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Abstract

The exponential character of the recent Covid-19 outbreak requires a change in strategy
from containment to mitigation. Meanwhile, most countries apply social distancing with
the objective to keep the number of critical cases below the capabilities of the health
care system. Due to the novelty and rapid spread of the virus, an a priori assessment of
this strategy was not possible. In this study, we present a model-based systems analysis
to assess the effectiveness of social distancing measures in terms of intensity and
duration of application. Results show a super-linear scaling between intensity (percent
contact reduction) and required duration of application to have an added value (a lower
number of fatalities). This holds true for an effective reproduction of R > 1 and is
reverted for R < 1. If R is not reduced below 1, secondary effects of required long-term
isolation are likely to unravel the added value of disease mitigation. If an extinction is
not feasible, we recommend moderate social-distancing that is well balanced against
capability limits of national health-care systems.

Introduction 1

This article is written in mid-April 2020 where globally the number of confirmed 2

COVID-19 cases is above 2.5 million resulting in over 170,000 deaths [1]. Due to these 3

large numbers, the initial approach of containment, i.e. tracing contacts of patients with 4

laboratory-confirmed infection [2], is not applicable anymore and may even have 5

unintended consequences of hampering effective healthcare delivery [3]. Instead, the 6

majority of countries decided to use community interventions, like cancellation of events, 7

general social distancing and travel restrictions [4]. 8

These community mitigation measures reduce transmission, hence flatten the curve 9

and push the peak of new infections further into the future which eventually helps 10

preventing an epidemic peak that overwhelms health-care systems [5]. The need for 11

mitigation measures is also evident from the actions taken by European countries who 12

implemented interventions including the closure of schools and universities, banning of 13

mass gatherings, and most recently, widescale social distancing including local and 14

national lockdowns [6]. 15

Numerous studies support this strategy [3] [4] [7] [8]. Applied in the long-term, 16

however, school closure and home confinement will negatively affect children’s health 17

[9] and the global economy, to name only two big drawbacks of these measures. In this 18
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light, it is of particular interest, for what duration these exceptional interventions must 19

remain in place. According to recent estimates, we are probably at least 1 year to 18 20

month away from large-scale vaccine production [5]. Independent of the time it takes to 21

develop a vaccine, the epidemic spread will also come to an end, if sufficient people have 22

been infected to establish herd immunity. Studies on the effectiveness of the concept of 23

disease mitigation with the objective to establish herd immunity shows some potential 24

in the case of pandemic influenza [10]. 25

In this study, we present an exploratory and model-based systems analysis that is 26

aimed at investigating the application of social distancing strategies to Covid-19. 27

Specific objectives of this research are: 1) to investigate the effectiveness of contact 28

reduction policies with respect to intensity and duration and 2) to estimate the amount 29

of time to establish herd immunity by considering the national health care systems of 30

Austria and Sweden, which are very different in terms of critical care capabilities 31

(Austria: 21.8 beds Sweden: 5.8 beds per 100k population, respectively) [11]. A detailed 32

description of model equations, assumptions as well as uncertainty of currently available 33

data are presented in the following section. Data uncertainty is addressed by the 34

analysis of alternative scenario runs to enhance robustness of model results. In a 35

concluding section, we compare our results to similar studies, discuss current limitations 36

of data availability and give recommendations based on exploratory results. 37

Method 38

Adapted SIR model 39

The current scenario of novel pathogen emergence includes considerable uncertainty 40

[12]. This means that a reliable scientific evidence base on Covid-19 is yet to be 41

established. Under these preconditions, the use of models for exploratory rather than 42

predictive purposes is more appropriate [13]. Accordingly, the simulation model 43

presented in this study was designed to identify and systematically explore important 44

qualitative behavior of this dynamic system that remains unchanged irrespective of 45

parameter variations. An adaptation of the popular-infected-recovered (SIR) model 46

turned out to be most suitable for this purpose (see Fig. 1). In order to meet the 47

specific requirements of a simulation model on Covid-19 mitigation, the structure of the 48

original model was adapted accordingly. For instance, pathological findings of Covid-19 49

indicate that there is a considerable number of cases that develop mild or no symptoms 50

[14]. To account for this characteristic, we separated the infected population into those 51

that are asymptomatic and those that are not, which in the latter case leads to isolation 52

or hospitalization. The asymptomatic infected get resistant without prior isolation. 53

Exponential growth in numbers of infected poses a challenge to health care facilities. 54

In Italy, specialists are already considering denying life-saving care to the sickest and 55

giving priority to those patients most likely to survive [15]. This will inevitably cause 56

potentially avoidable deaths. In the model, deaths caused by a lack of intensive care is 57

considered independently. 58

The calculation of population quantities in respective compartments (see Fig. 1) is 59

in line with the logic of the standard SIR model. The model makes the simplified 60

assumption that initially everyone in the total population N is susceptible. The number 61

of susceptible is reduced over time by infections as 62

dI(t)

dt
= ircui , (1)

where ir is the infection rate (rate of contacts between uninfected and infected that 63

result in infections) and cui is the number of contacts between infected and uninfected, 64

which is calculated as 65
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S(t) I(t) II(t) RS(t)

DL(t)

D(t)RA(t)

Eq. 1 Eq. 4

Eq. 5 Eq. 6

Eq. 7

Eq. 8

Fig 1. Schematic diagram of the adapted SIR model: susceptible S(t), infected
- infection unknown I(t), infected in isolation II(t), resistant symptomatic RS(t),
resistant asymptomatic RA(t), deaths D(t), deaths caused by lack of ICU DL(t),
compare equations 1 - 8

cui = I(t)
cdS(t)

N
(2)

where cd is the personal contacts per day, S(t) is the susceptible at time t and I(t) is 66

the number of unknown infections. To take account for a lower infection rate of 67

asymptomatic infected, the unknown infections I(t) in equation 2 is substituted by 68

IC(t) = I(t)(1− af + afap) (3)

with IC(t) being the unknown infected corrected for asymptomatic infected, af the 69

fraction of asymptomatic among infected and ap the asymptomatic population’s 70

potential to infect. 71

The flows from compartment I(t) - i.e. asymptomatic cases getting resistant 5 and 72

isolation of symptomatic infected 4 –are calculated by 73

dII(t)

dt
= I(t)

1− af
d

, (4)

dRA(t)

dt
= I(t)

af
da

. (5)

Parameter d is the time between infection and isolation (corresponds to the duration of 74

infectiousness) and da is the duration of asymptomatic infection. The flows from 75

compartment II(t) are given by 76

dD(t)

dt
= II(t)

CFR

ds
, (6)

dDL(t)

dt
=

{
ICUd−ICUs

ds
if ICUd > ICUs

0 otherwise
(7)
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dRS(t)

dt
=
II(t)

ds
− dD(t)

dt
− dDL(t)

dt
(8)

where parameter ds is the duration of distinct symptomatic sickness, CFR is the case 77

fatality rate and ICUd and ICUs is the intensive care demand and supply respectively. 78

The intensive care demand ICUd is calculated by taking the critical fraction of 79

infected in isolation II(t). The fraction of infected who are admitted to intensive care is 80

denoted as cf (see Table 1). 81

Model inputs and exploration 82

Despite the novelty of Covid-19, the body of literature on key parameters like basic 83

reproduction, case fatality rates and proportion of asymptomatic cases is quite 84

substantial and growing. The wide range of suggested parameter values, however, poses 85

a considerable challenge to model parametrization. For instance, estimates of the basic 86

reproduction number R0 vary within a range from 1.4 [16] to 4.71 [17]. Part of this 87

variation is explained by geographic variation of population densities as well as by 88

heterogeneous social and cultural habits [18]. Moreover, there is uncertainty in the 89

percentage of asymptomatic cases. The outbreak in a smaller isolated population is an 90

opportunity to derive representative numbers by applying comprehensive and repeated 91

laboratory testing. One such example is the outbreak of Covid-19 on board of the 92

Diamond Princess cruise ship. However, given that most of the passengers were 60 years 93

and older, the nature of the age distribution may lead to underestimation of 94

asymptomatic cases if older individuals tend to experience more symptoms [19]. The 95

assumed age dependence of asymptomatic infection is supported by a screening of 96

pregnant woman admitted for delivery in New York-Presbyterian Allen Hospital 97

between March 22 and April 4, 2020 (n=215) that show an asymptomatic fraction at 98

presentation of 87.9% among 33 patients who were tested positive for SARS-CoV-2 [20] 99

In a normal population ratios of about 50% asymptomatic carriers of Covid-19 are 100

expected ( [21]). The question whether or not asymptomatic carriers are able to infect 101

others is still controversial (e.g. [22]). 102

The severity of the disease does also play an important role in estimating the ratio of 103

critically ill patients who need intensive care. According to Chinese statistics, 5% of 104

positively tested patients are admitted to intensive care [23]. This number was adopted 105

by the World Health Organization [24] and other studies (e.g. [25]), whereas national 106

statistics show significant deviations; e.g. 9 to 11% in Italy [15] and 2.2% in Austria 107

[26]. A potential explanation for these considerable differences is that in Italy a lot of 108

the older population were infected [27]. 109

The specific age distributions of affected communities may also show some biasing 110

effect on estimated case fatality rates. Another factor that contributes to regional 111

differences in case fatality is the occupation or over-occupation of available intensive 112

care beds (ICU beds). In a few instances, national critical care capabilities are exceeded 113

by the number of critically ill patients (e.g. Italy and France), which drastically elevates 114

fatality rates. By contrast, the true case fatality rates are lower if theoretically all cases 115

were found by testing the entire population. Accordingly, a lower case fatality rate 116

(CFR) was reported by countries who were effective in extensive testing and 117

maintaining the prevalence of critical cases below critical care capabilities like South 118

Korea [28]. A higher CFR was reported by countries who refrain from extensive testing 119

and/or are overwhelmed by the pace of new infections like Iran, Italy and others [29]. 120

In the model, we use the more reliable South Korean figures and simulate the additional 121

fatalities due to the critical care limit based on capability limits of national critical care 122

units (see Eq. 6 and Eq. 7). 123
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Table 1. Model parameters

Parameters uncertainty Value(s)

basic reproductive numbers (R0) high
1.4 [16]
2.1 [30]
3.2 [31]

percentage of infected population
that are asymptomatic (af )

high
17.9% [19]
50% [21]

asymptomatic population’s poten-
tial to infect (ap)

high
50% [32]
100%

number of available ICU
beds/100000 inhabitants

medium
AUT 21.8
SWE 5.8
[11]

duration of distinct symptomatic
sickness (ds)

medium 7 days [14]

duration of asymptomatic infection
(da)

medium

14 days
(assumed to
be similiar
to symp-
tomatic)

initial infected population of total
population (I0

model input S0 × 10−6

ratio of confirmed cases that need
intensive care (cf )

high
5% [23] 2.2%
[26]

case fatality rate (CFR) high 0.7% [28]
social contact reduction in percent
(cr)

model input

duration of precautionary measures
(dm)

model input

Among the parameters in Table 1, the basic reproduction number R0 is the only 124

parameter without explicit representation in the model equations. This parameter is the 125

number of secondary cases, which an infected person produces in a completely 126

susceptible population [33]. In the absence of asymptomatic infections, R0 in the model 127

is equivalent to the arithmetic product of d the time between infection and isolation, cd 128

the personal contacts per day and ir the infection rate. 129

R0s = cdird (9)

To account for asymptomatic infection, R0s is modified by the specific duration of 130

infectiousness (da) and infection potential (ap) of asymptomatic infected. This can be 131

expressed as 132

R0 = R0s
1− af + apaf

1− af + d
da
af

(10)

The numerator scales R0 by the asymptomatic populations’s infectiousness, whereas 133

the denominator scales R0 by the asymptomatic population’s duration of infectiousness. 134

In response to an epidemic disease outbreak, measures are implemented to reduce 135

contacts between people thereby reducing the reproduction of the disease. This is 136

implemented in the model by lowering the personal contacts per day cd. We refer to 137

this modified reproduction as effective reproduction number R. The choice of 138

appropriate scenarios is based on parameter uncertainty and model sensitivity. 139
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Sensitivity analysis indicate a linear response in model output to variations in CFR and 140

cf , and interestingly non-linear effects in response to variations in R, af and ap. 141

Accordingly, the latter variables were selected as scenario parameters (see Table 2). 142

Table 2. Scenario runs

Nr Scenario name Parameters Type

1
symptomatic, high ba-
sic reproduction

af=17.9%,
ap=50%,
R0=3.2

prolonged

2
symptomatic, medium
basic reproduction

af=17.9%,
ap=50%,
R0=2.1

prolonged

3
symptomatic, low basic
reproduction

af=17.9%,
ap=50%,
R0=1.4

prolonged

4
asymptomatic, high ba-
sic reproduction

af=50%,
ap=100%,
R0=4.26

prolonged

5
asymptomatic, medium
basic reproduction

af=50%,
ap=100%,
R0=2.8

prolonged

6
asymptomatic, low ba-
sic reproduction

af=50%,
ap=100%,
R0=1.86

prolonged

7
medium basic reproduc-
tion, high need for in-
tensive care, Austria

af=17.9%,
ap=50%,
R0=2.1,
ICUs=21.8,
cf=5%

intermittent

8
medium basic reproduc-
tion, high need for in-
tensive care, Sweden

af=17.9%,
ap=50%,
R0=2.1,
ICUs=5.8,
cf=5%

intermittent

9
high basic reproduc-
tion, high need for in-
tensive care, Austria

af=50%,
ap=100%,
R0=2.8,
ICUs=21.8,
cf=5%

intermittent

10
high basic reproduc-
tion, high need for in-
tensive care, Sweden

af=50%,
ap=100%,
R0=2.8,
ICUs=5.8,
cf=5%

intermittent

11
low basic reproduction,
low need for intensive
care (Felix Austria)

af=17.9%,
ap=50%,
R0=1.4,
ICUs=21.8,
cf=2.2%

intermittent

Moreover, prolonged and intermittent social distancing [16] was applied in respective 143

scenarios (see Table 2). Whereas prolonged social distancing is defined by constants cr 144
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and dm , intermittent social distancing is implemented by dynamic adaptation of 145

contact reduction cr during simulation runtime dependent on the amount of ICU beds 146

available. If more than 70% of ICU beds are vacant, measures are loosened (daily 147

change of cr -20% until initial cd is reached), whereas measures are tightened (daily 148

change of cr +20% until cd = 0 is reached) in case less than 30% of ICU beds are 149

available. The linear adjustment in measures is based on the assumption that a 150

complete lockdown (cr = 100%, cd = 0 ) can be removed or implemented within 5 days. 151

Results and discussion 152

Effectiveness of contact reduction 153

An increase in asymptomatic cases will overall increase the potential of the infected 154

population to infect susceptible people, i.e. increase the basic reproduction R0, provided 155

asymptomatic and symptomatic cases have a similar potential to infect. This is due to 156

the extended duration asymptomatic cases remain undetected and thus infectious. The 157

reduction of potentially infective contacts has the opposite effect and thus diminishes 158

R0. 159

Moreover, the simulation shows that a lowering of the effective reproduction number 160

flattens the curve and delays the peak of new infections, whereas an increase has the 161

opposite effect (see Fig. 2). Consequently, social distancing flattens the curve of daily 162

infections, while higher proportions of asymptomatic cases elevate the peak (provided 163

ap = 1 and d < da). 164
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Fig 2. Delay effect of mitigation interventions (af = 0)

This flattening effect can be expressed analytically. The daily infections resemble a 165

normal distribution, which is defined by a mean µ (days between outbreak and peak of 166

daily infections) and a standard deviation σ. A lower R will lead to a higher µ (see Fig. 167

3) and a higher σ (see Fig. 4). Additionally, the number of initial infected people 168

reduces µ (see Fig. 5), whereas σ is independent of it. These inverse relationships can 169

be explained by mechanisms of viral spread. The effective reproduction of the disease at 170

a given time t diminishes with every new infection that depletes the susceptible 171

population (denoted as R(t)). Once R(t) drops below 1, the curve of new infections has 172

passed its peak. In the case where initial effective reproduction R is low, the pool of 173
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susceptible individuals is slowly depleted (slow viral spread) and the peak at R(t)=1 is 174

reached at a later point in time, which produces a flatter curver (high µ and σ). 175

Fig 3. Relationship between effective reproduction R and peak occurrence
µ in days after disease outbreak (af = 0). The parameter λ is calculated to 238

These non-linear relationships have an important impact on the effectiveness of 176

interventions. Social contact reduction and associated reduction in R push new 177

infections further into the future. Hence, the more intense the social distancing 178

measures in terms of contact reduction, the longer the duration needs to be to have an 179

added value; i.e. a lower number of fatalities. In other words, the harder you break, the 180

longer it takes. 181

For instance, 40% contact reduction needs to be applied for additional 600 days to 182

outperform a 30% contact reduction in scenario 2 (see Fig. 6). The lower the basic 183

reproduction in the scenarios, the larger the time lag associated with an intensification 184

of social distancing (see Fig. 6, scenarios 1, 2, 4, 5 and 6). This is in line with 185

above-mentioned relationships that show increased effects of R on µ and σ with lower R. 186

Given the trade-offs associated with required long-term lockdown, the effectiveness 187

of additional social distancing decreases with R close to 1. The secondary effects of lock 188

down have not been modelled, but it is speculated that reductions in social contacts will 189

increase mortality (e.g. social isolation and homicide; obesity and cardiovascular 190

diseases etc.) making moderate contact reduction more adequate. 191

Interestingly, if social distancing is intense enough to drop R below one, a further 192

increase in intensity reduces the needed duration of social distancing. For example, in 193

scenario 3 (see Fig. 6), a 30% contact reduction as well as 40% contact reduction push 194

R below one. The 40% contact reduction shows a positive effect (a lower number of 195

fatalities) earlier than the 30% contact reduction. This is contrary to the case of R > 1 196

where the effectiveness of more intense measures is in danger to be unraveled by the 197

super-linear increase in duration. 198

The curve flattening effect of social contact reduction also explains why drastic 199
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Fig 4. Relationship between effective reproduction R and standard
deviation σ. (af = 0) The parameter τ is calculated to 12.46

Fig 5. Relationship between effective reproduction, peak occurrence (µ)
and number of infected at model initialization (af = 0).
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Fig 6. Relative fatalities (fatalities with contact reduction divided by
fatalities without contact reduction, i.e. a relative fatality of 1 indicates
that measures have no added value) plotted against social contact
reduction in percent and duration of measure application

10
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contact reduction may cause more deaths than mild contact reduction, if measures are 200

applied for too short time. In the worst case, intense social distancing will hardly have 201

any effect (see Fig. 7). 202
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Fig 7. Relative fatalities (fatalities with contact reduction divided by
fatalities without contact reduction, i.e. a relative fatality of 1 indicates
that measures have no added value) in Scenario 2, (R0=2.1) with constant
duration (200 days) and varying intensity of contact reduction

Duration to establish herd immunity 203

Intensity and duration are also closely related in the intermittent social distancing and 204

herd immunity scenario (see Fig. 8). The strategic objective in this scenario is to keep 205

the demand for ICU beds within the bounds of ICU supply until herd immunity is 206

established. 207

In the simulation, the demand for ICU beds behaves like a damped oscillation (see 208

Fig. 8). This is explained by the delay in the system, diminishing number of 209

susceptible people and the negative feedback between number of available ICU beds and 210

social contacts. 211

In the early phase of the outbreak, the number of patients exceeds the number of 212

available ICU beds due to high reproduction potentials. Higher basic reproduction R0 213

results in additional over-occupation of ICU capabilities (see Fig. 8, scenario 9 and 10). 214

Moreover, the variation of available intensive care brings about a shift in the time 215

needed to achieve the strategic objective of herd immunity (compare Sweden and 216

Austria in Fig. 8). This relationship exhibits an almost linear scaling. Furthermore, 217

results show that even under favorable conditions, social distancing and herd immunity 218

strategies require extraordinary endurance. 219

In Austria, for instance, it is estimated that only 2.2% of confirmed cases are 220

admitted to ICU [26]. Combined with Austria’s high performance health care system 221

and low effective reproduction, the time to establish herd immunity is still estimated to 222

be about 2 years (see Fig. 9). Given that the ICU beds are also needed for patients 223

other than Covid-19, an even longer period has to be expected. 224
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Fig 8. Policy based mitigation of new infections to meet capabilities of
national health care systems
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Fig 9. Mitigation and herd immunity strategy in a high performance
health care system (Scenario 11 Austria, R0=1.4) and low rates of ICU
admissions (2.2% of confirmed infected)
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Conclusion 225

In this article, we used methods of exploratory systems simulation to assess the 226

effectiveness of social distancing measures in the mitigation of Covid-19. The simulated 227

behavior is governed by a non-linear relationship between the intensity of applied 228

measures (i.e. expressed as reduction of social contacts) and delay in the peak of new 229

infections. As a consequence of this delay, measure intensity scales super-linearly with 230

the required duration of application to show added value; i.e. a lower number of 231

fatalities. Given the large scale of temporal delay (up to multiple years for a 10% 232

increment of additional contact reduction), secondary effects of long-term social 233

isolation such as psychological distress, depression [34], and increased mortality [35] 234

are likely to unravel the added value of intense social distancing measures. This holds 235

true for effective reproduction numbers above one. Below this threshold, an 236

intensification of measures reduces the required duration of measure application. 237

In the absence of a vaccination, mitigation strategies are crucial to keep the number 238

of severe and critical cases below the capabilities of the health care system. If the use of 239

mitigation interventions is well balanced against capability limits, the time required to 240

establish herd immunity linearly scales with available capabilities of the health care 241

system (defined by the number of ICU beds in the simulation). Other important factors 242

are the reproduction number and the severity of the disease (expressed by the fraction 243

of cases that need ICU admission). Depending on the calibration of those factors, it is 244

estimated that herd immunity on a national level will be established in more than 2 245

years from now. This is in line with an agent-based simulation study by [36], who 246

indicate a duration of 2 years and 4 months for the Netherlands. According to a 247

deterministic simulation by [16] in the United States the epidemic could last into 2022 248

under current critical care capabilities. Given this timescale, the success of a strategy 249

based on social distancing, delay and herd immunity is unrealistic under known 250

preconditions. 251

According to [37], an extinction strategy implemented by intense countermeasures 252

seems promising. This is supported by our low effective reproduction scenario (R < 1). 253

If an extinction is not feasible, interventions should be as moderate as possible. 254

Negative societal and economic consequences associated with drastic social-distancing 255

are likely to undermine a required long-term measure application. The identified 256

super-linear scaling (R > 1) between intensity and required duration of measure 257

application does amplify this problem. As a result, countries whose policy is exclusively 258

aimed at minimizing the number of cases are in danger of experiencing an untimely 259

termination of countermeasures and a large second wave of outbreaks (compare model 260

output in Fig. 7). Data on government response stringency [38] and daily confirmed 261

deaths [39] reveal an association between intense measures and large second waves in 262

countries like Albania, Bosnia and Herzegovina, Bulgaria, Egypt, Israel, Palestine, 263

Romania or Serbia (data acquired at the end of August 2020). The probability that 264

more resilient countries will experience similar problems rises every day without 265

vaccination. So far (August 2020), countries like New Zealand or Vietnam did well in 266

containing the virus by an aggressive elimination approach combined with 267

comprehensive international travel restrictions [40] and by implementing timely, intense 268

action [41] To date, a differentiated assessment of such ambitious policies is primarily 269

constrained by the limited availability of studies on secondary effects of social 270

distancing and isolation in the case of a global pandemic. Similarly, the assessment of 271

more targeted countermeasures such as the selective isolation of vulnerable individuals 272

or approaches of contact tracing and isolation are limited by data scarcity and in part 273

data inconsistency. 274

For instance, there is little reliable information about age-stratified asymptomatic 275

ratios. Moreover, the impact of country-based measures has hardly been empirically 276
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assessed by methods of inferential statistics. While such studies will shed light on 277

important system dependencies, large-scale investment into health care and medical 278

research is essential to spawn game-changing innovation such as the development of 279

vaccines, drugs and affordable test kits. 280
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