VB1 (red, positive cases and death rates only) data 
analyses. Each dot corresponds to a simulated data time series, and the red dotted line shows the 
identity mapping (perfect estimation/prediction). Upper-right panel: cumulated death counts,. Lower-left 
panel: initial number of susceptible people,. Lower-right panel: maximum ICU occupancy. 

 

One can see that this relationship is highly variable, i.e. estimation/prediction errors 

are clearly non-negligible. Importantly, these errors are not due to model underfitting, 
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since the percentage of explained variance in fitted data (i.e. data up to 100 days) is 

always greater than 95% (VB0: mean R2=99%, VB1: mean R2=99%). Therefore, 

estimation/prediction errors are due to non-identifiability. The structure of these errors 

is most apparent for time-to-peak (cf. upper-left panel in Figure 3). When the simulated 

time-to-peak 100peak  , the correlation between simulated and estimated time-to-

peaks in the initial (observed) 100 days is almost perfect. However, this correlation 

quickly falls as the simulated time-to-peak increases beyond the temporal window of 

observed data (and more so when fitted data is restricted to daily death counts and 

positive test rates: VB1). The structure of estimation/prediction errors is less explicit for 

outcomes of interest. We now evaluate the impact of simulated time-to-peak and data 

availability on estimation/prediction errors. 

First, we split the simulations according to whether the simulated death rate peak arose 

before the last observed sample ( 100  , “early peak”) or after ( 100  , “late peak”). 

This enabled us to ask whether the prediction/estimation errors above were higher for 

late than for early peaks. Figure 4 below summarizes the simulation results, in terms 

of the influence of time-to-peak (early versus late peak) and dataset availability (VB0 

versus VB1) onto prediction/estimation accuracy. 

 

Figure 4: Impact of time-to-peak and data availability on estimation/prediction accuracy. Upper-

left panel: Average peak date prediction error   (y-axis, in days) is shown for early and late peaks, 

for both VB0 (blue) and VB1 (red) data analyses. Errorbars denote 95% bootstrapped confidence 

intervals on the mean. Upper-right panel: cumulated death counts error c , same format as upper-left 
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panel. Lower-left panel: initial number of susceptible people error N , same format as upper-left panel. 

Lower-right panel: maximum ICU occupancy, same format as upper-left panel. 

 

To begin with, note the typical error magnitude for the four outcomes of interest: time-

to-peak error is of the order of 20 days, cumulative death count error is about 10,000 

people, the error on the initial number of susceptible people is 10 millions, and the 

maximum ICU occupancy error is around 10,000. These errors are beyond acceptable 

limits, for most practical applications to public health policies. But, as we will see, error 

magnitudes depend sensitively upon time-to-peak and data paucity. 

One can see a clear influence of the time-to-peak onto all prediction/estimation error 

measures. In brief, it seems that both prediction and estimation are much less accurate 

when they are performed before the death rate peak has been observed (late peak). 

The influence of the data availability (VB0 vs VB1) is less clear, though it seems that, 

depending on the outcome of interest, restricting the dataset may decrease accuracy 

for both early and late peaks. 

To confirm these observations, we performed a simple 2x2 ANOVA on each of the four 

error scores. First, the main effect of time-to-peak is significant for all error types except 

for ICU occupancy (  : p<10-4, c : p<10-4, I : p=0.84 , N : p<10-4). Second, there 

is a significant main effect of data availability in two out of four error types (  : p<10-

4, c : p=0.44, I : p<10-4, N : p=0.59). Note that the two-way interaction between 

time-to-peak and data availability is statistically significant for all error types except for 

cumulative death count (  : p<10-4, c : p=0.88, I : p<10-4, N : p<10-4). This does 

not create an interpretational issue for the associated main effect of time-to-peak 

however, since there is no crossover interaction (except for ICU occupancy). We then 

performed post-hoc tests. 

It transpires that, when the peak can be observed in the fitted data (early peaks), VB0 

accuracy is significantly higher than VB1 accuracy for both ICU occupancy (p<10-4) 

and initial number of susceptible people (p<10-4). In contrast, when the peak is yet to 

manifest (late peaks), only the accuracy on time-to-peak estimation is significantly 

worse for VB1 than for VB0 (p<10-4). Interestingly, the ICU occupancy error is highest 

for VB1 when the peak has already been observed (cf. lower right panel). This counter-

intuitive result derives from the fact that default model explanations of death and 

positive test rates dynamics favour overestimated ICU occupancy (which, for VB1, is 
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not constrained by ICU occupancy data). This will be clearer when analysing the 

French dataset below. 

In summary, the reliability of almost all predicted outcomes is severely impacted when 

the data analysis is performed before the epidemic peak has been observed. In 

addition, ignoring data such as ICU occupancy and negative test rates strongly impairs 

the estimation of the initial number of susceptible people as well as the maximum ICU 

occupancy, in particular when data is analysed >100 days before the epidemic peak 

has been observed. 

 

 

b. Example: French data 

We will now illustrate our analysis of the reliability of the model’s prediction/estimation 

using a single country’s data. We focus on French data, because governmental 

agencies provide additional data11, which are missing from WHO or ECDC databases 

(as of today). Note that reported daily death rates are restricted to hospital data, i.e. it 

does not include those people who do not die in hospitals (c.f. e.g., retirement homes). 

We pre-processed the time series to correct data reports from various counting errors 

(see below). We also padded the governmental data with ECDC data from the 1st of 

January to the 18th of March (for both daily death and positive test rates) because these 

dates are not reported in the online available governmental data repositories. This 

means that there are missing data for both ICU occupancy and total test rates. Figure 

5 below shows the effect of data smoothing on the observed data. 

                                                           
11 These data are made available online here: https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-
relatives-a-lepidemie-de-covid-19/ and here: https://www.data.gouv.fr/en/datasets/donnees-relatives-aux-
tests-de-depistage-de-covid-19-realises-en-laboratoire-de-ville/.  
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Figure 5: Data pre-processing. Upper-left panel: Reported daily death rate dynamics (y-axis) is plotted 
against time (x-axis, in weeks), starting on the 1st of January 2020 and ending on the 19th of April 2020. 
The black line and black dots denote the uncorrected and corrected data, respectively. Upper-right 
panel: positive test rates, same format as upper-left panel. Lower-left panel: total test rates, same format 

as upper-left panel. Lower-right panel: ICU occupancy error I , same format as upper-left panel. 

 

One can see that the native positive and total test rates exhibit strong periodic dips. 

Inspection of the corresponding dates show that these dips correspond to data reports 

made on weekends. Data pre-processing corrects most of these inconsistencies, 

without impacting on the corresponding cumulated counts (not shown). 

We conducted two analyses on these corrected datasets, by either fitting all reported 

data (VB0) or only daily death and positive test rates (VB1). Figure 6 below 

summarizes the ensuing data fits and their predicted dynamics 100 days beyond the 

last reported date. 
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Figure 6: Model fits of available French data: impact of data paucity. Upper-left panel: Reported 
daily death rate dynamics (y-axis) is plotted against time (x-axis, in weeks), starting on the 1st of January 
2020 and ending on the 19th of April 2020. Note: only hospital mortality is reported here. The blue and 
red traces denote the predicted data when accounting for ICU occupancy and negative test rates and 
when not accounting for these, respectively. The black dots show the corrected available data. Black 
dotted lines denotes the start and intended end of the governmental containment measures (17th of 
March and 11th of May, respectively). Upper-right panel: positive test rates, same format as upper-left 
panel. Lower-left panel: ICU occupancy. Lower-right panel: total test rates. 

 

Recall that VB0 and VB1 both attempt to account for observed daily death rates and 

positive test rates. One can see that both succeed in explaining these time series with 

very high accuracy. In fact, VB1 explains these data better (VB0: R2[death rate]=99%, 

R2[positive test rate]=94%, VB1: R2[death rate]=98%, R2[positive test rate]=99%). 

However, only VB0 tries to concurrently fit ICU occupancy and negative test rates. 

Here again, observed time series are very well explained (VB0: R2[ICU 

occupancy]=95%, R2[total test rate]=95%). In contrast, VB1’s estimates of these time 

series are substantially overestimated. This is because VB1 has (unknowingly) 

overfitted the positive test rates, which has resulted in parameter estimation errors. 

The situation is quite different for VB0, which had to find parameter estimates that yield 

a balanced trade-off between all concurrent data reports. This observation 

recapitulates the simulations results regarding ICU occupancy error (although France 

is currently lying in between typical early or late peak phases). 
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Although fit accuracies for common datasets are comparable, VB0 and VB1 make 

remarkably different predictions. This is illustrated on Figure 7 below. 

 

Figure 7: Model predictions/estimations given available French data. Upper-left panel: Reported 
cumulated death count dynamics (y-axis) is plotted against time (x-axis, in weeks). Same format as 
Figure 6. Note: only hospital mortality is reported here. Upper-right panel: effective reproduction rate, 
same format as upper-left panel. Lower-left panel: estimated parameters given all available data (VB0). 
Errorbars show Bayesian 95% posterior credible intervals. Lower-right panel: estimated parameters, 
when ignoring ICU occupancy and negative test rates (VB1), same format as upper-left panel. 

 

First, the estimated peak date is 6th of April for VB0, whereas it is 2nd of April for VB1 

(this can be seen in Figure 6). Second, the predicted cumulated death counts after the 

current epidemic outbreak clearly differ. For VB0, predicted cumulated death counts 

should be 15799 +/- 255 (11635, as of 18-Apr-2020), whereas for VB1, predicted 

cumulated death counts should be 13450 +/- 124. In brief, ignoring ICU occupancy and 

negative test rates yield epidemic outbreaks that terminate sooner and are less severe 

(in terms of casualties). 

Third, recall that the model can be used to derive estimates of effective reproduction 

rates (R0), i.e. the expected number of people who are infected by a COVID-carrier. 

This summary statistics of the infectiousness of the epidemics varies over time, 

depending upon the probability that people stay at home or not (this changes the 
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effective number of social contacts), and the probability of being susceptible to the 

disease. We refer the interested reader to Equation 1.9 in Friston et al (Friston et al., 

2020). It turns out that model-based estimates of the effective reproduction rates’ 

dynamics are clearly higher when accounting for ICU occupancy and negative test 

rates (cf. upper-right panel on Figure 7). Note that the effective reproduction rate starts 

to decrease roughly at the date of public lockdown (Tuesday the 17th of March). This 

is interesting because the model is not informed about this public health event. More 

precisely, it defines social distancing in terms of the (hidden) behaviour of citizens, 

without assuming that everyone follows the governmental containment instructions. 

Finally, accounting for ICU occupancy and negative test rates produce more uncertain 

parameter estimates (cf. lower panels on Figure 7). This is most likely because VB1 

overfits the observed data, effectively yielding underestimated (overconfident) 

evaluations of parameter estimation uncertainty. 

 

 

4. Discussion 

In this work, we have evaluated the reliability of model-based estimations/predictions 

for four outcomes of interest in the context of the current COVID pandemics. We have 

shown that the reliability of these predictions depends sensitively upon whether they 

are derived before or after the epidemic outbreak peak. In addition, we have shown 

that data paucity (in particular, ignoring ICU occupancy and negative test rates) can 

accentuate these prediction errors, even when the outbreak peak has already been 

observed. This is crucial when estimating the initial number of susceptible people, 

given that it determines the immunity ratio acquired by the population at the end of the 

epidemic event (Moran et al., 2020). We have also illustrated the impact of discounting 

ICU occupancy and negative test rates on French data available to date. This is a 

timely analysis, since France is, in all likelihood, currently experiencing the peak of the 

current epidemic outbreak.  

The outbreak peak is a significant marker of the rise and fall of distinct transient 

epidemic dynamics (and its associated public health measures), the late phase of 

which is crucial to inform parameter estimation. This is reminiscent of what could be 
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observed in DCMs for neural responses, where for instance, the key role of feedback 

connections between neuronal populations can only be evidenced once the first peak 

of the electrophysiological evoked response has been observed (Garrido et al., 2007). 

Here, some key hidden biological processes (and their associated unknown 

parameters) can only be reliably inferred after the peak of the transient dynamics. 

Having said this, the reliability of model-based predictions for countries that have not 

passed the peak yet (as is still the case now) could in fact be improved by informing 

the parameter estimation with data from countries where the outbreak peak has 

already been observed, using, e.g., hierarchical empirical Bayes models (Friston et al., 

2020; Kass and Steffey, 1989). At the European level in particular, this speaks to a 

common effort to gather and share data. 

From a statistical perspective, one may not be surprised that prediction/estimation 

errors decrease when augmenting the fitted data with ICU occupancy and negative 

test rates. What is remarkable however, is the quantitative difference it makes for e.g., 

cumulative death counts or effective reproduction rates (see Figures 6 and 7). More 

remarkable is the interaction of data paucity and timing of predictions with respect to 

the outbreak peak. More generally, in those particular times where uncertainty is high 

and decisions have to be made as quickly as possible, it may be particularly important 

to complement models with quantitative assessments of their reliability and the limits 

of our predictive approaches. 

As a side point, we have not addressed the reliability of the data we have used in our 

analysis. Daily death counts, for example, are potentially problematic for at least two 

reasons. First, different data repositories effectively give different numbers, e.g., 

people deceased in hospitals (as is the case for the French data we have presented 

here), or in hospitals and retirement homes. Second, they may not account for “normal” 

seasonal mortality (Goldstein et al., 2012), though this is not the case here (because 

these hospital death counts are confirmed COVID cases). Testing procedures also 

have imperfect sensitivity and specificity (Patel et al., 2020), and ICU occupancy 

actually depend upon heterogeneous clinical criteria (e.g., respiratory support versus 

reanimation). All these limitations are difficult (though not impossible) to account for, 

and further challenge even further the reliability of model-based predictions. 
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Contrary to most papers that focus on model definition and extension, the approach 

here tackles this assessment which we believe will become more and more important 

as more alternative models are proposed, to account for, e.g., the influence of 

lockdown decisions. This applies to the DCM-COVID model we evaluate here, which 

is currently being refined along these lines. The kind of data that may need to be 

acquired to inform the ensuing model predictions is an issue of primary practical 

importance if this or similar models are to guide public health decisions. 

Performing this type of analysis for currently available models is beyond the scope of 

the current work. However, our results highlight the need for evaluating the reliability 

of model predictions that are currently used by national and international socio-political 

decision makers. They also motivate the gathering of multiple data time series and 

making them available to the modelling community. This requirement obviously 

extends beyond ICU occupancy and negative test rates (Chen et al., 2020; Salomon, 

2020). In the near future for instance, data about the number of asymptomatic cases 

in the population, about how infectious are children or about individual immunity after 

recovery may prove critical. In order to validate model predictions, particularly those 

related to infected or clinical status, biological assays of these inferred measures are 

required. Serological surveys for example are being rolled out to examine community 

infection rates. In a recent study in the Santa Clara region of California antibodies to 

SARs-CoV-2 were identified in 1.5% of 3,330 people sampled – with an adjusted 

population prevalence of 2.4% to 4.26% of the population (Bendavid et al., 2020), with 

similar rates identified in an analysis of Dutch blood samples  in line with model 

estimates (Moran et al., 2020). Larger ‘serosurveys’ will ultimately be required to more 

precisely define these measures with large populations being enrolled currently in 

Germany and by the US National Institute of Health. In addition, reports from centres 

of recent outbreaks are providing further details that can inform model parameter 

priors. For example two hospitals in New York City have recently reported a 

mechanical ventilation requirement for 33.1% of patients admitted for the treatment of 

Covid-19 (Goyal et al., 2020). The impact of these and other kinds of data on the 

reliability of model-based predictions could be evaluated with the approach presented 

here, irrespective of the model used. 
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