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Abstract

The current emergence of coronavirus (2019-nCoV or SARS-CoV-
2) puts the world in threat. The structural research on the receptor
recognition by SARS-CoV-2 has identified the key interactions between
SARS-CoV-2 spike protein and its host (epithelium cell) receptor, also
known as angiotensin-converting enzyme 2 (ACE2). It controls both
the cross-species and human-to-human transmissions of SARS-CoV-
2. In view of this, we propose and analyze a mathematical model
for investigating the effect of CTL responses over the viral mutation
to control the viral infection when a post-infection immunostimulant
drug (Pidotimode) is administered at regular intervals. Dynamics of
the system with and without impulses have been analyzed using the
basic reproduction number. This study shows that proper dosing in-
terval and drug dose both are important to eradicate the viral infection.

Keywords: Mathematical model; Basic reproduction number; Stabil-
ity analysis; Immunostimulant drug; Angiotensin Converting Enzyme
2 (ACE2); Impulsive differential equation.

1 Introduction

A novel coronavirus named 2019-nCoV or SARS-CoV-2 (an interim name1

proposed by WHO (World Health Organization) become pandemic since2
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December 2019. The first infectious respiratory syndrome was recognised in3

Wuhan, Hubei province of China. Dedicated virologist identified and recog-4

nised the virus within a short time [3]. The SARS-CoV-2 is a single standard5

RNA virus genome which is closely related to severe acute respiratory syn-6

drome SARS-CoV [4]. The infection of SARS-CoV-2 is associated with a7

SARS-CoV like a disease with a fatality rate of 3.4% [5]. The World Health8

Organisation (WHO) have named the disease as COVID-19 and declared it9

as a public health emergency worldwide [2].10

The common symptoms of COVID-19 are fever, fatigue, dry cough, myal-11

gia. Also, some patients suffer from headaches, abdominal pain, diarrhea,12

nausea, and vomiting. In the acute phase of infection, the disease may lead13

to respiratory failure which leads to death also. From clinical observation,14

within 1-2 days after patient symptoms, the patient becomes morbid after15

4-6 days and the infection may clear within 18 days [6] depending on the16

immune system. Thus appropriate quarantine measure for minimum two17

weeks is taken by the public health authorities for inhibiting community18

spread [1].19

In [3], Zhou et al. identified that the respiratory tract as principal in-20

fection site for COVID-19 infection. SARS-CoV-2 infects primary human21

airway epithelial cells. Angiotensic converting enzyme II (ACE2) receptor22

of epithelial cells plays an important role in cellular entry [3,8]. It has been23

observed that ACE2 could be expressed in the oral cavity. ACE2 receptors24

are higher in tongue than buccal and gingival tissues. These findings imply25

that the mucosa of the oral cavity may be a potentially high-risk route of26

COVID-19 infection. Thus epithelial cells of the tongue are the major routes27

of entry for COVID-19. Zhou et al. [3] also reported that SARS-CoV-2 spikes28

S bind with ACE2 receptor of epithelial cells with high affinity. The bonding29

between S - spike of SARS-CoV-2 with ACE2 [8], results from the fusion30

between the viral envelope and the target cell membrane and the epithelial31

cells become infected. The S protein plays a major role in the induction of32

protective immunity during the infection of SARS-CoV-2 by eliciting neu-33

tralization antibody and T cell responses [10]. S protein is not only capable34

of neutralizing antibody but it also contains several immunogenic T cell epi-35

topes. Some of the epitopes found in either S1 or S2 domain. These proteins36

are useful for SARS-CoV-2 drug development [14].37

We know that virus clearance after acute infection is associated with38

strong antibody responses. Antibody responses have the potential to control39

the infection [15]. Also, CTL responses help to resolve infection and virus40

persistence caused by weak CTL responses [9]. Antibody responses against41

SARS-CoV-2 play an important role in preventing the viral entry process42
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[10]. Hsueh et al. [4] found that antibodies block viral entry by binding to the43

S glycoprotein of SARS-CoV-2. To fight against the pathogen SARS-CoV-2,44

the body requires SARS-CoV-2 specific CD4+T helper cells for developing45

this specific antibody [10]. Antibody-mediated immunity protection helps46

the anti-SARS-CoV serum to neutralize COVID- 19 infection. Besides that,47

the role of T cell responses in COVID-19 infection is very much important.48

Cytotoxic T lymphocytes (CTLs) responses are important for recognizing49

and killing infected cells, particularly in the lungs [10]. But the kinetic of50

the CTL responses and antibody responses during SARS-CoV-2 infection is51

yet to be explored. Our study will focus on the role of CTL and its possible52

implication on treatment and drug development. the drug that stimulates53

the CTL responses represents the best hope for control of COVID- 19. Here54

we have modeled the situation where CTLs can effectively control the viral55

infection when the post-infection drug is administered at regular intervals.56

Mathematical modeling with real data can help in predicting the dynam-57

ics and control of an infectious disease [32,33]. A four-dimensional dynamical58

model for a viral infection is proposed by Tang et al. [11] for MERS-CoV59

mediated by DPP4 receptors. In case of SARS-CoV-2, the infection pro-60

cess is almost similar with MERS-CoV and SARS-CoV. For SARS-CoV-261

infection, the ACE2 receptor of epithelium cell are the major target area.62

Since the dynamics of the disease transmission of SARS-CoV-2 in cellular63

level is yet to be explored, thus we investigate the system in the light of64

previous literature of [11,26–29] to formulate the dynamic model which play65

a significant role in describing the interaction between uninfected cells, free66

virus and CTL responses. We propose a novel deterministic model which67

describes the cell biological infection of SARS-CoV-2 with epithelial cells68

and the role of the ACE2 receptor.69

We explained the dynamics in the acute infection stage. It has been70

observed that CTL proliferate and differentiate antibody production after71

they encounter antigen. Here we investigate the effect of CTL responses72

over the viral mutation to control viral infection when a post-infection drug73

is administered at regular intervals by mathematical perspective.74

It is clinically evident that immunostimulants play a crucial role in the75

case of respiratory disease. Among the currently available immunostimu-76

lants, Pidotimod is the most effective for the respiratory disease [31]. Pido-77

timod increases the level of immunoglobulins (IgA, IgM, IgG) and activates78

the CTL responses to fight against the disease.79

In this article, we have considered the infection dynamics of SARS-CoV-80

2 infection in the acute stage. We have used impulsive differential equations81

to study the immunostimulant drug dynamics and the effects of perfect82
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drug adherence. In recent years the effects of perfect adherence have been83

studied by using impulsive differential equations in [12, 13, 17–21]. With84

the help of impulsive differential equations, the effect of maximal acceptable85

drug holidays and optimal dosage can be found more precisely [12,21].86

The article is organised as follows: The very next section contains the87

formulation of the impulsive mathematical model. Dynamics of the system88

without impulses has been provided in section 3. The system with impulses89

has been analysed in section 4. Numerical simulations, on the basis of the90

outcomes of section 3 and 4, have been included in section 5. Discussion in91

section 6 concludes the paper.92

2 Model formulation93

As discussed in the previous section, we propose a model considering the94

interaction between epithelium cells and SARS-CoV-2 virus along with lytic95

CTL responses over the infected cells. We consider five populations namely96

the uninfected epithelium cells T (t), infected cells I(t), ACE2 receptor of97

the epithelial cells E(t) and CTLs against the pathogen C(t).98

lIn this model, we consider which represents the concentration of ACE299

on the surface of uninfected cells, which can be recognized by surface spike100

(S) protein of SARS-CoV-2 [24].101

It is assumed that the susceptible cells are produced at a rate λ1 from the102

precursor cells and die at a rate dT . The susceptible cells become infected a103

rate βE(t)V (t)T (t). The constant dI is the death rate of the infected cells.104

Infected cells are also cleared by the body’s defensive CTLs at a rate p.105

The infected cells produce new viruses at the rate mdI during their life,106

and dV is the death rate of new virions, where m is any positive integer. It107

is also assumed that ACE2 is produced from the surface of uninfected cells108

at the constant rate λ2 and the ACE2 is destroyed, when free viruses try to109

infect uninfected cells, at the rate θβE(t)V (t)T (t) and is hydrolyzed at the110

rate dEE.111

CTL proliferation in the presence of infected cells is described by the112

term113

αIC

(

1−
C

Cmax

)

,

which shows the antigen dependent proliferation. Here we consider the lo-114

gistic growth of CTL with Cmax as the maximum concentration of CTL and115

dc is its rate of decay.116
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With the above assumptions, we have the following mathematical model117

characterising the SARS-CoV-2 dynamics:118

dT

dt
= λ1 − βEV T − dTT,

dI

dt
= βEV T − dII − pIC,

dV

dt
= mdII − dV V, (1)

dE

dt
= λ2 − θβEV T − dEE,

dC

dt
= αY C

(

1−
C

Cmax

)

− dcC.

We now modify the above model incorporating pulse periodic drug dosing119

using impulsive differential equation [22,23].120

We consider the perfect adherence behaviour of immunostimulant drug121

for SARS–CoV–2 infected patients at fixed drug dosing times tk, k ∈ N.122

We assume that CTL cells increases by a fixed amount ω, which is pro-123

portional to the total number of CTLs that the drug can stimulate. Thus124

the above model takes the following form:125

dT

dt
= λ1 − βEV T − dTT,

dI

dt
= βEV T − dII − pIC,

dV

dt
= mdII − dV V, (2)

dE

dt
= λ2 − θβEV T − dEE,

dC

dt
= αY C

(

1−
C

Cmax

)

− dcC, t 6= tk,

C(t+k ) = ω + C(t−k ), t = tk.

Here, C(t−k ) denotes the CTL cells concentration immediately before the126

impulse, C(t+k ) denotes the concentration after the impulse and ω is the127

fixed amount which is proportional to the total number of CTLs the drug128

stimulates at each impulse time tk, k ∈ N.129

Remark 1. It can be noted that when there is no drug application in the130

system, model (2) becomes model (1).131
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3 Analysis of the system without drug132

In this section, we analyse the dynamics of the system without impulses i.e.133

system (1). We have derived the basic reproduction number for the system.134

Stability of equilibria are discussed using the number.135

3.1 Existence of equilibria136

Model (2) has three steady states namely (i) the disease-free equilibrium137

E1

(

λ1

dT
, 0, 0, λ2

dE
, 0
)

, (ii) with Ē > dT dV
βλ1m

, there is a CTL-responses-free equi-138

librium, E2(T̄ , Ī, V̄ , Ē, 0), where,139

T̄ =
dV

βmĒ
, Ī =

βλ1nĒ − dTdV

βdImĒ
, V̄ =

βλ1mĒ − dTdV

βdV Ē
,

Ē =
−(θβλ1m− βλ2m) +

√

(θβλ1m− βλ2m)2 + 4βmdT dV dEθ

2βdEm
,

and (iii) the endemic equilibrium E∗ which is given by140

T ∗ =
λ1α− dIαI

∗ − pdc

dTα
,

V ∗ =
dImI

∗

dV
, E∗ =

λ2α− θαdII
∗ − θpdc

dEα
,

C∗ =
(αI∗ − dc)Cmax

αI∗
.

where, I∗ is the positive root of the cubic equation141

L0I
3 + L1I

2 + L2I + L3 = 0, (3)

with,142

L0 = −α2θβd3Im,

L1 = −2αθβd2Idcmp+ α2θβd2Iλ1m+ α2βd2Iλ2m,

L2 = α2dTdIdV dE + αθβdIdcλ1mp+ αβdIdcλ2mp

−α2βdIλ1λ2m− θβdId
2
cmp

2,

L3 = αdT dV dEdcp.

Remark 2. Note that L0 < 0 and L3 > 0. Thus, the equation (3) has at143

least one positive real root. If L1 > 0 and L2 < 0, then (3) can have two144

positive roots. For a feasible endemic equilibrium we also need145

min

{

λ1α− pdc

dIα
,
λ2α− θpdc

θαdI

}

> I∗ >
dc

α
.
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3.2 Stability of equilibria146

In this section, the characteristic equation at any equilibria is determined147

for the local stability of the system (2). Linearizing the system (2) at any148

equilibria E(T, I, V,E,C) yields the characteristic equation149

△(ξ) =| ξIn −A |= 0,

where In is the identity matrix and A = [aij ] is the following 5×5 matrix150

given by151

A =































−βEV − dT 0 −βET −βV T 0

βEV −dI − pC βET βV T −pI

0 dIm −dv 0 0

−θβEV 0 −θβET −θβV T − dE 0

0 αC(1− C
Cmax

) 0 0 a55































,

with a55 = αI(1 − 2C
Cmax

)− dc. We finally get the characteristic equation as152

ψ(ξ) = ξ5 +A1ξ
4 +A2ξ

3 +A3ξ
2 +A4ξ +A5 = 0. (4)

The coefficients Ai, i = 1, 2, ..., 5 are given in Appendix-A.153

Looking at stability of any equilibrium E, the Routh-Hurwitz criterion154

gives that all roots of this characteristic equation (4) have negative real155

parts, provided the following conditions hold156

A5 > 0, A1A2 −A3 > 0, A3(A1A2 −A3)−A1(A1A4 −A5) > 0,
(A1A2 −A3)(A3A4 −A2A5)− (A1A4 −A5)

2 > 0.
(5)

Let us define the basic reproduction number as157

R0 =
mβλ1λ2

dT dEdV
, (6)

then using (5) we can derived the following result:158

Theorem 1. Disease-free equilibrium E1

(

λ1

dT
, 0, 0, λ2

dE
, 0
)

of the model (2)159

is stable for R0 < 1, and unstable for R0 > 1.160
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At E2 one eigenvalue is −dc and rest of the eigenvalues satisfy the fol-161

lowing equation162

ξ4 +B1ξ
3 +B2ξ

2 +B3ξ +B4 = 0

The coefficients Bi, i = 1, 2, ..., 5 are given in Appendix-B.163

Using Routh-Hurwitz criterion, we have the following theorem.164

Theorem 2. CTL-free equilibrium, E2(T̄ , Ī , V̄ , Ē, 0), is asymptotically sta-165

ble if and only if the following conditions are satisfied166

B1 > 0, B2 > 0, B3 > 0, B4 > 0, (7)

B1B2 −B3 > 0, (B1B2 −B3)B3 −B2
1B4 > 0.

Denoting A∗

i = Ai(E
∗) and using (5), we have the following theorem167

establishing the stability of coexisting equilibrium E∗.168

Theorem 3. The coexisting equilibrium E∗ is asymptotically stable if and169

only if the following conditions are satisfied170

A∗

5 > 0, A∗

1A
∗

2 −A∗

3 > 0, A∗

3(A
∗

1A
∗

2 −A∗

3)−A∗

1(A
∗

1A
∗

4 −A∗

5) > 0,
(A∗

1A
∗

2 −A∗

3)(A
∗

3A
∗

4 −A∗

2A
∗

5)− (A∗

1A
∗

4 −A∗

5)
2 > 0.

(8)

4 Dynamics of the system with impulsive drug171

dosing172

In this section we consider the model system (2). Before analysing the173

system, we first discuss the one dimensional impulse system as follows:174

dC

dt
= αIC

(

1−
C

Cmax

)

− dcC, t 6= tk.

C(t+k ) = ω +C(t−k ), t = tk. (9)

C(t−k ) denotes the CTL responses immediately before the impulse drug dos-175

ing, C(t+k ) denotes the concentration after the impulse and ω is the dose176

that is taken at each impulse time tk, k ∈ N.177

We now consider the following linear system,178

dC

dt
= −dcC, t 6= tk

∆C = ω, t = tk

(10)
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where, ∆ = C(t+k )−C(t−k ). Let τ = tk+1− tk be the period of the campaign.179

The solution of the system (10) is,180

C(t) = C(t+k )e
−dc(t−tk), for tk < t ≤ tk+1. (11)

In presence of impulsive dosing, we can get the recursion relation at the181

moments of impulse as,182

C(t+k ) = C(t−k ) + ω.

Thus the amount of CTL before and after the impulse is obtained as,

C(t+k ) =
ω(1− e−kτdc)

1− e−τdc

and

C(t−k+1) =
ω(1− e−kτdc)e−τdc

1− e−τdc
.

Thus the limiting case of the CTL amount before and after one cycle is183

as follows:184

lim
k→∞

C(t+k ) =
ω

1− e−τdc
and lim

k→∞

C(t−k+1) =
ωe−τdc

1− e−τdc

and185

C(t+k+1) =
ωe−τdc

1− e−τdc
+ ω =

ω

1− e−τdc
.

Definition 1. Let Λ ≡ (Su, Sa, I, C), B0 = [B : R4
+ → R+], then we say186

that B belong to class B0 if the following conditions hold:187

(i) B is continuous on (tk, tk+1]×R3
+, n ∈ N and for all Λ ∈ R4,188

lim(t,µ)→(t+
k
,Λ) B(t, µ) = B(t+k ,Λ) exists,189

(ii) B is locally Lipschitzian in Λ.190

We now recall some results for our analysis from [22,23].191

Lemma 1. Let Z(t) be a solution of the system (9) with Z(0+) ≥ 0. Then192

Zi(t) ≥ 0, i = 1, . . . , 4 for all t ≥ 0. Coreover, Zi(t) > 0, i = 1, . . . , 4 for all193

t > 0 if Zi(0
+) > 0, i = 1, . . . , 4.194

Lemma 2. There exists a constant γ such that T (t) ≤ γ, I(t) ≤ γ, V (t) ≤ γ195

E(t) ≤ γ and C(t) ≤ γ for each and every solution Z(t) of system (9) for196

all sufficiently large t.197

9
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Lemma 3. Let B ∈ B0 and also consider that198

D+B(t, Z) ≤ j(t, B(t, Z(t))), t 6= tk,

B(t, Z(t+)) ≤ Φn(B(t, Z(t))), t = tk,

where j : R+ × R+ → R is continuous in (tk, tk+1] for e ∈ R2
+, n ∈ N ,199

the limit lim(t,V )→(t+
k
) j(t, g) = j(t+k , x) exists and Φi

n(i = 1, 2) : R+ → R+200

is non-decreasing. Let y(t) be a maximal solution of the following impulsive201

differential equation202

dx(t)

dt
= j(t, x(t)), t 6= tk, (12)

x(t+) = Φn(x(t)), t = tk, x(0+) = x0,

existing on (0+,∞). Then B(0+, Z0) ≤ x0 implies that B(t, Z(t)) ≤ y(t), t ≥203

0, for any solution Z(t) of system (9). If j satisfies additional smoothness204

conditions to ensure the existence and uniqueness of solutions for (12), then205

y(t) is the unique solution of (12).206

We now consider the following sub-system:207

dC(t)

dt
= −dcC, t 6= tk, C(t+k ) = C(tk) + ω, C(0+) = C0. (13)

The Lemma provided above, gives the following result,208

Lemma 4. System (13) has a unique positive periodic solution C̃(t) with
period τ and given by

C̃(t) =
ω exp(−dc(t− tk))

1− exp(−τdc)
, tk ≤ t ≤ tk+1, C̃(0+) =

dc

1− exp(−τdc)
.

We use this result to derive the following theorem.209

Theorem 4. The disease-free periodic orbit (T̃ , 0, 0, Ẽ, C̃) of the system (2)210

is locally asymptotically stable if211

R̃0 < 1 (14)

where,212

R̃0 =
mdIβ

dTdEdV τ

∫ τ

0

T̃ Ẽ

dI + pC̃
dt.

10
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Proof. Let the solution of the system (9) without infected people be denoted
by (T̃ , 0, 0, Ẽ, C̃), where

C̃(t) =
ω exp(−dc(t− tk))

1− exp(−τdc)
, tk ≤ t ≤ tk+1,

with initial condition C(0+) as in Lemma 4. We now test the stability of
the equilibria. The variational matrix at (T̃ , 0, 0, Ẽ, C̃) is given by

M(t) = [mij ] =





























−dT 0 m13 0 0

0 −(dI + pC̃) βẼT̃ 0 0

0 mdI −dv 0 0

0 0 m43 − dE 0

0 m52 0 0 − dc





























.

The monodromy matrix P of the variational matrix M(t) is

P(τ) = In exp

(∫ τ

0
M(t)dt

)

,

where In is the identity matrix. Note that m13,m43,m52 are not required213

for this analysis, therefore we have not mentioned their expressions.214

We can write P(τ) = diag(σ1, σ2, σ3, σ4, σ5), where, σi, i = 1, 2, 3, 4, 5,215

are the Floquet multipliers and they are determined as216

σ1 = exp (−dT τ) , σ2,3 = exp

(∫ τ

0

1

2

[

−A±
√

A2 − 4B
]

dt

)

,

σ4 = exp(−dEτ), σ5 = exp(−dcτ).

Here A = dI +dV +pC̃ and B = dV (dI +pC)−mdIβẼT̃ . Clearly λ1,4,5 < 1.217

It is easy to check that A2 − 4B > 0 and if B ≥ 0 and hold then we218

have λ2,3 < 1. Thus, according to Floquet theory, the periodic solution219

(S̃u(t), 0, 0, M̃ (t)) of the system (9) is locally asymptotically stable if the220

conditions given in (14) hold.221
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Table 1: Set of parameter values used of numerical simulations.
Parameter Explanation Assigned value

λ1 Production rate of uninfected cell 5
λ2 Production rate of ACE2 1
β Disease transmission rate 0.0001
θ Bonding rate of ACE2 0.3
dT Death rate of uninfected cells 0.1
dI death rate of infected cells 0.1
dV Removal rate of virus 0.1
dE Hydrolysing rate of epithelium cells 0.1
dC decay rate of CTL 0.1
p Killing rate of infected cells by CTL 0.01
m Number of new virions produced 10-100
α Proliferation rate of CTL 0.22

Cmax Maximum proliferation of CTL 100

5 Numerical results and discussion222

In this section, we have observed the dynamical behaviours of system with-223

out drug (Figure 1 and Figure 2) and with impulsive effect of the drug dose224

(Figure 3 and Figure 4) through numerical simulations taking the parame-225

ters mainly from [11,30,31].226

We have mainly focused on the role of CTL and its possible implication227

on the treatment and drug development. The drug that stimulates the228

CTL responses represents the best hope for control of COVID-19. Here we229

have determined the situation where CTLs can effectively control the viral230

infection when the post-infection drug is administered at regular intervals.231

Existence of equilibria of the system without drug dose is shown for232

different values of basic reproduction number R0. In plotting the Figure 1,233

we have varied the value of infection rate β. It is observed that for lower234

infection rate (that corresponds to R0 < 1) disease free equilibrium E1 is235

stable (corroborated with Theorem 1). It becomes unstable and ensure the236

existence of CTL-free equilibrium E2 which is stable if R0 < 2.957 (which237

corresponds to β = 0.00005963) and unstable otherwise. (This satisfies238

Theorem 2). Again we see that when E2 is unstable the E∗ is feasible. Also239

whenever E∗ exists, it is stable which verified the Theorem 3.240

Effect of immune response rate α is plotted in Figure 2. We observe that241

in the absence of Drug , the CTL count and ACE2 increases with increasing242

value of α. Steady state value of infected cell I∗ and virus V ∗ decreases243
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Figure 1: Existence and stability of equilibria is shown with respect to R0.

Parameters values used in this figure are taken from Table 1 and m = 10.
We have varied the value of β in (0.00001, 0.0001).
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Figure 2: In the absence of the drug , effect of growth rate of CTL i.e. α
on the steady state values of model population is shown. Parameters values
used in this figure are same as Figure 1 except α.
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Figure 3: Numerical solution of the model system with and without drug
dose is shown taking parameters as in Figure 1. In this figure, τ = 2, ω = 50.

significantly as α increases.244

Due to the impulsive nature of the drugs, there are no equilibria of the245

system i.e. population do not reach to towards equilibrium point, rather ap-246

proach a periodic orbit. Hence, we evaluate equilibrium-like periodic orbits.247

There are two periodic orbits of the system (2) namely the disease-free pe-248

riodic orbit and endemic periodic orbit. Here our aim is to find the stability249

of disease-free periodic orbit.250

Figure 3 compare the system without and with impulse Drug effect. In251

the absence of Drug we observe that the CTL count approaches a stable252

equilibrium. Under regular drug dosing, the CTL count oscillates in an im-253

pulsive periodic orbit. Assuming perfect adherence, if the drug is sufficiently254

strong, both infected cell and virus population are approaches towards ex-255

tinction. In this case, the total number of uninfected cells reach its maxi-256

mum level which implies that the system approaches towards its infection257

free state (Theorem 4).258

If we take sufficiently large impulsive interval τ = 5 days (keeping rate259

ω = 50 fixed, as in Figure 3) or lower dosage effect ω = 20 (keeping interval260

τ = 2 fixed, as in Figure 3), in both the cases, infection is remains present261
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Figure 4: Numerical solution of the model system for different rates of Drug
dosing and different intervals of impulses.

in the system. Thus proper dosage of drug and optimal dosing interval are262

important for infection management.263

6 Conclusion264

In this article, the role of immunostimulant drug (mainly Pidotimod) during265

interactions between SARS-CoV-2 spike protein and epithelial cell receptor266

ACE2 in COVID-19 infection has been studied as a possible drug dosing267

policy. To reactivate the CTL responses during the acute infection period,268

immune activator drugs is delivered to the host system in an impulsive mode.269

The immunostimulant drug when administered, the best possible CTL270

responses can act against the infected or virus-producing cells to neutralize271

infection. This particular situation can keep the infected cell population at272

a very low level. In the proposed mathematical model, we have analyzed273

the optimal dosing regimen for which infection can be controlled.274

From this study, it has been observed that when the basic reproduction275

ratio lies below one, we expect the system to attain its disease-free state.276

However, the system switches from disease-free state to CTL-free equilib-277

rium state when 1 < R0 < 2.957. If R0 > 2.957, the CTL-free equilibrium278
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moves to an endemic state (Figure 1).279

Here we have explored the immunostimulant drug dynamics by the help280

of impulsive differential equations. With the help of impulsive differential281

equations, we have studied how the effect of maximal acceptable optimal282

dosage can be found more precisely. Impulsive system shows that proper283

dosage and dosing intervals are important for the eradication of the infected284

cells and virus population which results the control of pandemic (Figure 3).285

It has also been observed that the length of the dosing interval and the286

drug dose play a very decisive role to control and eradicate the infection.287

The most interesting prediction of this model is that effective therapy can288

often be achieved, even for low adherence, if the dosing regimen is adjusted289

appropriately (Figure 4). Also if the treatment regimen is not adjusted290

properly, the therapy is not effective at all. This approach might also be291

applicable to a combination of antiviral therapy.292

Future extension work of the combination of drug therapy should also293

include more realistic patterns of non-adherence (random drug holidays, im-294

perfect timing of successive doses), more accurate intracellular pharmacoki-295

netics and leads towards better estimates of drug dosage and drug dosing296

intervals.297

We end the paper with the quotation: “This outbreak is a test of political,298

financial and scientific solidarity for the world to fight a common enemy that299

does not respect borders..., what matters now is stopping the outbreak and300

saving lives.” by Dr. Tedros, Director General, WHO [25].301
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Appendix-A410

A1 = −(a11 + a22 + a33 + a44 + a55),

A2 = a11(a22 + a33) + a23a32 + a22a33 − a14a41 + (a11 + a22 + a33)a44

−a25a52 + (a11 + a22 + a33 + a44)a55,

A3 = a32(a11a23 − a13a21 − a24a43)− a11a22(a44 + a33) + a14a33a41

+a44(a23a32 − a11a33 − a22a33) + a25a52(a33 + a44 + a11)

−a11a55(a22 + a33) + a23a32a55 − a22a33a55

−a44a55(a11 + a14a41a55 + a22 + a33) + a14a22a41,

A4 = a32a41(a23a14 − a13a24)− a22a33(a14a41 − a44a55)

−a14a21a32a43 + a13a21a32a44 − a11(a23a32a44 + a25a33a52)

+a52(a14a25a41 − a11a25a44 − a25a33a44) + a13a21a32a55

−a11a55(a23a32 − a22a33)− a41a55(a14a22 + a14a33)

+a55(a24a32a43 + a11a22a44 − a23a32a44)

+a11a33(a22a44 + a44a55) + a11a24a32a43,

A5 = a25a33(a11a44a52 − a14a41a52) + (a14a21a32 − a11a24a32)a43a55

+a41a55(a13a24a32 − a14a23a32 + a14a22a33) + a44a55(a11a23a32

−a13a21a32 − a11a22a33).

Appendix-B411

B1 = −(b11 + b22 + b33 + b44),

B2 = b11b22 − b23b32 + b33(b11 + b22)− b14b41

+b44(b11 + b22 + b33)

B3 = b32(b11b23 − b13b21)− b22(b11b33 − b14b41)

+b14b33b41 − b24b32b43

+(b23b32 − b11b22)b44 − b33b44(b11 + b22),

B4 = b14b41(b23b32 − b22b33)− b13b24b32b41

−b14b21b32b43 + b32(b11b24b43 + b13b21b44)

−b44b11(b23b32 − b22b33).
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