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Abstract

Paraphrasing [Morano and Holt, 2017], contextual determinants of health in-
cluding social, environmental, healthcare and others, are a so-called deck of
cards one is dealt. The ability to modify health outcomes varies then based
upon how one’s hand is played. It is thus of great interest to understand how
these determinants associate with the emerging pandemic covid-19. To this
end, we conducted a deep-dive analysis into this problem using a recently cu-
rated public dataset on covid-19 that connects infection spread over time to
a rich collection of contextual determinants for all counties of the U.S and
Washington, D.C. Using random forest machine learning methodology, we
identified a relevant constellation of contextual factors of disease spread which
manifest differently for urban and rural counties. The findings also have clear
implications for better preparing for the next wave of disease.

Keywords: Covid-19, Pandemic, Contextual Factors, County Level, Growth
Curves, Random Forests, Machine Learning

1 Introduction
Like politics, all public health is ultimately local. This tenet is particularly impor-
tant in trying to understand the dynamics of an emerging outbreak like the pandemic
covid-19. While much attention has focused on modeling infection spread and con-
tainment and mitigation strategies to better plan for potential surges and the impact
they may have on hospital capacities, less attention has been paid to understanding
the contextual nature of the pandemic.

This means modeling area level data like at the county level and including in-
formation on demographics, race/ethnicity, housing, education, employment and
income, climate, transit scores and healthcare metrics [Killeen et al., 2020]. Many
of these are often classified under the umbrella of social determinants of health that
have been documented to influence the success or setbacks in steps to a successful
public health emergency response [Morano and Holt, 2017]. Being able to do this
at a local level like the county has significant implications for understanding how
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where you live influences disease spread, differences between rural and urban set-
tings, and better planning for future anticipated waves of disease. In the absence
of comprehensive geocoded patient level data where multilevel interactions can be
assessed, the study of the area level influences alone on covid-19 spread is informa-
tive in its own right. In addition, with the realization that racial and ethnic minor-
ity groups are suffering disproportionately in the pandemic, social determinants of
health (which are important contributors to health disparities) have garnered more
attention.

To that end, recently [Killeen et al., 2020] designed a dataset containing a
machine-readable file with demographic, socioeconomic, healthcare and education
data for each county in the 50 states and Washington, D.C. organized by FIPS codes
which are unique county code identifiers. This data was cobbled together from
10 governmental and academic sources on the county level. The resulting dataset
contains more than 300 contextual county level variables. They then merged this
contextual data with county-level time series data from the JHS CSSE covid-19
dashboard [Dong et al., 2020] which gives continuously updated confirmed infec-
tion and death counts over time.

Our goal in this paper is to estimate growth rate increases (slopes) of the covid-
19 disease for each county in the U.S. and then relate these estimates to contextual
level factors. In addition, we would like to understand differences between urban
and rural county (i.e. populations < 50,000) settings in terms of the contextual
factors that most relate to growth rates. Since we expect these factors to interact
in complex ways, we will employ random forests machine learning methodology
[Breiman, 2001] for model fitting. We expect that our findings will help to inform
more nuanced strategies for safely re-opening society at the local level.

2 Methods

2.1 Study population
[Killeen et al., 2020] assembled the dataset under focus. Covid-19 infection volume
time series came from the Johns Hopkins University CSSE COVID-19 Tracking
Project and Dashboard which when the data was pulled ranged from 01/22/2020
until 04/12/2020. Climate data came from NOAA. County level demographic data
was extracted from the US Census Bureau and the USDA. Healthcare capacity
related data came from the Kaiser Family Foundation. Traffic score information
came from the Center for Neighborhood Technology. ICU bed information came
from Kaiser Health Network. Additional covid-19 case information came from
USAfacts. Physcian workforce data came from AAMC.

Many of the variables were not usable in their original forms, many involved
counts within a county but did not take into account the overall size of the county
itself. This would make it impossible to directly compare between counties. There-
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fore, all count variables were standardized by their totals for example counts of
racial and gender groups were divided by the total population of the county and
household counts were divided by the total number of households in the county.
These variables are listed in the list of columns section of the GitHub repository
created to provide this data [Killeen et al., 2020].

There was also an issue of state level variables that were included in the dataset
either by copying the state level data for every corresponding county or by extrap-
olating the state characteristic as a fraction of population. Both types of variables
were excluded from the analysis. Our reasoning for this is that the state level in-
formation could muddle the mechanism for the individual counties since our goal
is to discern the slopes specifically at this level. If the forest were to start grouping
counties by data it would defeat the purpose of the analysis. As for the extrapolated
values by population, this is a very strong assumption that will most likely over-
state the resources available to rural counties. Furthermore, this again may cause
the forest to group by state which we want to avoid, our point is to have it group
by specifically county level characteristics thus giving us groups of similar counties
that experience similar increases in infection rates.

Highly correlated variables were removed because they represented very similar
information. The vast majority of these removed variables were upper and lower
bound estimates of means included in the dataset. There is one pair of variables
for migration that we suspected would be highly correlated, one was absolute count
and the other was rate, for these the correlation was not very high and we though
both could be particularly important in predicting slopes so both were included.

We also removed any variables with a missingness rate of over 45%. This re-
sulted in a final set of 186 variables that were analyzed. Full codebook for variable
descriptions on Github site accompanying [Killeen et al., 2020]. Missing values in
these were handled using random forest imputation (discussed in the next subsec-
tion).

Some counties had to be omitted from the analysis and this was mostly due to
poor fit in the growthcurver procedure. Either the model was not estimable or
the estimated midpoint time was much farther out than the data that was available
at the time of analysis. We wanted to avoid such far extrapolations when the actual
data only existed for far fewer days. This resulted in a loss of 16.8% of the counties.
Also, for any counties that continued to have zero infections although the model
could not be fit, we assumed the slopes to be zero.

2.2 County-specific confirmed infections growth curve fitting and
growth rate estimation

The infections time series county-level data was obtained from [Killeen et al., 2020]
that updated on Apr 13, 2020. The counts of infection in each county were stan-
dardized by corresponding county population and then fit into growth curve model.
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The growth curves for each county was estimated based on logistic equation which
is commonly used in population ecology [Crow et al., 1970; Rockwood, 2015;
Sprouffske and Wagner, 2016] utilizing R package growthcurver [sprouffske,
2018]:

Ni(t) =

(
Ki

1 + (Ki−ni)e−rit

ni

)
+ εi(t),

whereNi(t) represents the proportion of infected people at time t for a given county
i, ni as the size of initial infection proportion, Ki as the carrying capacity, ri is
the growth rate with respect to the infection proportion, and εi(t) the model errors
assumed to have zero mean and constant variance. Non-linear least squares is used
to estimate model parameters.

The growth curve slopes were further obtained by taking derivative of Ni(t)
with respect to t for each county as:

slopei =
∂Ni(t)

∂t
=

K̂in̂ir̂i(K̂i − n̂i)e
r̂it(

K̂i + n̂i (er̂it − 1)
)2 ,

where estimated parameter values are indicated by a hat sign. Then to calculate the
maximal slope, we plug in the midpoint of time for t which for this type of function
represents when the change in the outcome is greatest.

2.3 Random Forests regression
Random forest (RF) is a machine learning technique developed by Leo Brieman
[Breiman, 2001] which has been implemented into many subject matters. The tech-
nique takes advantage of base learner aggregation to develop a complex learner that
has much improved prediction performance and fit on the data. In this case the
base learners are CART trees [Breiman et al., 1984] but in order to prevent having
the same tree appear multiple times in the forest, randomness is introduced to the
learning procedure. This takes the form of both bootstrapping the observations for
the training of each tree and random feature selection where the optimal split is
not taken from all variables available but instead a randomly selected subset. This
results in the trees being more independent of each other thus preventing the insta-
bility that is present in CART. The issue with CART tree is the balancing between
bias and instability via tree depth, if the tree grows too deep, then it is likely have
overfit the data (high instability) but will have low bias; while, if it grows too shal-
low, it will be more stable but have higher bias. Therefore by aggregating very deep
and unstable trees random forest is able to obtain overall low bias and average away
the instability of each tree thus giving us a very effective overall learner.

We used the rfsrc function in R [Ishwaran and Kogalur, 2020] for fitting ran-
dom forests. Growth curve slope estimates were treated as responses (y) and the 186
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contextual variables described above as county level predictors (xj; j = 1, . . . , 186).
We chose not to transform the responses because of the robustness of random forests
and to facilitate model interpretations ([Shah et al., 2014]). Random forest proce-
dures default settings were utilized which included mtry of square root of p (i.e.
the number of predictors). Additionally, the automatic imputation function that ran-
domForestSRC [Ishwaran and Kogalur, 2020] was activated in order to avoid losing
county information. The imputation procedure is built into the forest growing pro-
cedure and run all at once. We included imputation because if we were to run the
model only on the complete data, we would have lost approximately one third of the
counties with the biggest loss being in the rural counties. In order to avoid losing
so much data, we opted for imputation in our RF training. Separate forests were fit
to rural and urban counties. Relative variable importance plots were generated and
models validated using the % variance explained defined as,

R2 = 1− (MSE)/var(y),

where MSE is defined as the out-of-bag test error estimated on observations not
showing up in bootstrap resamples. Values near zero (or negative for that fact)
are indicative of modeling noise [Breiman, 2001]. Relative variable importance is
obtained by dividing all the calculated importances by the maximal one, this then
provides a value with a possible range between 0 and 1 which makes it easier to
interpret. Values near zero (or negative for that fact) are indicative of modeling
noise [Breiman, 2001]. Visualization of RF fits were done using parallel coordinate
plots and multi-variable co-plots. These are created based on clusters which were
determined with the PAM method using random forest distances as described in
[Mantero, 2018]. For PAM, k was set to 10, the goal here was not to obtain the
optimal number of clusters but to separate out a few groups with differing average
slopes in order to depict how the contextual variables change as the slopes increase
or decrease by group.

Random forest distances work similarly to random forest proximity but are more
sensitive to the tree topology therefore able to provide better clusters. Like random
forest proximity, a pair of points are considered highly proximal if they are in the
same terminal node, but unlike proximity, instead of simply assigning zero if they
are not in the same terminal node, a number between 0 and 1 is used depending on
how far down the tree the two points became disjoint.

In order to attempt to ascertain potential differences in how rates of infection
increases relate to the contextual variables between urban and rural settings, rural
county data was dropped down the RF trained on urban data and urban county data
was dropped down the RF trained on rural data. For this type of reverse prediction,
the resulting errors were calculated and 95% confidence intervals determined. This
allow us to see if there were regions of non-overlap suggesting the presence of pos-
sible heterogeneity between the associations between the rates with their contextual
variables depending on rural or urban settings.
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3 Results
Figure 1 shows sample growth curves fit to two large urban counties (New York,
NY(population 1628701) and Miami-Dade, FL(population 271581)) and two rural
counties (Randolph county, GA (population 6833) and Barbour county, AL (popu-
lation 24881)). New York county and Randolph county had large slope estimates
and Miami-Dade and Barbour counties had much smaller slopes estimates (note the
much smaller values of the y-axis for Babour county). Figure 2 shows the estimates
growth curve slopes versus log10(population) based on 2019 census population val-
ues or all counties in the U.S. Blue coloring indicates rural counties and red coloring
urban. While the majority of estimated slopes are not large, it is clear that there are
a mixture of urban and rural counties with large slope estimates.

Random forests were fit separately to urban and rural counties. For the urban
forest the % variance explained was 32.26% and 32.56% for the rural forest. This is
very much on par with other studies that focus on area-level variables only (see for
example, [Richardson et al., 2017], [Oliveira et al., 2012]). This shows good model
validation for both forests.
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Predictors Description Rel.
importance

HBA FEMALE Hispanic, Black or African American alone female
population

1.000

HBA MALE Hispanic, Black or African American alone male pop-
ulation

0.978

NHIAC MALE Not Hispanic, American Indian and Alaska Native
alone or in combination male population

0.949

HBAC FEMALE Hispanic, Black or African American alone or in com-
bination female population

0.785

NHIA MALE Not Hispanic, American Indian and Alaska Native
alone male population

0.775

INTERNATIONAL MIG
2018

Net international migration in period 7/1/2017 to
6/30/2018

0.684

Density.per.square.mile.of.
land.area...Housing.units

Land area density for housing units as per 2010 census 0.655

Density.per.square.mile.of.
land.area...Population

Land area density for population as per 2010 census 0.562

May.Temp.AVG...F Average temperature in May, 2019 in Fahrenheit 0.449
May.Temp.Max...F Maximum temperature in May, 2019 in Fahrenheit 0.422
HBAC MALE Hispanic, Black or African American alone or in com-

bination male population
0.378

NHTOM FEMALE Not Hispanic, Two or More Races female population 0.372
Apr.Temp.Max...F Maximum temperature in Apr, 2019 in Fahrenheit 0.335
R INTERNATIONAL
MIG 2018

Net international migration rate in period 7/1/2017 to
6/30/2018

0.312

NHTOM MALE Not Hispanic, Two or More Races male population 0.297
NHIA FEMALE Not Hispanic, American Indian and Alaska Native

alone female population
0.282

May.Temp.Min...F Minimum temperature in May, 2019 in Fahrenheit 0.273
Jun.Temp.Min...F Minimum temperature in Jun, 2019 in Fahrenheit 0.272
DOMESTIC MIG 2018 Net domestic migration in period 7/1/2017 to

6/30/2018
0.268

NHNAC FEMALE Not Hispanic, Native Hawaiian and Other Pacific Is-
lander alone or in combination female population

0.235

Total.households..
Nonfam-
ily.households.. House-
holder.living.alone
65.years.and.over

Total number of nonfamily households where House-
holder living alone is 65 years and over

0.232

MEDHHINC 2018 Estimate of median household income 2018 0.211
NHIAC FEMALE Not Hispanic, American Indian and Alaska Native

alone or in combination female population
0.194

Apr.Temp.AVG...F Average temperature in Apr, 2019 in Fahrenheit 0.192
NHNA FEMALE Not Hispanic, Native Hawaiian and Other Pacific Is-

lander alone female population
0.189

Table 1: Important variables for urban RF
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Predictors Description Rel.
importance

NHBAC FEMALE Not Hispanic, Black or African American alone or in
combination female population

1.000

NHBAC MALE Not Hispanic, Black or African American alone or in
combination male population

0.984

NHBA MALE Not Hispanic, Black or African American alone male
population

0.863

NHBA FEMALE Not Hispanic, Black or African American alone fe-
male population

0.748

PCTPOVALL 2018 Estimated percent of people of all ages in poverty
2018

0.360

NHWA FEMALE Not Hispanic, White alone female population 0.352
Male age65plus Total number of males with age >65 0.292
HIA MALE Hispanic, American Indian and Alaska Native alone

male population
0.280

Total age85plusr Total number of people with age >85 0.267
NHWAC FEMALE Not Hispanic, White alone or in combination female

population
0.252

Rural.urban Continuum
.Code 2013

Rural-urban Continuum Code, 2013 0.246

Mar.Temp.AVG...F Average temperature in Mar, 2019 in Fahrenheit 0.236
Total age65plus Total number of people with age >65 0.226
Feb.Temp.Max...F Maximum temperature in Feb, 2019 in Fahrenheit 0.222
Total age18to64 Total number of people between ages 18 to 6 0.207
LARCENY Larcenies reported in county 0.202
Percent.of.adults.with.less.
than.a.high.school.
diploma.2014.18

Percentage of adults who do not have a high school
diploma

0.200

INTERNATIONAL MIG
2018

Net international migration in period 7/1/2017 to
6/30/2018

0.198

HIAC FEMALE Hispanic, American Indian and Alaska Native alone
or in combination female population

0.188

HIA FEMALE Hispanic, American Indian and Alaska Native alone
female population

0.184

Female age85plusr Total number of females with age ¿85 0.177
Med HH Income Percent
of State Total 2018

County Household Median Income as a percent of the
State Total Median Household Income, 2018

0.174

HIAC MALE Hispanic, American Indian and Alaska Native alone
or in combination male population

0.171

NHWAC MALE Not Hispanic, White alone or in combination male
population

0.169

transit scores...population
.weighted.averages.
aggregated.from.
town.city.level.
to.county

Transit scores - how well a location is served by public
transit

0.168

Table 2: Important variables for rural RF
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Tables 1 and 2 display relative variable importance tables (i.e. mean decrease
in accuracy using out-of-bag prediction when the variable is permuted) for urban
counties and rural counties respectively. These were extracted from the relative
variable importance scree plots in Figure 3 by choosing those variables with large
relative importance values left of the visible “elbow” in the plots.

In order to better visualize the fitted random forests, we next categorized coun-
ties by slope estimate groupings as determined by the fitted forests. Parallel coor-
dinate plots are shown in Figure 4 and Figure 5 for urban and rural counties respec-
tively. Each group is represented by lines moving horizontally and each variable by
a vertical line (whose range of values is above and below the vertical line). Lines
connect mean values of each variable for that group. The mean value of the slope
for the group is shown in the first vertical line. The variables are sorted according
to relative variable importance.

It’s clear that there are clusters of variables that clearly separate slope groups
and that the variables differ for the urban versus rural random forest. For the
urban parallel coordinate plot, such variables included percentage of Hispanic,
black or African American male and female (HBA FEMALE, HBA MALE), inter-
national migration (INTERNATIONAL MIG 2018), housing density, population
density and May 2018 average and maximum temperature values in degrees F. For
rural counties, such variables included percentage of non-Hispanic, black or African
American male and female (NHBAC FEMALE, NHBAC MALE, NHBA MALE,
NHBA FEMALE), 2018 and percent poverty as estimated in 2018. Other variables
of rural importance also included age - specifically the percent of the population that
were elderly.

Figure 6 and Figure 7 show co-plots focusing on these key variables. This
allows a closer inspection of how the growth curve slope estimates continuously
change as a function of other variables. In particular each co-plot showed co-
dependence on 4 other variables. For the urban co-plot, variables plotted include
HBA MALE, population density, and 2018 international migration numbers. Each
line is shown with a different color and plotting character. As the legend indi-
cates, they represent quintiles of the 2018 average May temperature. There are
some clearly interesting patterns where slopes are seen to rise dramatically. For in-
stance, the top right panel indicates that for counties with higher average 2018 May
temperatures, higher percent black male populations and higher degrees of interna-
tional migration, that covid-19 spread much more dramatically than in other urban
counties.

Contrast this with the rural co-plot. There are multiple interesting panels here
but focus again on the top right panel. Here each line represents a group of coun-
ties classified by rural-urban continuum codes in 2013 with larger numbers indi-
cating smaller population counties either adjacent or not adjacent to a metro area.
Smaller, (and also more isolated) counties saw a much more rapid increase in covid-
19 spread when accompanied by having a proportionately more black, older popula-
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tion who also had a higher percentage of their population in 2018 living in poverty.
Reverse predictions for urban counties were generated from the rural forest and

for rural counties from the urban forest. Absolute error 95% confidence intervals
were [4.967× 10−5, 5.513× 10−5] and [7.224× 10−5, 8.535× 10−5] respectively.
The non-overlap further confirms some differences in county level structure being
captured by both forests.

4 Discussion
Social determinants of health are known to influence the spread of infectious dis-
eases [Bishwajit et al., 2014]. These include the impact of poverty, illiteracy, poor
sanitation, food insecurity, overcrowding, access to healthcare, workplace condi-
tions and transit options amongst others. Other important factors are immigration
patterns, age distributions, weather and environmental conditions. These factors
can play a large role in determining how successful the response to a public health
emergency is [Morano and Holt, 2017]. They also are intimately involved in health
disparities that arise in more acute fashion during a pandemic. This is already been
observed for the covid-19 pandemic where people of color have borne a dispropor-
tionate burden of mortality and morbidity of the disease.

Abiding by the tenet that public health is ultimately local in nature, we focused
on modeling county level data about disease spread and county-level determinants.
By linking confirmed infection numbers via growth curve modeling to a large num-
ber of area-level factors, we used random forest modeling to show interactions be-
tween area-level factors that associate with increased disease spread. These asso-
ciations were quite different for urban versus rural counties. Urban county spread
was more influenced factors like racial distributions (in particular the concentration
of African American individuals in a county), population and housing density, in-
ternational immigration patterns and cyclical weather patterns. Rural county spread
was also influenced by similar racial composition, but also by poverty, the degree
of elderliness and the degree of rurality.

The random forest models demonstrated objective goodness-of-fit on par other
studies that focused on area-level predictors alone. These models can be particularly
good at identifying complex interactions and so were well suited for this analysis.
As noted, random forest imputation was performed and so we did a sensitivity anal-
ysis to confirm that the results were not overly influenced by the imputation scheme
[Resseguier et al., 2011].

There are some ways in which this analysis could be improved. First, we did
not take into account particular county level interventions that were made over time
- for example lockdowns. This data does in fact exist as another data file in the
same repository at Johns Hopkins University. One strategy to incorporate this data
would be to add in lockdown status as a time-varying covariate in the growth curve
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model and then re-estimate growth curve slopes. One strategy for this is to use
group counties by lockdown dates and then use the technology of non-linear mixed
models using additional covariates [Pinheiro, 2002].

Further information that would have been useful to include in the model but
was not available at the county level includes number of nursing home facilities
and traffic flow or movement data. The nursing home facilities although somewhat
presented in the age demographics of the county, are important in their own right
since they often served as sites of localized case clusters. Traffic flow or movement
data would indicate the degree to which lockdown measures were being adhered
to. Lastly, one missing confounding variable is the uneven use of testing across
different regions of the country. This would clearly affect the confirmed infection
count time series numbers.
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14 FIGURES

Figure 1: A sample of two urban and two rural counties - one in each group with a
large slope estimate and the other with a smaller slope estimate.
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Figure 2: County-specific growth rate estimates (slopes) versus log10(population)
based on 2018 census numbers. Coloring by rural or urban status.
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Figure 3: Variable relative importance scree plots: urban (top), rural (bottom).
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Figure 4: Parallel coordinate plots for urban counties.
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Figure 5: Parallel coordinate plots for rural counties.
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Figure 6: Co-plot for urban counties.
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Rural urban Continuum Code 2013

1−	Counties in metro areas of 1 million population or more
2−	Counties in metro areas of 250,000 to 1 million population
3−	Counties in metro areas of fewer than 250,000 population
4−	Urban population of 20,000 or more, adjacent to a metro area
5−	Urban population of 20,000 or more, not adjacent to a metro area
6−	Urban population of 2,500 to 19,999, adjacent to a metro area
7−	Urban population of 2,500 to 19,999, not adjacent to a metro area
8−	Completely rural or less than 2,500 urban population, adjacent to a metro area
9−	Completely rural or less than 2,500 urban population, not adjacent to a metro area

Figure 7: Co-plot for rural counties.
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