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Summary

The primary objective of this work is to model and compare different exit scenarios from the lock-down
for the COVID-19 UK epidemic. In doing so we provide an additional modelling basis for laying out the
strategy options for the decision-makers. The main results are illustrated and discussed in Part I. In Part
II, we describe the stochastic model that we have developed for modelling this epidemic. As argued in
Part II, the developed model is more flexible than the SEIR/SEIRS models and can be used for modelling
the scenarios which may be difficult or impossible to model with the SEIR/SEIRS models. To compare
different scenarios for exiting from the lock-down, in Part III we provide our previous report on the same
topic where similar (although not as detailed) scenarios were considered. As the possible exit dates, we have
chosen May 4, May 11, May 18 and May 25.

We model differently the regions with high initial reproductive number chosen to be R0 = 2.5, medium
R0 = 2.3 and low R0 = 2. The numbers for the whole of the UK can be obtained by appropriate averaging
of the numbers given in the report. Typical figures are given in Section 4. For each scenario considered, we
plot the expected proportion of infected at time t and the expected number of deaths at time t. To compute
the expected numbers of deaths we used the total mortality rate 0.66%. Many recent studies suggest lower
values and therefore the numbers in our projections should be considered as rather pessimistic. Our analysis
suggests a value around 0.5% for the mortality rate.

In the model, we assume that the isolation of older and vulnerable people continues and the public
carries on certain level of isolation until the end of 2020; also we assume that immunity is kept for at least
a year and there is no international travel influence. Our main conclusions are:

• In regions with higher initial reproductive number 2.5 the proportion of susceptible at the start of the
lock-down should be not smaller than 0.95, the epidemic curve in such regions is in the fast monotonic
decline irrespectively of the date of the lock-down lift;

• In regions with lower initial reproductive number 2.0 the second mild wave can be expected, the
difference between the expected mortality rates is very small for all May 2020 lifting lock-down dates;

• In regions with initial reproductive number 2.3, a mild second wave can be expected in the case of
large proportion of susceptible at the start of the lock-down, but its severity and resulting mortality
depend very little on the date of lifting the lock-down;

• For the overall UK epidemic, even for rather pessimistic scenarios considered, the second wave is much
less pronounced (in terms of the expected mortality rate) than the first one, and the total numbers of
expected deaths are within 2% for all May 2020 dates of lifting the lock-down. Moreover, by keeping
R0-value after lifting the lock-down below 1.75 is likely to lead to the avoidance of a UK-wide second
wave, see Section 4.
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We believe that the model build in this work can be considered as an important decision support tool to
help decision-makers with the strategy of handling the epidemic. We invite other scholars to participate in
an open discussion of the strategy options. We feel that this kind of models should be used in the short and
long term management of the disease. We recommend the development of a permanent and modularised
modelling suite for COVID-19 management to which additional modules can be added as anti-viral drugs
and vaccination are introduced, extending the options. We trust that this work makes a start in that
direction and demonstrates the advantages of a heterogeneous demographic refinement, which can only
improve targeting role out of treatments.
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Part I. Two-stage exit scenarios starting at
different dates in May 2020.

Introduction

We show results describing further development of the COVID-19 epidemic in the UK given the current
data and assuming different dates for lifting the lock-down, which we have chosen to be t2 = May 4,
t2 = May 11, t2 = May 18, t2 = May 25. We use the model of the COVID-19 epidemic in the UK suggested
and investigated in [1, 2]; see Part II for the description of the model.

We model differently the regions with high initial reproductive number chosen to be R0 = 2.5, medium
R0 = 2.3 and low R0 = 2. The expected numbers of deaths are computed for a city or region with population
3 million people. The numbers for the whole of the UK can be obtained by appropriate averaging of the
numbers given in the report. Typical figures are given in Section 4. We assume that each person in the UK
is susceptible to COVID-19. If this is not the case, then the predictions will be more optimistic.

For each scenario considered, we plot the expected proportion of infected at time t and the expected
number of deaths at time t. We also give values of the following related quantities: x – the proportion of
susceptible on March 23, I0 – the proportion of infected on May 1, and I1 – the proportion of infected from
the start of the epidemic up to May 1.

The cities with large R0 = 2.5 are considered in Section 1. The main findings of Section 1 are:

• The scenarios of Section 1.1 with large R0 and large x = 0.98 (and hence small I0 and I1) seem to be
inadequate for London as in these scenarios the peak in expected deaths should be arriving at latter
dates and this contradicts to the current situation.

• In case R0 = 2.5, the range of most suitable values for x is around 0.9 but not smaller than 0.95.
For such values of x, the epidemic in the badly hit regions of the UK is in the fast monotonic decline
irrespectively of the date of the lock-down lift.

The regions with R0 = 2 and R0 = 2.3 are considered in Sections 2 and 3. The main findings of these
sections are:

• In most natural scenarios of Section 2 with R0 = 2, the second wave should be expected for all dates
of lifting the lock-down, but it is going to be mild in all scenarios.
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• For R0 = 2, the difference between the expected deaths is very small for the lifting lock-down dates
May 4, May 11, May 18 or May 25, for all cases considered in Section 2.

• In the case R0 = 2.3, a mild second wave can be expected in the case of large x = 0.98 but its severity
depends on the date of lifting the lock-down very little.

The overall UK epidemic is briefly considered in Section 4, see Figures 36 and 36.

• The presence of the second wave is explained by the fact that in the case considered, overall only
2.65% have been infected by March 23.

• Even in the worst-case scenario considered, the second wave is much less pronounced (in terms of the
expected number of deaths) than the first one.

• The total numbers of expected deaths are within 2% for the four dates of lifting the lock-down.

Notation, model parameters and description of plots

• t - time (in days)

• t1 - the lock-down time, t1 = March 23

• t2 - time when the lock-down finishes, t2 = May 4, t2 = May 11, t2 = May 18, t2 = May 25,

• t3 - time when more restrictions are lifted, t3 = t2+two weeks

• I(t) - number of infectious at time t

• S(t) - number of susceptible at time t;

• R0 - reproductive number before lock-down

• R1 - reproductive number during the lock-down (t1 ≤ t < t2)

• R2 - reproductive number for 2 weeks after the lock-down finishes (for t2 ≤ t < t3)

• R3 - reproductive number when more restrictions are lifted (for t ≥ t3)

• x - the proportion of susceptible at the start of the lock-down

• I0 - the proportion of infected on May 1

• I1 - the proportion of infected from the start of the epidemic up to May 1

In the model, x is a parameter but I0 and I1 are computed; their values are uniquely determined from x
and other parameters of the model.

We consider a city of size 3 million people and use the recently updated number for the UK expected
mortality rate r = 0.66%. Recent studies show that this rate is lower still but we shall keep this number.
We keep the main parameters of the model as set in Section 7.2 in Part II, except we set kM = kS = 1
in order to be more consistent with SIR-based models (so that, some of our results could be re-checked
using SIR-based models). As in Parts II and III, we assume that after lifting the lock-down, the group of
vulnerable people and people of 70+ is going to be rather well isolated with c = 0.25. For the value of R1,
we assume the following model. Initially, we suppose that every infected person will still infect all others in
the same household, so that R1 could be larger than 1 for t close to March 23 and we assumed R1 = 1.25
during the week March 23 - March 29. Once the household has been infected, R1 drops to 0.95, a value
slightly lower than 1 and what is recommended by a study [3] made for Germany (that is, we set R1 = 0.95
for t ≥ March 30) as there will be fewer new infections during the lock-down period.

In all plots colours relate to the date of lifting the lock-down:
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• Purple: t2 = May 4,

• Green: t2 = May 11,

• Red: t2 = May 18,

• Black: t2 = May 25

In all figures with odd numbers, we use dashed lines and plot I(t)/N , the proportion of infected at time
t (here N is the size of population considered). In all figures with even numbers, we use solid lines and plot
expected deaths numbers at time t.

1 Regions with high initial reproductive number R0 = 2.5

1.1 x = 0.98

Here we have I0 = 0.011, I1 = 0.143.

1.1.1 R2 = 1.75, R3 = 2

Figure 1: Proportion of infectious,
x = 0.98, R2 = 1.75, R3 = 2

Figure 2: Expected deaths,
x = 0.98, R2 = 1.75, R3 = 2

1.1.2 R2 = 1.5, R3 = 1.75

Figure 3: Proportion of infectious,
x = 0.98, R2 = 1.5, R3 = 1.75

Figure 4: Expected deaths,
x = 0.98, R2 = 1.5, R3 = 1.75

This scenario, with large R0 and large x, seems to be inadequate for a city like London; in case of large
x and hence small I0 and I1, the peak in expected deaths is shifted too far to the later dates. Indeed, in
London the mortality seems to be steadily going down from about April 20.
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1.2 x = 0.95

Here we have I0 = 0.0179, I1 = 0.277.

1.2.1 R2 = 1.75, R3 = 2

Figure 5: Proportion of infectious,
x = 0.95, R2 = 1.75, R3 = 2

Figure 6: Expected deaths,
x = 0.95, R2 = 1.75, R3 = 2

1.2.2 R2 = 1.5, R3 = 1.75

Figure 7: Proportion of infectious,
x = 0.95, R2 = 1.5, R3 = 1.75

Figure 8: Expected deaths,
x = 0.95, R2 = 1.5, R3 = 1.75

In view of the location of the peaks in the curve of the expected deaths, in the case R0 = 2.5, the
scenarios with x = 0.95 seem to be much more likely than with x = 0.98 but less likely than with x = 0.9,
for London and other areas with high R0. For x = 0.95, a visible second wave in the number of infections
and deaths is not expected irrespectively of the date of lifting the lock-down.

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.24.20077818doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20077818
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.3 x = 0.93

Here we have I0 = 0.019, I1 = 0.342.

1.3.1 R2 = 1.75, R3 = 2

Figure 9: Proportion of infectious,
x = 0.93, R2 = 1.75, R3 = 2

Figure 10: Expected deaths,
x = 0.93, R2 = 1.75, R3 = 2

1.3.2 R2 = 1.5, R3 = 1.75

Figure 11: Proportion of infectious,
x = 0.93, R2 = 1.5, R3 = 1.75

Figure 12: Expected deaths,
x = 0.93, R2 = 1.5, R3 = 1.75

In view of the location of the peaks in the curve of the expected deaths, in the case R0 = 2.5, the
scenarios with x = 0.93 seem to be very likely for London and other areas with high R0. For x = 0.93, the
second wave in the number of infections and deaths is not expected irrespectively of the date of lifting the
lock-down.
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1.4 x = 0.9

Here we have I0 = 0.0194, I1 = 0.429.

1.4.1 R2 = 1.75, R3 = 2

Figure 13: Proportion of infectious,
x = 0.9, R2 = 1.75, R3 = 2

Figure 14: Expected deaths,
x = 0.9, R2 = 1.75, R3 = 2

1.4.2 R2 = 1.5, R3 = 1.75

Figure 15: Proportion of infectious,
x = 0.9, R2 = 1.5, R3 = 1.75

Figure 16: Expected deaths,
x = 0.9, R2 = 1.5, R3 = 1.75

The value x ' 0.9 matches the current deaths data in London quite well (assuming large reproductive
number R0). If indeed x ' 0.9 or larger, then the epidemic in London is finishing very soon. It is then
guaranteed that there will be no second wave. The curves describing expected infections and deaths do not
depend on the date of lifting the lock-down.
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2 Regions with low initial reproductive number R0 = 2

2.1 x = 0.98

Here we have I0 = 0.009, I1 = 0.115.

2.1.1 R2 = 1.5, R3 = 1.75

Figure 17: Proportion of infectious,
x = 0.98, R2 = 1.5, R3 = 1.75

Figure 18: Expected deaths,
x = 0.98, R2 = 1.5, R3 = 1.75

2.1.2 R2 = 1.3, R3 = 1.5

Figure 19: Proportion of infectious,
x = 0.98, R2 = 1.3, R3 = 1.5

Figure 20: Expected deaths,
x = 0.98, R2 = 1.3, R3 = 1.5

The scenario with R0 = 2 and very large x seems very reasonable. The second wave should be expected
in all cases but please note the scales for the proportions of infected and expected deaths; the numbers are
much smaller than in the case R0 = 2.5. The second wave is expected but (a) it is going to be mild in all
cases, and (b) the dependence of the severity of the second wave is not much different for all dates of lifting
the lock-down.
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2.2 x = 0.95

Here we have I0 = 0.0143, I1 = 0.216.

2.2.1 R2 = 1.5, R3 = 1.75

Figure 21: Proportion of infectious,
x = 0.95, R2 = 1.5, R3 = 1.75

Figure 22: Expected deaths,
x = 0.95, R2 = 1.5, R3 = 1.75

2.2.2 R2 = 1.3, R3 = 1.5

Figure 23: Proportion of infectious,
x = 0.95, R2 = 1.3, R3 = 1.5

Figure 24: Expected deaths,
x = 0.95, R2 = 1.3, R3 = 1.5

The scenario with R0 = 2 and very large x = 0.95 seems quite reasonable. No second wave is expected
for all dates of lifting the lock-down.
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2.3 x = 0.9

Here we have I0 = 0.170, I1 = 0.3357.

2.3.1 R2 = 1.5, R3 = 1.75

Figure 25: Proportion of infectious,
x = 0.9, R2 = 1.5, R3 = 1.75

Figure 26: Expected deaths,
x = 0.9, R2 = 1.5, R3 = 1.75

2.3.2 R2 = 1.3, R3 = 1.5

Figure 27: Proportion of infectious,
x = 0.9, R2 = 1.3, R3 = 1.5

Figure 28: Expected deaths,
x = 0.9, R2 = 1.3, R3 = 1.5

The value x ' 0.9 seems to be slightly too high assuming small reproductive number R0. No second
wave is expected for any date of lifting the lock-down.

3 Regions with medium initial reproductive number R0 = 2.3

3.1 x = 0.98

Here we have I0 = 0.0109, I1 = 0.133.

3.2 x = 0.97

Here we have I0 = 0.0136, I1 = 0.1827.
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Figure 29: Proportion of infectious,
x = 0.98, R2 = 1.5, R3 = 1.75

Figure 30: Expected deaths,
x = 0.98, R2 = 1.5, R3 = 1.75

Figure 31: Proportion of infectious,
x = 0.97, R2 = 1.5, R3 = 1.75

Figure 32: Expected deaths,
x = 0.97, R2 = 1.5, R3 = 1.75

Figure 33: Proportion of infectious,
x = 0.95, R2 = 1.5, R3 = 1.75

Figure 34: Expected deaths,
x = 0.95, R2 = 1.5, R3 = 1.75

3.3 x = 0.95

Here we have I0 = 0.0168, I1 = 0.259.
All three scenarios, with x = 0.95, 0.97, 0.98 look very possible in the case R0 = 2.3. A very mild second

wave can be expected in the case of large x = 0.98 but its severity does very little depends on the date of
lifting the lock-down.
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4 Typical scenarios for the entire UK

In this section, we provide two typical scenarios for the entire country. They are based on appropriate
averaging of the scenarios discussed above. We have averaged the following three very likely scenarios for
regions with different R0:

(a) R0 = 2.5, x = 0.9, R2 = 1.5, R3 = 1.75, see Section 1.2.2;

(b) R0 = 2.3, x = 0.95, R2 = 1.5, R3 = 1.75, see Section 3.3;

(c) R0 = 2.0, x = 0.99, R2 = 1.3, R3 = 1.5, similar to Section 3.1 where x = 0.98.

In the case R0 = 2.0, we have chosen the worst possible case in terms of x; that is, we have assumed that
only 1% of people in the corresponding regions have been infected before March 23. This seems to be too
low but we wanted to show the worst-case scenario.

We have considered two different mixing schemes for the regions satisfying (a)-(c). Assuming that the
total population of the UK is 66 million, we averaged the populations in the following proportions.

Scheme 1. (a) - 8m, (b) - 8m, (c) 50m; see Figures 35 and 36;
Scheme 2. (a) - 6m, (b) - 30m, (c) 30m, see Figures 37 and 38.
Scheme 3. (a) - 6m, (b) - 45m, (c) 15m, see Figures 39 and 40.

In Scheme 1 we used the same overall mortality rate as in all other figures, 0.66%. However, for Scheme 2
(which seems to be more realistic from the view-point of the demographics of the UK), we had to adjust
the mortality rate to 0.44% = 2/3×0.66% to be consistent with the current mortality data. For the Scheme
3, we adjust the mortality rate to 0.363% = 0.55×0.66%

In Scheme 1, the percentage of infected by March 23 is only 2.65%, where 2.65 ' (10 ·8+5 ·8+1 ·60)/66
is uniquely determined by the scenario considered. In Scheme 2, this percentage is slightly higher: 3.63 '
(10 · 6 + 5 · 30 + 1 · 30)/66. In Scheme 3, it is 4.5 ' (10 · 6 + 5 · 45 + 1 · 15)/66.

In Scheme 1, despite considering a very pessimistic scenario, the second wave is much less pronounced
(in terms of the expected number of deaths) than the first one. Note also that we assume that there is no
vaccine and no progress with the way of treatment of the disease. In Schemes 2 and 3 there is no second
wave. In all three schemes and all four lock-down lift dates, the number of new ICU patients does not
exceed 5,000.

For all three schemes considered, the total numbers of expected deaths are within 2% of each other, for
the four dates of lifting the lock-down. This is not very easy to deduce from Figures 36, 38 and 40 but please
note that the epidemic will continue about 6 weeks longer for the lock-down lift date May 25 than for May
4; in the case of May 25, the epidemic is running much slower and 3 week difference in t2 becomes about 6
weeks at the end.

One of the strategies for managing the epidemic is based on the assumption that there will be a vaccine
ready for a common use some time in October. It is therefore worthwhile to compare the scenarios in terms
of the expected numbers of deaths occurred before November 1. For Schemes 2 and 3, which we consider
rather most realistic, the total numbers of deaths occurred before November 1 for the four considered dates
of lifting the lock-down differ by less than 5%. For Scheme 1, these numbers differ by less than 8%.
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Figure 35: Proportion of infectious, UK,
Scheme 1

Figure 36: Expected deaths, UK,
Scheme 1

Figure 37: Proportion of infectious, UK,
Scheme 2

Figure 38: Expected deaths, UK,
Scheme 2

Figure 39: Proportion of infectious, UK,
Scheme 3

Figure 40: Expected deaths, UK,
Scheme 3
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Part II. Description of the main principles of the model for

modeling the COVID-19 epidemic in the UK.

The primary objective of our work is construction of a reliable, robust and interpretable model that
describes the COVID-19 epidemic under different control regimes. We calibrate this model against cur-
rently available data about the epidemic and main recommendations of experts concerning the choice of
parameters characterising virus behaviour. We discuss main scenarios of development of the epidemic and
give recommendations about the exit strategy. We provide results of sensitivity studies and argue that
currently acceptable SIR-based epidemiological models have serious limitations in such studies.

Introduction

Coronavirus COVID-19 spreads through the population mostly based on social contact. To gauge the
potential for widespread contagion, to cope with associated uncertainty and to inform its mitigation, more
accurate and robust modelling is centrally important for policy making.

We provide a flexible modelling approach that increases the accuracy with which insights can be made.
We use this to analyse different scenarios relevant to the COVID-19 situation in the UK. We present a
stochastic model that captures the inherently probabilistic nature of contagion between population members.
The computational nature of our model means that spatial constraints (e.g., communities and regions), the
susceptibility of different age groups and other factors such as medical pre-histories can be incorporated
with ease. We analyse different possible scenarios of the COVID-19 situation in the UK. Our model is
robust to small changes in the parameters and is flexible in being able to deal with different scenarios.

Decision-makers get serious benefits from using better and more flexible models as they can avoid
nuanced lock-downs, better plan the exit strategy based on local population data, different stages of the
epidemic in different areas, making specific recommendations to specific groups of people; all this resulting
in a lesser impact on economy, improved forecasts of regional demand upon hospitals allowing for intelligent
resource allocation.

Our approach goes beyond the convention of representing the spread of an epidemic through a fixed
cycle of susceptibility, infection and recovery (SIR), see e.g. [4, 5]. These SIR-based models, unlike our
model, are not flexible enough and are also not stochastic and hence should be used with caution. Our
model allows both heterogeneity and inherent uncertainty to be incorporated. Due to the scarcity of verified
data, we draw insights by calibrating our model using parameters from other relevant sources, including
agreement on average (mean field) with parameters in SIR-based models.

We use the model to assess parameter sensitivity for a number of key variables that characterise the
COVID-19 epidemic. We also test several control parameters with respect to their influence on the severity
of the outbreak. Our analysis shows that due to inclusion of spatial heterogeneity in the population and
the asynchronous timing of the epidemic across different areas, the severity of the epidemic might be lower
than expected from other models.

We model the development of the COVID-19 epidemic in the UK under different scenarios of handling
the epidemic. There are many standard epidemiological models for modelling epidemics, see e.g. [4, 5]. In
this work, we develop a generic stochastic model which has the following features:

• it can take into account spatial heterogeneity of the population and heterogeneity of development of
epidemic in different areas;

• it allows the use of time-dependent strategies for analysing the epidemics;

• it allows taking into account special characteristics of particular groups of people, especially people
with specific medical pre-histories and elderly.

Standard epidemiological models such as SIR/SEIR/SEIRS have some limitations and are not easily
applicable for any study that requires the use of the features above. In particular, for influenza the mortality
changes less significantly with age in comparison to coronavirus; hence common influenza models do not
give much insight in modelling the COVID-19 epidemic. The report [6], which is widely considered as the
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main document specifying the current epidemic in the UK, is almost entirely based on the use of standard
epidemiological models and hence the conclusions of [6] seem to be lacking specifics related to important
issues of the study such as heterogeneity of development of epidemic at different locations and even flexible
use of different death rates across different ages. Unreliability of COVID-19 data, including the numbers of
COVID cases and COVID deaths, is a serious problem; it is widely discussed in media.

Despite the SIR models including the model of [6] have been heavily criticised [7], in view of the absence
of reliable data, when choosing the main parameters of our model we calibrate it so that its mean field
version approximately reproduces the same output as SIR-based models of [6, 8] and we use the parameter
values consistent with [6, 8]. Also, the main notation (which sometimes does not look natural from a
statistician’s point of view) is taken from [8].

We model further development of the COVID-19 epidemic in the example of the UK given the current
data and assuming different scenarios of handling the epidemic. We incorporate all available to us (as
to April 10, 2020) knowledge about parameters characterising the behaviour of the virus and the illness
induced by it. It will take a long time before we know more precise data and facts about this pandemic.

We include assessments of the sensitivity of our model, using Julia programming language [9]; most of
the previous epidemiological models do not allow this kind of sensitivity assessment as they have far too
many parameters and very rigid conditions about the probability distributions involved. We believe the
sensitivity studies are very important and should become the standard in this area.

The main practical findings from this research, with respect to the UK COVID-19 epidemic, are the
following:

• very little gain, in terms of the projected hospital bed occupancy and expected numbers of death,
of continuing the lock-down beyond April 13, provided the isolation of older and vulnerable people
continues and the public carries on some level of isolation in the next 2-3 months, see Section 8.1;

• isolation of the group of vulnerable people during the next 2-3 months should be one of the main
priorities, see Section 8.2;

• it is of high importance that the whole population carries on some level of isolation in the next 2-3
months, see Section 8.6;

• the timing of the current lock-down seems to be very sensible in areas like London where the epidemic
has started to pick up by March 23; in such areas the second wave of epidemic is not expected, see
figures in Sections 7.2 and 8;

• in the UK, the epidemic is expected to almost finish in July but a second wave may be expected in
the areas where the first wave is almost absent, see Section 8.4.

For more findings, see conclusions at the end of subsections of Sections 8 and 9.

5 The model

5.1 Variables and parameters

• t - time (in days)

• t1 - the lock-down time (in the case of the UK, t1 = March 23)

• t2 - time when the lock-down finishes

• N - population size

• G - sub-population (e.g. a group of people aged 70+)

• n - size of group G

• α = n/N (in the case of the UK and G consisting of people aged 70+, α = 0.132)

• rG - average mortality rate in the group G
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• rother - average mortality rate for the rest of population

• I(t) - number of infectious at time t

• S(t) - number of susceptible at time t;

• 1/σM - average time for recovery in mild cases

• 1/σS - average time until recovery (or death) in severe cases

• λI - mean of the incubation period during which an infected person cannot spread the virus

• δ - the probability of death in severe cases

• R0 - reproductive number (average number of people who will capture the disease from one contagious
person)

• R1 - reproductive number during the lock-down (t1 ≤ t < t2)

• R2 - reproductive number after the lock-down finishes (t ≥ t2)

• c - the degree of separation of vulnerable people

• x - the proportion of infected at the start of the lock-down

5.2 Values of parameters and generic model

The reproductive number R0 is the main parameter defining the speed of development of an epidemic.
There is no true value for R0 as it varies in different parts of the UK (and the world). In particular, in rural
areas one would expect a considerably lower value of R0 than in London. Authors of [6] suggest R0 = 2.2
and R0 = 2.4 as typical; the authors of [8] use values for R0 in the range [2.25, 2.75]. We shall use the value
R0 = 2.5 as typical, which, in view of the recent data, looks to be a rather high (pessimistic) choice overall.
However, R0 = 2.5 seems to be an adequate choice for the mega-cities where the epidemics develop faster
and may lead to more causalities. In rural areas, in small towns, and everywhere else where social contacts
are less intense, the epidemic is milder.

The flow-chart in Figure 41 describes the process of illness. We assume that the person becomes infected
τI days after catching the virus, where τI has Poisson distribution with mean of λI days. Parameter λI
defines the mean of the incubation period during which the person cannot spread the virus. Recommended
value for λI is λI = 5.

τI

Mild

Severe

τS

τM

1−δ

δ

Alive

Dead

1−q

q

Figure 41: Flow-chart for the process of illness

We then assign probabilities q and 1− q for a person to get a severe or mild case correspondingly. The
value of q depends on whether the person belongs to the group G (then q = qG) or the rest of population
(in this case, q = qother). In Section 5.3 below we will relate the probabilities qG and qother to the mortality
rates in the two groups.

In a mild case, the person stays infectious for τM days and then discharges alive (that is, stops being
infectious). We assume that the continuous version of τM has Erlang distribution with shape parameter
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kM and rate parameter λM , the mean of this distribution is k/λM = 1/σM (in simulations, we discretise
the numbers to their nearest integers). We use values kM = 3 and λM = 0.6 so that EτM = kM/λM =
1/σM = 5. The variance of τM is var(τM ) = kM/λ

2
M ; for kM = 3 and λM = 0.6 we have var(τM ) ' 8 which

seems to be a reasonable value.
In a severe case, the person stays infectious for τS days. The continuous version of τS has Erlang

distribution with shape parameter kS and rate parameter λS . The mean of this distribution is kS/λS = 1/σS .
We use values kS = 3 and λS = 1/7 so that EτS = kS/λS = 21, in line with the current knowledge, see
e.g. [10, 11]. The variance of τS is var(τS) = kS/λ

2
S ; for kM = 3 and λS = 1/7 the standard deviation of

the chosen Erlang distribution is approximately 12, which is rather large and reflects the uncertainty we
currently have about the period of time a person needs to recover (or die) from COVID-19.

In a severe case, the person dies with probability δ > 0 on discharge. The relation between δ, the average
mortality rates, the probabilities qS for the group G and the rest of population is discussed in Section 5.3.

Note that the use of Erlang distribution is standard for modelling similar events in reliability and queuing
theories, which have much in common with epidemiology. SIR-based models do not allow the use of such
distributions and this is one of the reasons why SIR models cannot be considered as flexible and reliable.

5.3 Probability of getting a severe case, probability of death in case of severe case δ
and mortality rates

In this section, we relate the probability of getting severe case from group G and the rest of population to
the average mortality rates.

We define G as the group of vulnerable people. In the computations below, we assume that G consists
of people aged 70+. We would like to emphasise, however, that there is still a lot of uncertainty on who
is vulnerable. Moreover, it is very possible that the long term effect of the virus might cause many extra
morbidities in the coming years coming from severe cases who recover.

As we use UK epidemic as our main example, we use the common split of the UK population into
following age groups:

G1 = [0, 19], G2 = [20, 29], G3 = [30, 39], G4 = [40, 49],

G5 = [50, 59], G6 = [60, 69], G7 = [70, 79], G8 = [80,∞)

and corresponding numbers Nm (m = 1, . . . , 8; in millions) taken from [12]

[15.58, 8.71, 8.83, 8.50, 8.96, 7.07, 5.49, 3.27] with N = 66.41

The probabilities of death for group Gm, denoted by pm, are given from Table 1 in [6] and replicated
many times by the BBC and other news agencies are:

[0.00003, 0.0003, 0.0008, 0.0015, 0.006, 0.022, 0.051, 0.093] .

Unfortunately, these numbers do not match the other key number given in [6]: the UK average mortality
rate which is estimated to be about 0.9%. As we consider the value of the UK average mortality rate as
more important, we have multiplied all probabilities above by 0.732 to get the average mortality rate to be
0.9%.

Moreover, recent COVID-19 mortality data shows that the average mortality rates, especially for younger
age groups, are significantly lower than the ones given above. As we do not have reliable sources for the
average mortality rates, we shall use the data from [6] adjusted to the average mortality rate to be 0.9%.
As we shall be getting better estimates of the average mortality rates, the model can be easily adjusted to
them.

It is important to note that different authors disagree on the values of mortality r for the COVID-19;
see, for example, [13]. UK’s experts believe r ' 0.009 [6], WHO sets the world-wide mortality rate at 0.034,
the authors of [14] believe r is very small and could be close to 0.001, an Israeli expert D. Yamin sets
r = 0.003, see [15]. Current development of the epidemic suggest that the overall (world-wide) value of r
is not larger than r = 0.005 but it is too early to say. Note that in a particular country or even region the
average mortality is different as it depends on the age structure of the county (region) and almost certainly
on climatic conditions influencing virus activity.
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If consider population data for the whole UK and define the group G as a union of groups G7 and G8,
we have n = 5.49 + 3.27 = 8.76m and α = 8.76/66.41 ' 0.132. The mortality rate in the group G and for
the rest of population are therefore

rG =
N7p7 +N8p8

n
' 0.049; rother =

N1p1 + . . .+N6p6
N − n

' 0.0030.

Consider now a random person from the group G who has got an infection. The probability he dies is
rG. On the other hand, this is also the product of the probability that this person has a severe case (which
is qG) and the probability (which is δ) that the person dies conditionally he/she has severe case. The same
is true for the rest of population. Therefore,

qG = rG/δ and qother = rother/δ .

The COVID-19 epidemic in the whole of the UK is subject to different heterogeneities discussed in
detail in [1], see also Section 6. The model above assumes homogeneity and hence cannot be applied to
the whole of the UK and we feel it would be irresponsible to estimate the total death toll for the UK using
such a model. Instead, we shall assume that we apply this model to the population of inner London with
population size rounded to 3 million. It may be tempting to multiply our expected death tolls by 22=66/3
but this would give very elevated forecasts. Indeed, epidemic in inner London can be considered as the
worst-case scenario and, in view of [1], we would recommend to down-estimate the UK overall death toll
forecasts by a factor of 2 or even more.

Note that in this work we only discuss mortality directly associated with COVID-19. Recent reports
point to many additional deaths associated with failure of patients, such as cancer patients, to get proper
treatment.

5.4 The number of infected at time t

To start with, in Figure 42 we consider an uninterrupted run of an epidemic with R0 = 2.5 in a homogeneous
(one-group) population with the parameters set in Section 7.2. The starting time of an epidemic is unknown
and is even hard to define as the first transmissions of the virus take random and perhaps long times. We
start plotting the curves after 0.5% of the population are infected.

In red colour, in Figure 42 and all plots below we plot values of S(t)/N , the proportion of people non-
infected by time t. In blue, we plot R(t)/N , the proportion of people recovered from the disease (or dead)
and in green we plot our main quantity of interest which is I(t)/N , the proportion of infected people at
time t. The values of R(t) do not play any part in modelling and are plotted for information only. Plots
similar to Figure 42 are usually provided to illustrate SIR-based model outputs.

Figure 42: An uninterrupted run of a COVID-19 epidemic in homogeneous conditions

One of the main targets of decision-makers for dealing with epidemics like COVID-19 can be referred
to as ‘flattening the curve’, where ‘the curve’ is I(t)/N or any of its equivalents and ’flattening’ roughly
means ‘suppressing the maximum’. We shall consider this in the next sections. From the value I(t), we can
roughly estimate the required number of hospital beds and even the expected number of deaths at time t. In
Section 7.2 we discuss more accurate estimates for these quantities which use the splitting of the population
on the two groups.
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6 Spatial heterogeneity of the population and heterogeneity of epidemic
development in different areas

The purpose of this section is to demonstrate that heterogeneity of epidemic developments for different
sub-populations has significant effect on ‘flattening the curve’.

Already when this paper was completed, the authors learned about a preprint [16] which uses SIR
modelling to produce somewhat similar conclusions with more specifics for COVID-19 in the UK. However,
SIR modelling using numerous age-classes and many equations for each age-class different across different
parts of the country resulting in an astronomical number of parameters; this makes any sensitivity analysis
to various parameters uncheckable. We believe that a combination of stochastic models like the present
one with standard SIR-based models can help in significantly reducing the number of parameters while also
adding more flexibility to a hybrid model.

Consider the following situation. Assume that we have a population consisting of M sub-populations
(groups) Gm with similar demographic and social characteristics and these sub-populations are subject to
the same epidemic which has started at slightly different times. Let the sizes of sub-population Gm be Nm

with N1 + . . .+Nm = N . In all cases, the curves Im(t)/Nm are shifted in time versions of the curve I(t)/N
of Figure 42.

In Figures 43 and 44, M = 2 and the second epidemic started 50 days after the first one (incubation
period is set to be 0). In Figures 45 and 46, M = 10 and each next epidemic cycle has started 7 days after
the previous one. In all cases, we evidence the significant ‘flattening the curve’ phenomenon. In Figures 43–
46, the green line is used for the resulting curves I(t)/N . The maximal values of I(t)/N in the examples
depicted in Figures 43–46 are 0.124, 0.136, 0.134 and 0.132, respectively. This is significantly lower than
the value 0.163 for the original curve. In the assumptions of Example 1, these would respectively lead to
the maximum expected number of deaths 57.7, 63.3, 62.9 and 62.7.

Extra heterogeneity of different epidemics caused by the social and demographic heterogeneity of the
sub-populations would further ‘flatten the curve’. The following conclusions are in line with what the Israeli
expert D. Yamin states [15] and agree with the main conclusions of the paper [17] which is rather critical
towards standard epidemiological models.

Figure 43: M = 2, N1 = N2. Figure 44: M = 2, N1 = 3N2

Conclusions. (a) Isolation of sub-populations at initial stages of an epidemic is very important for
preserving heterogeneity of the epidemic and ‘flattenning the curve’; this flattening can be very significant.
(b) Epidemiological models based on the assumption of a homogeneous population but applied for populations
consisting of heterogeneous sub-populations may give completely misleading results.
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Figure 45: M = 10, Nm = N
10

(m = 1, . . . , 10)
Figure 46: M = 10, N1 = N

2 ,
Nm = N

18 (m > 1)

7 Main scenarios for modelling the epidemic with lock-down

In this section we formulate two main scenarios and explain the main figures. In Section 8 we study
sensitivity with respect to all model parameters.

7.1 Two plots for the main set of parameters, no intervention

As the main set of parameters for the main model we use the following:

R0 = 2.5, λI = 5, kM = kS = 3, σS = 1/21, σM = 1/5, α = 0.132, δ = 0.2.

Note that in Section 7.2 we shall introduce four further parameters which will describe the lock-down of
March 23 and the situation at the exit from this lock-down.

In Figure 47 we plot, in the case with no intervention, proportions of infected at time t (either overall
or in the corresponding group) and use the following colour scheme:

• Solid green: I(t), the proportion of infected in overall population at time t.

• Purple: IG(t), the proportion of infected in group G at time t

• Dashed green: the proportion of infected in the rest of population.

Knowing proportion of infected at time t is important for knowing the danger of being infected for non-
infected and non-immune people.

Figure 47: Proportions of people infected
at time t (overall, group G and the rest
of population).

Figure 48: Proportions of people with se-
vere case of disease at time t (solid lines)
and died at time t (dashed lines).

In Figure 48 we plot, in the case of no intervention, proportions of people with severe case of disease at
time t and proportions of such people discharged at time t; there are separate plots for the group G and
the rest of population.
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Figure 49: Proportions of people infected
at time t (overall, group G and the rest
of population).

Figure 50: Proportions of people with se-
vere case of disease at time t (solid lines)
and discharged at time t (dashed). Ex-
pected death toll: 15K

• Solid purple: proportion of people from group G with severe case at time t.

• Solid green: proportion of people from the rest of population with severe case at time t.

• Dashed purple: proportion of people from group G died at time t, multiplied by 100.

• Dashed green: proportion of people from the rest of population died at time t, multiplied by 1000 (so
that the curve can be seen in the figure).

Proportions of people with severe case at time t is the main characteristic needed for planning NHS work-
load. The proportion of people with severe case from group G discharged at time t is proportional to
the expected number of deaths after multiplying this number by δ and the size of the group G; similar
calculations can be done for the rest of population. Note that in these calculations we do not take into
consideration an extremely important factor of hospital bed availability are at time t. Currently, we do not
have a model for this.

We provide the values of the overall expected death toll. In the case of no lock-down, this toll would be
24(7+17)K, where the first number in the bracket correspond to the rest of population and the second one
to the group G.

7.2 Key plots for the main set of parameters, the case with lock-down

In this section, we study the scenario where we have made an intervention on t1 = March 23 by reducing
R0 to R1 < R0 and then terminating the lock-down on t2 = April 22.

As we do not know at which stage of the epidemic the lock-down has started, we define it through the
parameter x ∈ (0, 1) such that S(t1)/N = x.

After lifting the lock-down, we assume that people from the group G are still isolated but the rest of
population returns back to normal life. However, it is natural to assume that the reproduction number R2

for t ≥ t2 is smaller that the initial value of R0. To denote the degree of isolation of people from G for
t ≥ t2, we assume that for t ≥ t2 the virus is transmitted to people in such a way that, conditionally a virus
is transmitted, the probability that it reaches a person from G is p = cα with 0 < c ≤ 1. Our main value
for c is 1/4. This means that for t ≥ t2, under the condition that a virus is infecting a new person, the
probabilities that this new person belongs to G is 1/5.

Measuring the level of compliance in the population and converting this to simple epidemiological mea-
sures c, R1 and R2 and is hugely complex problem which is beyond the scope of this paper.

Summarizing, there are five parameters modelling the lock-down:

t2 = April 22, x = 0.9, R1 = 1, R2 = 2, c = 1/4.

Figures 49 and 50 similar to Figures 47 and 48 but computed for the case of intervention. The colour
schemes in Figures 49 and 50 are exactly the same as in Figures 47 and 48, respectively. The two grey lines
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in Figures 49 and 50 mark the intervention times. Note different scales in the y-axis in Figures 49 and 50
in comparison to Figures 47 and 48

We will study sensitivity of the curves I(t) and IG(t), plotted in Figures 49 and again in Figure 51
for the same parameters, with respect to all parameters of the model. In Figure 52 we plot average death
numbers (purple for group G and green for the rest of the population) in the case of the inner London as
explained at the end of Section 5.3. Note that these numbers do not take into account the important factor
of hospital bed availability and various heterogeneities, as explained in [1].

Figure 51: Proportions of people infected
at time t (group G and overall).

Figure 52: Expected deaths at time t at
group G and the rest of population.

8 Sensitivity to main parameters of the model and exit strategy

We have selected Figures 51 and 52 as the main figures. The next pairs of figures show sensitivity of the
model with respect to different parameters in the model. All these pairs of figures are similar Figures 51
and 52 except one of the parameters is changing. Moreover, all the curves from Figures 51 and 52 are
reproduced in the pairs of figures below in the same colours.

The colour scheme in all figures below with even numbers is:

• Solid purple: IG(t)/n, the proportion of infected at time t from group G; main set of parameters;

• Solid green: I(t)/N , the proportion of infected at time t from the population; main set of parameters;

• Solid (and perhaps, dashed) red: IG(t)/n for the alternative value (values) of the chosen parameter;

• Solid (and perhaps, dashed) blue: I(t)/N for the alternative value (values) of the chosen parameter.

The colour scheme in all figures below with odd numbers is:

• Solid purple: DG(t), the expected number of death at time t at group G; main set of parameters;

• Solid green: Dother(t), the expected number of death at time t for the rest of population; main set of
parameters;

• Solid (and perhaps, dashed) red: DG(t) for the alternative value (values) of the chosen parameter;

• Solid (and perhaps, dashed) blue: Dother(t) for the alternative value (values) of the chosen parameter.

8.1 Sensitivity to t2, the time of lifting the lock-down

In Figures 53 and 54, we have moved the time t2, the time of lifting the lock-down restrictions, 9 days
forward so that the lock-down period is 21 days rather than 30 days as in the main scenario. The solid red
and blue colours in Figures 53 and 54 correspond to t2 = April 13 and the middle grey vertical line marks
April 13.
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Figure 53: Proportions of people infected
at time t; t2 = April 13, 22

Figure 54: Expected deaths at time t at
group G and the rest of population; t2 =
April 13, 22

Consider first Figure 53 showing proportions of infected people and reflecting the demand for hospital
beds. Since in the scenario t2 = April 13 we start isolating people from G earlier than for t2 = April 22,
the number of infected from group G (red solid line) is slightly lower during the end of April – beginning
of May for t2 = April 13 (purple solid line). The total number of infections from the rest of population
is clearly slightly higher for t2 = April 13 (blue line) than for t2 = April 22. Taking into account the fact
that infected people from G would on average require more hospital beds than the rest of population, the
expected number of hospital beds required for the whole population stays approximately the same during
the whole epidemic which has to be almost over in July.

Figure 54, showing expected deaths numbers for both scenarios with t2 = April 13 and t2 = April 22,
show similar patterns concluding that there is very little gain in keeping the lock-down, especially taking
into account huge economic loss caused by every extra day of the lock-down [18]. Overall, the total expected
death is higher but the difference can be considered as very small. Expected deaths tolls for t2 = April 22
and t2 = April 13 are 15(5.2+9.8)K and 15.3(5.6+9.7)K, respectively.

Conclusion. The lock-down started on March 23 has slowed the speed of COVID-19 epidemic. However,
there is very little gain, in terms of the projected hospital bed occupancy and expected numbers of death, of
continuing the lock-down beyond April 13.

8.2 Sensitivity to c, the degree of separation of people from group G

The main subject of our work [1] was the argument that isolating vulnerable people makes a huge effect on
expected mortality from the epidemic. In this section, we continue the discussion started by us in [1] and
illustrate this scenario using the style of figures which we use in this paper.

In Figures 55 and 56, solid and dashed line styles (for red/blue colours) correspond to c = 1 and c = 0.5
respectively. By increasing c we significantly increase the death toll in the group G. It is clear that the value
of c measures the degree of isolation of people from G and has negligible effect on the rest of population;
this is clearly seen in both figures. On the other hand, the value of c has very significant effect on the people
from G.

Consider first Figure 55 giving proportions of infected people. One can clearly see that the purple line
(group G, c = 0.25) is much lower that the solid red line (group G, c = 1) for all the time until the end of
the epidemic, from May until August. In June, in particular, the number of infected people from G with
c = 0.25 is about 40% of the number of infected people from G with c = 1.

Curves on Figure 56, showing expected deaths at time t in group G and the rest of population, follow
the same patterns (with about 2-week time shift) as the related curves of Figure 55 displaying the number
of infected. In June and July we should expect only about 40% of the number of deaths in the scenario
with isolation of people from G (c = 0.25) relative to the scenario with no special isolation for people from
G (c = 1).

This is reflected in the expected deaths tolls for entire period of epidemic. Indeed, expected deaths tolls
for c = 1 and 0.5 are 18.2(5.2+13)K and 16.2(5.2+11)K, respectively; compare this with 15(5.2+9.8)K for
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Figure 55: Proportions of people infected
at time t; c = 0.25, 0.5, 1

Figure 56: Expected deaths at time t at
group G and the rest of population; c =
0.25, 0.5, 1

c = 0.25.
Conclusion. The effect of the degree of isolation of people from group G in the aftermath of the lock-

down is very significant.
Note that we simply stress the importance of special measures for isolating the group of vulnerable

people but not claiming it is practically possible with the current social care system.

8.3 Sensitivity to R0

In view of recent data, the value of R0 is likely to be lower than 2.5, especially in small towns and rural
areas. As Figures 57 and 58 demonstrate, in such places the epidemic will be significantly milder. The
overall dynamics of the epidemic would not change much though.

In Figures 57 and 58, solid and dashed line styles (for blue/red colours) correspond to R0 = 2.3 and
R0 = 2.7 respectively. Expected deaths tolls for R0 = 2.3, 2.5 and R0 = 2.7 are 14.5(5+9.5)K , 15(5.2+9.8)K
and 15.5(5.3+10.2)K, respectively.

Figure 57: Proportions of people infected
at time t; R0 = 2.3, 2.5, 2.7

Figure 58: Expected deaths at time t at
group G and the rest of population; R0 =
2.3, 2.5, 2.7

8.4 Sensitivity to x, the proportion of susceptible at the start of the lock-down

In Figures 59 and 60, we use x = 0.8 and x = 0.9. Expected deaths toll for x = 0.8 is 17.3(5.3+12)K. This
is higher than 15(5.2+9.8)K for x = 0.9. The fact that the difference is significant is related to the larger
number of death for x = 0.8 in the initial period of the epidemic. In Figure 59, red and blue display the
number of infected at time t for x = 0.8 for people from group G and the rest of population, respectively.
Similarly, in Figure 60 the red and blue colours show the expected numbers of deaths in these two groups.
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Figures 59 and 60 show that the timing of the lock-down has serious effect on the development of the
epidemic. Late call for a lock-down (when x = 0.8) helps to slow down the epidemic and guarantees its fast
smooth decrease but does not save as many people as, for example, the call with x = 0.9.

Figure 59: Proportions of people infected
at time t; x = 0.8, 0.9

Figure 60: Expected deaths at time t at
group G and the rest of population; x =
0.8, 0.9

Note that in both cases, when x = 0.8 and x = 0.9, the second wave of the epidemic is not expected as
by the time of lifting the lock-down, a large percentage of the population (about 25% in case x = 0.9 and
almost 40% in case x = 0.8) is either infected or immune and the ‘herd immunity’ would follow shortly. In
a certain sense, the decision of making a lock-down at around x = 0.9 seem to be a very sensible decision
to make as this saves many lives and guarantees smooth dynamics of the epidemic with no second wave.

Although we need more evidence about immunity, in this paper we assume that infected people are not
to be infected with COVID-19 again for at least several months as seems to be the case with other corona
viruses. Also, this model only applies to the UK. All the results in this paper on the relationship between
the x variable and the second wave only apply under the assumption of no international travel

Let us now consider more informative scenarios when x = 0.95 and x = 0.97; that is, when the lock-
down is made early, see Figures 61,62 for x = 0.95, 0.9 and Figures 63,64 for x = 0.97, 0.9. With an early
lock-down, there is a clear gain in hospital bed occupancy and expected number of death at the first stage
of the epidemic. However, the second wave of the epidemic should be expected in both cases x = 0.95 and
x = 0.97 with a peak at around 2 months after the first one, and the second peak could be higher than
the first one. This can be explained by observing that, even after 2 months of an epidemic with large x,
even with lock-down and strong isolation of the group G and relatively small reproductive number (recall
R2 = 2), there is still a very large proportion of non-immune people available for the virus; a large part of
these people is going to be infected even with smaller reproductive number. This prolongs the epidemics.
Expected deaths toll for x = 0.95 is 13.8(5.5+8.3)K and for x = 0.97 it is 13.4(5.7+7.7)K. These numbers
are naturally lower than 15(5.2+9.8)K for x = 0.9 but not by much.

Figures 61–64 and the discussion above imply the following conclusion.
Conclusion. A lock-down at an early stage of an epidemic is not a sensible decision in view of the

economic consequences of the lock-down and the measures required for all the remaining (much longer)
period of the epidemic. Moreover, in the case of an early lock-down, the second wave of the epidemic should
be expected with a peak at around 2 months after the first one.

In Figures 63 and 64, we use x = 0.97 and x = 0.9. Expected deaths toll for x = 0.97 is 13.8(5.7+8.3)K.
This is naturally lower than 15(5.2+9.8)K for x = 0.9. This is related to the fact that we isolate people
from group G much earlier.

A disadvantage of this scenario is the second wave of epidemic with a peak at around 2 months after
the first one.

8.5 Sensitivity to R1, the reproductive number during the lock-down

R1, the reproductive number during the lock-down, is an important factor of the model. We have assumed
R1 = 1 which we believe to be a reasonable assumption overall. In Figures 65 and 66, we use R1 = 1.0
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Figure 61: Proportions of people infected
at time t; x = 0.9, 0.95

Figure 62: Expected deaths at time t at
group G and the rest of population; x =
0.9, 0.95

Figure 63: Proportions of people infected
at time t; x = 0.9, 0.97

Figure 64: Expected deaths at time t at
group G and the rest of population; x =
0.9, 0.97

and 0.75. Decrease in R1 (that is, in the degree of isolation during the lock-down) leads to a significant
decrease in the number of infections, severe cases and expected death numbers during the lock-down and
about further 3 weeks but, since a larger proportion of the population is still susceptible, the epidemic is
prolonged and the numbers for infected and dead at time t larger than t2 plus one month are visibly higher.

It could also be assumed that R1 may be changing in time. Indeed, R1 = R1(t) could be decreasing
for the following reasoning. Initially, we suppose that every infected person will still infect all others in the
same household, so that R1(t) could be larger than 1 for t close to March 23. Once the household has been
infected, R1(t) drops even further to values which may be significantly lower than 1 and there will be very
few new infections.

If we consider this situation realistic and hence assume R1(t) > 1 during the first week of the lock-down.
As an example, consider the scenario with R1 = 1.25 during the first week of the lock-down and R1 = 0.75
thereafter; see Figures 67 and 68. Since 1.25 > 1, there are slightly more infected and dead in the first weeks
after the lock-down but as 0.75 < 1, it gets compensated later. Overall, the main features of the epidemic
in the new scenario are very similar to the ones we have chosen as the main ones.

Conclusion. Dynamics of the epidemic is rather sensitive to the value of R1. Decrease in R1 inevitably
implies a visible decrease in the number of severe cases and expected death numbers in the first few weeks
after the lock-down and small increase in these numbers at about 3 weeks after the lock-down is lifted. In
the scenario with R1 decreasing monotonically in time, we see elevated number of infections and deaths in
the first stage of the lock-down with visible decrease later on.
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Figure 65: Proportions of people infected
at time t; R1 = 1, 0.75

Figure 66: Expected deaths at time t at
group G and the rest of population; R1 =
1, 0.75

Figure 67: Proportions of people infected
at time t; R1 = 1 versus R1 = 1.25 in the
first week and 0.75 after

Figure 68: Expected deaths at time t at
group G and the rest of population; R1 =
1 versus R1 = 1.25 in the first week and
0.75 after

8.6 Sensitivity to R2, the reproductive number after lifting the lock-down

In Figures 69 and 70, we use R2 = 2.0 and 2.5. Increase in R2 would lead to a significant increase in the
number of severe cases and expected death numbers.

Expected deaths toll for R2 = 2.5 is 16.9(5.9+11)K. This is significantly higher than 15(5.2+9.8)K for
R2 = 2. This implies that the public should carry on some level of isolation in the next 2-3 months.

Conclusion. Increase in the reproductive number after lifting the lock-down would inevitably imply a
significant increase in the number of severe cases and expected death numbers.

8.7 Sensitivity to kM and kS, the shape parameter of the Erlang distributions for mild
and severe cases

In Figures 71 and 72, we use kM = 1, 3. The value kM = 3 is default while the value kM = 1 defines
the exponential distribution for the period of infection in the case of mild disease and is equivalent to the
corresponding assumption in SIR models. As the variance of the exponential distribution is larger than of
the Erlang with kM = 3 (given the same means), the epidemic with kM = 1 runs longer and smoother.

In Figures 73 and 74, we use kS = 1, 3. Parameter kS is less sensitive than kM (as there are less severe
cases than the mild ones) but it is also is.

Conclusion. The parameter kM is rather important and more information is needed about the distri-
bution time of infectious period. Parameter kS is less sensitive than kM but it is also is.
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Figure 69: Proportions of people infected
at time t; R2 = 2, 2.5

Figure 70: Expected deaths at time t at
group G and the rest of population; R2 =
2, 2.5

Figure 71: Proportions of people infected
at time t; kM = 1, 3

Figure 72: Expected deaths at time t at
group G and the rest of population; kM =
1, 3

8.8 Sensitivity to δ, the probability of death in severe cases

In Figures 75 and 76, we use δ = 0.2 and 0.1. Decrease of δ increases the number of severe cases but does
not change the expected death numbers.
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Figure 73: Proportions of people infected
at time t; kS = 1, 3

Figure 74: Expected deaths at time t at
group G and the rest of population; kS =
1, 3

Figure 75: Proportions of people infected
at time t; δ = 0.1, 0.2

Figure 76: Expected deaths at time t at
group G and the rest of population; δ =
0.1, 0.2

9 Assessing benefits of the lock-down and the optimal time of lifting
the lock-down

Using the example of the UK, we assess the benefit of the lock-down and discuss what is the optimal time
for lifting this lock-down.

9.1 A typical region

Consider a particular large city (like London or Sheffield), a small city (like Cardiff or Bath), a smaller
town (like Bangor) or a particular county (like Cumberland). Call the chosen region C and all people of
the chosen place ‘population’. Assume that this population is demographically similar to the entire UK
population and that the population density and social behaviour are somewhat similar in this city. In this
way, we are assuming that we can assign to this city a particular value of the reproductive number R0 before
the lock-down.

For London, Sheffield and Manchester the reproductive number R0 could be close to 2.5 but for rural
areas and small town R0 should be much smaller, even close to 1. Since the current lock-down is not very
strict, the reproductive number during the lock-down (we denote this number R1) stays somewhere close
to 1.

Let x denote the proportion of susceptible (non-immune, non-infected) people in C at the start of the
lock-down, on March 23. This is a number between 0 and 1. The proportion of infected in C by March 23
is 1− x.
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9.2 Assessing the benefits of the lock-down regionally

Consider the chosen region C with reproductive number R0 and the proportion of infected on March 23
1− x. The numbers x and R0 very much determine the course of the epidemic in C, with and without the
lock-down.

The are two reasons why 1− x could be low (like 0.05 or lower):

(a) delayed start but rather large reproductive number R0 like 2.5,

(b) small reproductive number R0 like 1.5 or 2 (plus possibly late start).

The are also two reasons why 1− x could be large (like 1− x = 0.1 or larger):

(c) very early start but small reproductive number R0,

(d) rather large reproductive number R0 like 2.5.

The case (c) is unlikely (we would have seen this in the data) but we still will consider it.
First, let us discuss the benefits (in terms of hospital occupancy and saving lives) of the lock-down for

a chosen city in these four cases.
In cases (b) and (c), with small values of R0, the lock-down is not very useful as the epidemic would have

been manageable without any lock-down. Indeed, the lock-down in such places does not save any lives but
just delays the course of the epidemic. Delaying a slowly running epidemic has no benefit as local hospitals
would have been able to cope with demand anyway but the total number of infected and dead does not
change (considering we are discussing the ‘herd immunity’ scenario). The only benefit of the lock-down is
lowering R0 to R2 < R0 due to the awareness of the population. Note that other interventions might reduce
the deaths further, but these are not modelled in this paper

The case (a) is considered in Section 8.4, Figures 61–64. As shown in these figures, the lock-down has
definite benefit by disrupting the epidemic at the very early stage by ‘flattening the curve’ of the first wave
(by this, saving lives). Unfortunately the early lock-down makes the arrival of the second wave about 2
months later very likely. Luckily, the second wave will not be anything like the projected first one (which
is avoided) for the following three reasons:

(i) there will be a smaller number of susceptible people in the city,

(ii) R2, the reproductive number after lifting the lock-down, will be smaller than R0, and

(iii) the group G of vulnerable people will hopefully stay well-isolated.

We believe the case (d) is the most important and London epidemic falls into the category covered by
(d). In our main choice of parameters we have set 1− x = 0.1, which may be an underestimation for inner
London (that is, the real proportion of infected in London by March 23 might have been larger than 10%).

In case (d), the lock-down (even if terminated after 3 weeks) makes an important intervention to break-
ing the epidemic and saving many lives, compare Figures 47, 48 versus Figures 49, 50. In the case (d) no
second wave is expected (the reasons are (i)-(iii), exactly as in the previous case) and the epidemic should
gradually come to end in about 3 months time (by that time, about 2/3 of the population will be immune).

Conclusion.

• In regions with small R0 the lock-down is not beneficial.

• In cities with large R0 but late start the lock-down is beneficial but the second wave should be expected.

• In cities with large R0 and normal start the lock-down is beneficial and no second wave is expected.

31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.24.20077818doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20077818
http://creativecommons.org/licenses/by-nc-nd/4.0/


9.3 The optimal time of lifting the lock-down, R1 = 1

Here we assume R1 = 1. Sensitivity of the epidemic towards different assumptions about R1 is discussed in
Section 8.5.

We have already argued in the previous section that in the regions with small R0 the lock-down is not
beneficial. Hence, in the regions concerned, it is better to lift it as soon as possible.

Consider only the regions with large R0. Assume that during the lock-down we have reproductive
number R1 = 1.

Current estimates show that in the case of death, the average delay between getting the COVID-19 virus
and dying from it is about 21 days. This implies that after 21 days of the lock-down, the mortality should
go down. The curve representing the proportion of newly infected people at time t should have started to
decrease starting after about 12 days after the start of the lock-down (here 12=5+7, where 5 is the mean
of the period of infection and 7 is approximately the mean of the infectious period). Therefore, under the
assumption R1 = 1 all the curves (the expected number of deaths, expected hospital bed occupancy and
expected number of infectious people) go down.

For any choice of time t2 of lifting the lock-down, which is April 13 or later (so that the lock-down holds
for 21 days or longer), the rest of epidemic will continue to follow very similar paths, see Figures 55 and 56
and discussion in case when for 1− x = 0.1 and Figures 59,60 when 1− x is larger.

If 1 − x is smaller than 0.1 in the chosen region, then the curves representing proportion of infected
and expected deaths are even less sensible to continue the lock-down beyond April 13 as the epidemic has
almost stopped in such regions.

Conclusion. In case R1 = 1, keeping the lock-down beyond April 13 has very little benefit in terms of the
number of overall expected deaths and hospital bed occupancy in all cases (a)-(d) considered in Section 9.2.

Note however that if we assume that R1 is monotonically decreasing during the lock-down as discussed
in Section 8.5, then the optimal time of lifting the lock-down could be shifted one more week beyond April 13.

9.4 Future development of the epidemic in the UK

If the proportion of susceptible in the UK is 80% or lower then the worst of the epidemic will be over very
soon even if the lock-down terminates now. However, the proportion of susceptible in the UK can still be
high (say, 95%). This is only possible if most of the UK regions/cities fall into the categories either (a) or
(b) of Section 9.2. For regions falling into category (b), there are no benefits in keeping the lock-down (as
there were very few reasons to start it). For regions falling into category (a), keeping the lock-down beyond
April 13 would not alternate the future dynamics of the epidemic, and delay in lifting the lock-down would
only postpone the inevitable. Unfortunately, in these regions we may expect second waves with peaks about
2 months later.

Part III. One-stage exit scenarios starting at different dates

from April 20, 2020.

Introduction

In this part we show results describing further development of the COVID-19 epidemic in the UK given the
current data and assuming different dates for lifting the lock-down, which we have chosen to be April 20,
April 27, May 4 and May 11. We use the model of the COVID-19 epidemic in the UK suggested and
investigated in [1, 2].

We model differently the regions with high initial reproductive number chosen to be R0 = 2.5 and a
lower one R0 = 2. The expected numbers of deaths are computed for a city or region with population 3
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million people. The numbers for the whole of the UK can be obtained by appropriate averaging of the
numbers given in the report.

For each scenario considered, we plot the expected proportion of infected at time t and the expected
number of deaths at time t. We also give values of the following related quantities: x – the proportion of
susceptible on March 23, I0 – the proportion of infected on April 16, and I1 – the proportion of infected
from the start of the epidemic up to April 16.

The cities with large R0 = 2.5 are considered in Section 10. The main findings of Section 10 are:

• The scenarios of Section 10.1.2 with large R0 and large x = 0.97 (and hence small I0 and I1) seem
to be inadequate as in these scenarios the peak in expected deaths should be arriving at latter dates,
which seem to contradict to the current situation.

• In case R0 = 2.5, the range of most suitable values for x is around 0.9. For such values of x, the
epidemic in the badly hit regions of the UK is in the fast monotonic decline irrespectively of the date
of the lock-down lift.

• A rather sensitive case, considered in Section 10.2, with large R0 and rather large x = 0.95 seems to
be less adequate than x = 0.9. In this case, a mild second wave may be expected in June for all dates
of lifting the lock-down.

The regions with smaller R0 = 2 are considered in Section 11. The main findings of Section 11 are:

• In most natural scenarios of Section 11 with R0 = 2, the second wave should be expected for all dates
of lifting the lock-down, but it is going to be mild in all scenarios.

• For R0 = 2, the difference between the expected deaths is very small for the lifting lock-down dates
April 27, May 4 and May 11, for all cases considered in Section 11.

• Among all scenarios with R0 = 2, the scenarios of Section 11.2 look most reasonable. In these scenarios,
despite rather high x and low I0, I1, in the very reasonable case R2 = 1.5, irrespectively of the date
of lifting the lock-down, there will be no second wave in expected deaths, see Figure 100.

For the overall situation, we can observe the following:

• The expected numbers of deaths in the scenarios with large R0 of Section 10 are significantly higher
than for the cases with smaller R0 = 2 considered in Section 11.

• Depending on how many regions in the UK are still almost non-affected by the epidemic and illustrated
in Section 11.1, there could be a second wave of the epidemic in June (or July if the lock-down is kept
until mid-May) but, irrespectively of the date of lifting the lock-down, the second wave is going to be
much milder than the first wave which is about to finish within two weeks.

Notation, model parameters and description of plots

• t - time (in days)

• t1 - the lock-down time, t1 = March 23

• t2 - time when the lock-down finishes, t2 = April 20, t2 = April 27, t2 = May 4 or t2 = May 11

• I(t) - number of infectious at time t

• S(t) - number of susceptible at time t;

• R0 - reproductive number before lock-down

• R1 - reproductive number during the lock-down (t1 ≤ t < t2)

• R2 - reproductive number after the lock-down finishes (t ≥ t2)

• x - the proportion of susceptible at the start of the lock-down
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• I0 - the proportion of infected on April 16

• I1 - the proportion of infected from the start of the epidemic up to April 16

In the model, x is a parameter but I0 and I1 are computed; their values are uniquely determined from x
and other parameters of the model.

As in [2], we consider a city of size 3 million people but we now use the recently updated number for
the UK expected mortality rate r = 0.66%. We keep all other parameters of the model unchanged. In
particular, we assume that after lifting the lock-down, the group of vulnerable people and people of 70+ is
going to be rather well isolated. For the value of R1, we assume the following model. Initially, we suppose
that every infected person will still infect all others in the same household, so that R1 could be larger than 1
for t close to March 23 and we assumed R1 = 1.1 during the week March 23 - March 29. Once the household
has been infected, R1 drops to a value significantly lower than 0.9 (we set R1 = 0.9 for t ≥ March 30) as
there will be very few new infections.

In all plots colours relate to the date of lifting the lock-down:

• Purple: t2 = April 20

• Green: t2 = April 27

• Red: t2 = May 4

• Black: t2 = May 11

In all figures with odd numbers, we use dashed lines and plot I(t)/N , the proportion of infected at time
t. In all figures with even numbers, we use solid lines and plot expected deaths numbers at time t.

10 Regions with high initial reproductive number R0 = 2.5

10.1 x = 0.98, I0 = 0.018, I1 = 0.138

10.1.1 R2 = 2

Figure 77: Proportion of infectious,
x = 0.98, R2 = 2,

Figure 78: Expected deaths,
x = 0.98, R2 = 2

10.1.2 R2 = 1.75

This scenario (with large R0 and large x) seems to be inadequate; in case of large x and hence small I0 and
I1, the peak in expected deaths is shifted too far to the later dates.
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Figure 79: Proportion of infectious,
x = 0.98, R2 = 1.75

Figure 80: Expected deaths,
x = 0.98, R2 = 1.75

10.2 x = 0.95, I0 = 0.0288, I1 = 0.255

10.2.1 R2 = 2

Figure 81: Proportion of infectious,
x = 0.95, R2 = 2

Figure 82: Expected deaths,
x = 0.95, R2 = 2

10.2.2 R2 = 1.75

In view of the location of the peaks in the curve of the expected deaths, in the case R0 = 2.5, the scenarios
with x = 0.95 seem to be more likely than with x = 0.98 but less likely than with x = 0.9. For x = 0.95, a
visible second wave in the number of infections is only expected for reasonably high reproductive number
R2 = 2 (and any date of lifting the lock-down). The second wave in the expected deaths is not as high (this
is related to the assumption of a good isolation of vulnerable people).
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Figure 83: Proportion of infectious,
x = 0.95, R2 = 1.75

Figure 84: Expected deaths,
x = 0.95, R2 = 1.75

10.3 x = 0.9, I0 = 0.035, I1 = 0.413

10.3.1 R2 = 2

Figure 85: Proportion of infectious,
x = 0.9, R2 = 2

Figure 86: Expected deaths,
x = 0.9, R2 = 2

10.3.2 R2 = 1.75

Among all considered scenarios with large reproductive number R0, the value x ' 0.9 gives the best results
matching the current data. In particular, the peak in expected deaths falls at April 10 plus/minus 1 day.
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Figure 87: Proportion of infectious,
x = 0.9, R2 = 1.75

Figure 88: Expected deaths,
x = 0.9, R2 = 1.75

10.4 x = 0.85, I0 = 0.035, I1 = 0.495

10.4.1 R2 = 2

Figure 89: Proportion of infectious,
x = 0.85, R2 = 2

Figure 90: Expected deaths,
x = 0.85, R2 = 2

10.4.2 R2 = 1.75

For R0 = 2.5, the value x ' 0.85 seems to be too low as the peak in expected deaths would have arrived
too early, at around April 5.
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Figure 91: Proportion of infectious,
x = 0.85, R2 = 1.75

Figure 92: Expected deaths,
x = 0.85, R2 = 1.75

11 Regions with low initial reproductive number R0 = 2

11.1 x = 0.98, I0 = 0.0132, I1 = 0.102

11.1.1 R2 = 1.75

Figure 93: Proportion of infectious,
x = 0.98, R2 = 1.75

Figure 94: Expected deaths,
x = 0.98, R2 = 1.75

11.1.2 R2 = 1.5

The scenario with R0 = 2 and very large x seems reasonable. The second wave should be expected in all
cases but please note the scales for the proportions of infected and expected deaths; the numbers are much
smaller than in the case R0 = 2.5.
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Figure 95: Proportion of infectious,
x = 0.98, R2 = 1.5

Figure 96: Expected deaths,
x = 0.98, R2 = 1.5

11.2 x = 0.97, I0 = 0.016, I1 = 0.132

11.2.1 R2 = 1.75

Figure 97: Proportion of infectious,
x = 0.97, R2 = 1.75

Figure 98: Expected deaths,
x = 0.97, R2 = 1.75

11.2.2 R2 = 1.5

Among all scenarios with small R0, this scenario looks most reasonable. The second wave should be expected
in all cases but the numbers are much smaller than in the cases with R0 = 2.5 and also smaller than with
R0 = 2 and x = 0.98.
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Figure 99: Proportion of infectious,
x = 0.97, R2 = 1.5

Figure 100: Expected deaths,
x = 0.97, R2 = 1.5

11.3 x = 0.95, I0 = 0.022, I1 = 0.206

11.3.1 R2 = 1.75

Figure 101: Proportion of infectious,
x = 0.95, R2 = 1.75

Figure 102: Expected deaths,
x = 0.95, R2 = 1.75

11.3.2 R2 = 1.5

For R0 = 2, the value x = 0.95 is low enough to guarantee that there will be no visible second wave.
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Figure 103: Proportion of infectious,
x = 0.95, R2 = 1.5

Figure 104: Expected deaths,
x = 0.95, R2 = 1.5

11.4 x = 0.9, I0 = 0.028, I1 = 0.321

11.4.1 R2 = 1.75

Figure 105: Proportion of infectious,
x = 0.9, R2 = 1.75

Figure 106: Expected deaths,
x = 0.9, R2 = 1.75

11.4.2 R2 = 1.5

For regions with low R0, the value x = 0.9 guarantees that the epidemic will monotonically pass and the
expected deaths will be almost unnoticeable from June.
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Figure 107: Proportion of infectious,
x = 0.9, R2 = 1.5

Figure 108: Expected deaths,
x = 0.9, R2 = 1.5
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