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Abstract1

Tourette Syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving2

multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology3

of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 35814

individuals with Tourette Syndrome (TS) and 7682 ancestry-matched controls and investigated as-5

sociations of TS with sets of genes that are expressed in particular cell types and operate in specific6

neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as7

well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a8

comprehensive investigation of the biological background of TS. Our SBA analysis identified three9

significant gene sets after Bonferroni correction, implicating Ligand-gated Ion Channel Signaling,10

Lymphocytic, and Cell Adhesion and Trans-synaptic Signaling processes. MAGMA analysis further11

supported the involvement of the Cell Adhesion and Trans-synaptic Signaling gene set. The Lympho-12

cytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of13

a neuroinflammatory element in TS pathogenesis. The indications of involvement of Ligand-gated14

Ion Channel Signaling reinforce the role of GABA in TS, while the association of Cell Adhesion and15

Trans-synaptic Signaling gene set provides additional support for the role of adhesion molecules in16

neuropsychiatric disorders.17

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 27, 2020. ; https://doi.org/10.1101/2020.04.24.20047845doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20047845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction18

Tourette Syndrome (TS) is a chronic neurodevelopmental disorder characterized by several motor19

tics and at least one vocal tic that persist more than a year [1]. Its prevalence is between 0.6-1%20

in school-aged children [2, 3]. Although TS is highly polygenic in nature, it is also highly heritable21

[4]. The population-based heritability is estimated at 0.7 [5, 6], with SNP-based heritability ranging22

from 21% [7] to 58% [4] of the total. The genetic risk for TS that is derived from common variants is23

spread throughout the genome [4]. The two genome-wide association studies (GWAS) conducted to24

date [7, 8] suggest that TS genetic variants may be associated, in aggregate, with tissues within the25

cortico-striatal and cortico-cerebellar circuits, and in particular, the dorsolateral prefrontal cortex.26

The GWAS results also demonstrated significant ability to predict tic severity using TS polygenic risk27

scores [7, 9]. A genome-wide CNV study identified rare structural variation contributing to TS on the28

NRXN1 and CNTN6 genes [10]. De novo mutation analysis studies in trios have highlighted two high29

confidence genes, CELSR and WWC1, and four probable genes, OPA1, NIPBL, FN1, and FBN2 to be30

associated with TS [11, 12].31

Investigating clusters of genes, rather than relying on single marker tests is an approach that32

can significantly boost power in a genomewide setting [13]. This approach has already proven33

useful in early genome-wide studies of TS. The first published TS GWAS, which included 1285 cases34

and 4964 ancestry-matched controls did not identify any genome-wide significant loci. However,35

by partitioning functional- and cell type-specific genes into gene sets, an involvement of genes36

implicated in astrocyte carbohydrate metabolism was observed, with a particular enrichment in37

astrocyte-neuron metabolic coupling [14]. Here, we investigated further the pathways that underlie38

the neurobiology of TS, performing gene set analysis on a much larger sample of cases with TS and39

controls from the second wave TS GWAS. We employed both a competitive gene set analysis as40

implemented through MAGMA, as well as a self-contained analysis through a set-based association41

method (SBA).42

Methods and Materials43

Samples and quality control44

The sample collection has been extensively described previously [7, 8]. IRB approvals and consent45

forms were in place for all data collected and analyzed as part of this project. For the purposes of our46

analysis, we combined 1285 cases with TS and 4964 ancestry-matched controls from the first wave47
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TS GWAS, with 2918 TS cases and 3856 ancestry-matched controls from the second wave TS GWAS.48

Standard GWAS quality control procedures were employed [15, 16]. The data were partitioned first by49

genotyping platform and then by ancestry. The sample call rate threshold was set to 0.98, and the50

inbreeding coefficient threshold to 0.2. A marker call rate threshold was defined at 0.98, case-control51

differential missingness threshold at 0.02, and Hardy-Weinberg Equilibrium (HWE) threshold to 10−6
52

for controls and 10−10 for cases. Before merging the partitioned datasets, we performed pairwise53

tests of association and missingness between the case-only and control-only subgroups to address54

potential batch effect issues. All SNPs with p-values ≤ 10−06 in any of these pairwise quality control55

analyses were removed. After merging all datasets, Principal Component Analysis was utilized to56

remove samples that deviated more than 6 standard deviations and to ensure the homogeneity of our57

samples in the ancestry space of the first 10 principal components, through the use of the EIGENSOFT58

suite [17]. Identity-by-descent analysis with a threshold of 0.1875 was used to remove related samples,59

and thus to avoid confounding by cryptic relatedness. After quality control, the final merged dataset60

consisted of 3581 cases with TS and 7682 ancestry-matched controls on a total of 236,248 SNPs,61

annotated using dbSNP version 137 and the hg19 genomic coordinates.62

We assessed the genomic variation in our data through PCA analysis to identify potential popula-63

tion structure. The variation in our data was reduced to a triangular shape in the two-dimensional64

space of the first two principal components. One tip was occupied by Ashkenazi Jewish samples,65

the second by the Southern European samples and the other by the North Europeans. Depicting66

geography, the Southern to Nothern axis was populated by European-ancestry samples. The first five67

principal components were added to the association model as covariates, in order to avoid population68

structure influencing our results.69

Gene sets70

We collected neural-related gene sets from multiple studies on pathway analyses in neuropsychiatric71

disorders [14, 18–22]. These studies relied on an evolving list of functionally-partitioned gene sets, fo-72

cusing mainly on neural gene sets, including synaptic, glial sets, and neural cell-associated processes.73

We added a lymphocytic gene set also described in these studies [21], in order to also investigate74

potential neuro-immune interactions.75

In total, we obtained 51 gene sets, which we transcribed into NCBI entrez IDs and subsequently76

filtered by removing gene sets that contained fewer than 10 genes. 45 gene sets fit our criteria and77

were used to conduct the analyses.78
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We examined two primary categories of pathway analysis methods, the competitive [23] and79

the self-contained test [24]. The competitive test compares the association signal yielded by the80

tested gene set to the association signals that do not reside in it [23, 25]. In this type of test, the null81

hypothesis is that the tested gene set attains the same level of association with disease as equivalent82

random gene sets. In contrast, the self-contained test investigates associations of each tested gene83

set with the trait, and not with other gene sets, meaning that the null hypothesis in this case is that84

the genes in the gene set are not associated with the trait [24, 25]. Therefore, for a competitive test,85

there should be data for the whole breadth of the genome, but this test cannot provide information86

regarding how strongly the gene set is associated with the trait [26]. We employ both methods for a87

comprehensive investigation into the neurobiological background of TS.88

MAGMA on raw genotypes89

We ran MAGMA [23] on the individual-level genotype data using the aforementioned filtered gene set90

lists. MAGMA performs a three step analytic process. First it annotates the SNPs by assigning them to91

genes, based on their chromosomal location. Then it performs a gene prioritization step, which is92

used to perform the final gene set analysis step. We used a genomic window size of ±10kb and the93

top 5 principal components as covariates to capture population structure. SNP to gene assignments94

were based on the NCBI 37.3 human gene reference build. The number of permutations required for95

the analysis was determined by MAGMA, using an adaptive permutation procedure leading to 11,26396

permutations. MAGMA employs a family-wise error correction calculating a significance threshold of97

0.00100496.98

Set-Based Association (SBA) test99

We conducted SBA tests on the raw individual genotype data, as described in PLINK [24, 27] and100

adapted in a later publication [28]. This test relies on the assignment of individual SNPs to a gene,101

based on their position, and thus to a pathway, according to the NCBI 37.3 human gene reference102

build. After single marker association analysis, the top LD-independent SNPs from each set are103

retained and selected in order of decreasing statistical significance, and the mean of their association104

p-values is calculated. We permuted the case/control status, repeating the previous association105

and calculation steps described above, leading to the empirical p-value for each set. The absolute106

minimum number of permutations required for crossing the significance level is dictated by the107

number of gene sets tested. Testing for 45 gene sets requires at least 1000 permutations to produce108
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significant findings. PLINK’s max(t) test recommends at least 64,000 permutations. We opted to109

increase the number of permutations to one million, the maximum that was computationally feasible,110

to maximize our confidence in the outcomes, given our large sample size.111

We used logistic regression as the association model on the genotypes and the first five principal112

components as covariates on the genotype data to conduct the SBA test with the collected neural113

gene sets. Another repetition of this step was performed with a simple association test, to test for this114

method’s robustness to population structure. We proceeded to run the analysis on all samples, using115

all gene sets at a 10kb genomic window size, the first five principal components as covariates, and116

one million permutations. Since the permutations were performed on the phenotypic status of the117

samples, and only served as a method of association of the trait with the gene sets, we also corrected118

the results by defining the significance threshold through Bonferroni correction at 1.1x 10−3(0.05/45).119

Results120

For the gene set association analysis, we ran PLINK’s self-contained set-based association method and121

MAGMA’s competitive association method, using the same 45 gene sets on the processed genotyped122

data of 3581 cases and 7682 ancestry-matched controls on a total of 236,248 SNPs. By performing123

both methods of analysis we aimed to obtain a global assessment of the gene sets’ relationship with124

TS.125

MAGMA analysis identified one significant gene set (Figure 1), Cell Adhesion and Trans-synaptic126

Signaling (CATS), which achieved a nominal p-value of 6.2x 10−5 (permuted p-value of 0.0032). While127

the CATS gene set is comprised of 83 genes, MAGMA’s annotation step prioritized 72 of its genes128

for the gene set analysis . It involves 3290 variants that were reduced to 1627 independent variants129

in our data. Results were mainly driven by associations in the CDH26, CADM2 and OPCML genes130

as indicated by MAGMA gene-based analysis (Table 1). In the gene-based tests, CDH26 attained a131

p-value of 8.9526x 10−6, CADM2 a p-value of 4.6253x 10−4, and OPCML a p-value of 7.9851x 10−4,132

neither crossing the genome-wide significance threshold for gene tests (2.574x 10−6 calculated on133

19,427 genes contained in the NCBI37.3 version of RefGene).134

We next ran SBA, which conducts an initial single-marker association step before performing135

permutations to calculate empirical p-values for the gene sets. This association step is performed on136

the total number of variants that are associated with the genes involved in the gene sets, leading to a137

subset of 25,630 variants in our data, which are then filtered based on their LD. Analysis identified three138

gene sets as significant (Table 2), the Ligand-gated Ion Channel Signaling (LICS) (P: 2.67x 10−4), the139
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Lymphocytic (P: 3.5x 10−4), and the Cell Adhesion and Trans-synaptic Signaling (CATS) (P: 1.07x 10−3).140

Detailed results for all the tested gene sets are shown in Figure 2.141

The LICS gene set was the top scoring gene set, including 38 genes and involving 683 variants,142

66 of which were associated with TS. The gene set’s signal was primarily driven by variants residing143

in the genes of the γ-aminobutyric acid receptors GABRG1 and GABBR2, the HCN1 channel gene144

and the glutamate receptor gene GRIK4. This signal was driven primarily by an association with SNP145

rs9790873, which is an eQTL for HCN1 in tibial nerve, according to GTEx [29]. GABBR2 is represented146

by two top SNPs, that are LD-independent, and removing either of those SNPs from the gene set did147

not cause the gene set to drop under the significance threshold.148

The Lymphocytic gene set was the next top scoring gene set, including 143 genes that translated149

to 799 variants in our data, with 50 of these variants associated with TS. Its signal was driven by a150

missense variant inside the FLT3 gene and an intergenic variant between NCR1 and NLRP7, followed151

by IL12A, HDAC9, CD180. The rs1933437 SNP is the top variant for FLT3, and is a possibly damaging152

missense variant [30], located in the sixth exon of the FLT3 gene leading to a p.Thr227Met mutation.153

It is a very common variant and the sixth exon appears to be less expressed than downstream exons.154

Given the tissues in which this eQTL affects FLT3’s expression, we tested the Lymphocytic gene set155

by removing FLT3 from it, to identify whether the lymphocytic gene set association was biased by156

the presence of FLT3. After removing FLT3, the Lymphocytic gene set association statistic decreased157

slightly (P: 0.00012), driven mainly by NCR1/NRLP7.158

The third significant gene set, CATS, consisted of 83 genes, including multiple large genes. CATS159

was identified by both SBA and MAGMA in our analyses, and both gene set approaches identified160

CDH26 as the gene with the lowest p-value. Both SBA and MAGMA also identified NCAM2, NTM and161

ROBO2 as strongly associated with TS, with NTM represented by two LD-independent SNPs. CATS’s162

top SNP, rs1002762, resides in the CDH26 gene on chromosome 20, and is the top associated SNP in163

our data (P: 2.031x 10−6) with an odds-ratio of 1.178.164

Notable results from the SBA also include the Astrocyte small GTPase mediated signaling (ASGMS)165

and the Astrocyte-neuron metabolic coupling (ANMC) gene sets, with a p-values slightly under the166

significance thresholds. These gene sets attained a p-value of 0.00137 and 0.001504 respectively.167

Discussion168

Seeking to elucidate the neurobiology of TS, we present here the largest study to date aiming to169

interrogate the involvement of sets of genes that are related to neuronal and glial function in TS. We170
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analyzed data from our recently performed TS GWAS and conducted two distinct types of testing,171

a competitive, regression-based test (MAGMA) and a self-contained, p-value combining test (SBA).172

Self-contained tests investigate for associations with a phenotype, while competitive tests compare a173

specific gene set against randomly generated gene sets. We employed both methods to perform a174

comprehensive investigation of the biological background of TS.175

MAGMA’s regression-based algorithm has been reported to account for gene size biases, as can176

be also discerned by the variable sizes of the top genes. MAGMA’s top prioritized gene, CDH26, is177

represented by 4 SNPs in our data, CADM2 by 42, while OPCML is represented by 210 SNPs, as it178

covers an extensive genomic region. We addressed such issues in SBA by setting a low r 2 threshold179

and conditioning on any LD-independent SNPs that resided on the same gene.180

The gene sets used in our study come from a line of function-based analyses, aiming to investigate181

neurobiological mechanisms in neuropsychiatric disorders. A previous pathway analysis using182

individual level genotype data of the first wave TS GWAS identified genes involved in astrocytic-183

neuron metabolic coupling, implicating astrocytes in TS pathogenesis [14]. In this study, we took184

advantage of the increased sample size of the second wave TS GWAS and the mechanics of the185

two distinct methods to identify gene sets associated with TS that provide a novel insight into the186

pathogenesis of TS, and substantiate the role of neural processes in this neuropsychiatric disorder.187

The ANMC gene set that contains genes involved in carbohydrate metabolism in astrocytes was188

the single identified gene set in the previous pathway analysis study on TS [14], raising a hypothesis on189

a potential mechanism that involves altered metabolism of glycogen and glutamate/γ-aminobutyric190

acid in the astrocytes. In our study the ANMC gene set scored slightly under the significance threshold.191

Here, analyzing a much larger sample size we identified 3 sets of genes as significantly associated192

to the TS phenotype. Among them the LICS gene set, which involves genes implicated in ion channel193

signaling through γ-aminobutyric acid and glutamate. Several genes in the LICS gene set have been194

previously implicated in neuropsychiatric phenotypes. HCN1, a hyperpolarization-activated cation195

channel involved in native pacemaker currents in neurons and the heart, has been significantly196

associated with schizophrenia and autism [31–33]. GABRG1, an integral membrane protein that197

inhibits neurotransmission by binding to the benzodiazepine receptor, has yielded mild associations198

with general cognitive ability [34] and epilepsy [35], while GABBR2, a g-protein coupled receptor199

that regulates neurotransmitter release, with schizophrenia [36] and post-traumatic stress disorder200

[37] in multiple studies. The GABA-ergic pathway has been previously implicated in TS, and recent201

advances showcased the possibility that a GABA-ergic transmission deficit can contribute towards202

TS symptoms[38]. GRIK4, encoding a glutamate-gated ionic channel, has shown associations with203
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mathematical ability and educational attainment [39] and and weaker associations with attention-204

deficit hyperactivity disorder [40]. The γ-aminobutyric acid receptors and the HCN channel, are205

features of inhibitory interneurons [41] and also identified in the brain transcriptome of individuals206

with TS [42], adding to the evidence that the phenotype of TS could be influenced by an inhibitory207

circuit dysfunction, as has previously been proposed [43].208

Individuals with TS are reported to present elevated markers of immune activation [42, 44].209

Additionally, a number of studies have implicated neuroimmune responses with the pathogenesis of210

TS [45–47]. We investigated neuro-immune interactions by interrogating association to a gene set211

designed by Goudriaan et al [21] to study enrichment in lymphocytic genes. Indeed, our analysis212

yielded a statistically significant signal. The FLT3 association coincides with the results of the second213

wave TS GWAS, in which FLT3 was the only genome-wide significant hit [7]. FLT3 and its ligand,214

FLT3LG, have a known role in cellular proliferation in leukemia, and have been found to be expressed215

in astrocytic tumors [48]. The rs1933437 variant in FLT3 is an eQTL in the brain cortex and the216

cerebellum[29], and has also been implicated in the age at the onset of menarche [49]. Variants in217

FLT3 have attained genome-wide significance in a series of studies focusing on blood attributes218

in populations of varying ancestry, and our current insights into its role are mostly based on these219

associations with blood cell counts, serum protein levels, hypothyroidism and autoimmune disorders220

[49–52].221

FLT3 could play a role in neuroinflammation as supported by its intriguing association with222

peripheral neuropathic pain. The inhibition of FLT3 is reported to alleviate peripheral neuropathic223

pain (PNP) [53], a chronic neuro-immune condition that arises from aberrations in the dorsal root224

ganglia. Cytokines and their receptors have been at the epicenter of the neuro-immune interactions,225

with microglia contributing significantly to chronic phenotypes of such states [54]. FLT3 is a critical226

component for neuro-immune interactions, especially in the case of the development and sustenance227

of the PNP phenotype. Interestingly, pain follows sex-specific routes, with glia having a prominent228

role for pain propagation in males, while females involve adaptive immune cells instead [55]. These,229

paired with previous evidence of glial involvement in TS [14], raise an interesting hypothesis for230

TS symptom sustenance, since FLT3 has been shown to be critical for the chronicity of neuronal231

dysregulations [53].232

FLT3 is expressed in the cerebellum and whole blood, while FLT3’s top variant, rs1933437, is233

an eQTL for FLT3 on GTEx [29] in various brain tissues, such as the cortex, the cerebellum, the234

hypothalamus, the frontal cortex (BA9) and non-brain tissues, such as the skin, the pancreas and235

adipose tissues. In order to test the robustness of the lymphocytic association in our findings, we236
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repeated the analysis after removing FLT3 from the lymphocytic gene set. The p-value of the gene set237

decreased, but still remained significant, due to the association in the NCR1/NLRP7 locus. Besides238

FLT3, the other genes included in this gene set are also quite intriguing to consider as potential239

candidates that could underlie the pathophysiology of TS. In the same vein with FLT3, common240

variants in NCR1 have also been significantly associated with blood protein levels [56]. HDAC9241

has been significantly associated with androgenetic alopecia [49, 57], hair color [49], and ischemic242

stroke [58]. These seem to follow previous knowledge, given that genes involved in ischemic stroke243

have been identified as a common component between TS and ADHD [59], and that TS, similar to244

other neuropsychiatric disorders, demonstrates a distinct preference for males. CD180 has shown245

associations with general cognitive ability [34].246

The CATS gene set involves many cadherins, with the top signals being in CDH26. CDH26 is247

a cadherin that regulates leukocyte migration, adhesion and activation, especially in the case of248

allergic inflammation [60]. Cell adhesion molecules have been consistently implicated in phenotypes249

pertaining to brain function, with the latest addition of the high confidence TS gene CELSR3, a250

flamingo cadherin, that was identified in a large scale de novo variant study for TS [12].251

Most of the genes contained in the identified gene sets in this study are involved in cognitive252

performance, mathematical ability and educational attainment [39]. OPCML, CADM2, and ROBO2253

have been implicated in neuromuscular and activity phenotypes, such as grip strength [61], physical254

activity [62], and body mass index [49]. ROBO2 has been associated with depression [63], expressive255

vocabulary in infancy [64], while CADM2 is associated to a multitude of phenotypes, including anxiety256

[63], risk taking behavior, smoking [65]. NTM displays similar patterns of pleiotropy, associated with257

smoking [49], myopia [57], hair color [66], anxiety [63], asperger’s syndrome [67], bipolar disorder with258

schizophrenia[68], and eating disorders [69]. NCAM2 and NTM, similarly to the lymphocytic genes,259

have been significantly associated with blood protein levels [70] and leukocyte count [49] respectively.260

Many of these phenotypes are known TS comorbidities, presenting themselves commonly or less261

commonly in TS cases, and other are related to functions that get impaired in TS symptomatology.262

The CATS gene set was identified in both methods indicating the involvement of cell adhesion263

molecules in trans-synaptic signaling. Using genotypes with both methods as a means of identifying264

pathways instead of summary statistics, gave our study the edge of sample-specific linkage dise-265

quilibrium rather than relying on an abstract linkage disequilibrium pattern reference. Our current266

understanding for the regional structures of the genome and the cis effects of genomic organization267

will aid the refinement of these associations as well as help shape our understanding of the pleiotropic268

mechanisms in the identified loci potentially responsible for disease pathogenesis.269

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 27, 2020. ; https://doi.org/10.1101/2020.04.24.20047845doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.24.20047845
http://creativecommons.org/licenses/by-nc-nd/4.0/


In conclusion, our analysis provides further support for the role of FLT3 in TS, strengthens the270

possibility for the involvement of the GABA-ergic biological pathway in TS pathogenesis, and provides271

parallel insights into possible mechanisms underlying tic persistence, and a possible correlation with272

glial-derived neuro-immune phenotypes.273
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Figure 1: Results of gene set analysis as implemented by MAGMA. The gene set that crossed the

significance threshold is depicted in red.
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Figure 2: Results of gene set analysis as implemented by SBA. The gene sets that crossed the signifi-

cance threshold are depicted in red.
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Table 1: Statistically significant result of MAGMA gene set analysis. The Cell adhesion and trans-

synaptic signaling gene set achieved statistical significance. Genes within this set that achieved

nominal significance with gene-based test implemented by MAGMA are also listed here. Gene ID

refers to Entrez ID, Param to the number of SNPs used for the snp-wise analysis.

Gene set Genes P-value Pcorr

Cell Adhesion and Trans-synaptic Signaling 72 6.17e-05 0.00318

Gene ID Chr Start End SNPs Param N Z-stat P-value Gene Name

60437 20 58528471 58593772 4 3 11263 4.2895 8.95e-06 cadherin 26 (CDH26)

253559 3 85003133 86128579 42 18 11263 3.3124 0.00046 cell adhesion molecule

2 (CADM2)

4978 11 132279875 133407403 210 106 11263 3.1564 0.00079 opioid binding pro-

tein/cell adhesion

molecule like (OPCML)

1007 5 26875709 27043689 14 7 11263 2.9627 0.0015 cadherin 9 (CDH9)

4685 21 22365633 22918892 61 29 11263 2.7975 0.0025 neural cell adhesion

molecule 2 (NCAM2)

961 3 107756941 107814935 6 4 11263 2.6465 0.0040 CD47 molecule (CD47)

1003 16 66395525 66443689 11 6 11263 2.0242 0.021 cadherin 5 (CDH5)

199731 19 44121519 44148991 4 3 11263 1.984 0.023 CADM4 (cell adhesion

molecule 4)

708 17 5331099 5347471 1 1 11263 1.9269 0.026 C1QBP (complement

C1q binding protein)

2017 11 70239612 70287690 2 2 11263 1.8709 0.030 CTTN (cortactin)

4045 3 115516210 116169385 56 29 11263 1.8095 0.035 limbic system-

associated membrane

protein (LSAMP)

8502 2 159308476 159542941 19 9 11263 1.7503 0.040 plakophilin 4 (PKP4)

5097 5 141227655 141263361 3 3 11263 1.6903 0.045 PCDH1 (protocadherin

1)

26047 7 145808453 148123090 237 110 11263 1.6621 0.048 contactin associated

protein-like 2 (CNT-

NAP2)

4155 18 74685789 74849774 49 30 11263 1.6502 0.049 MBP (maltose-binding

protein)
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Table 2: Statistically significant results of the SBA analysis. 3 pathways achieved significance. Asso-

ciation statistics for the top 5 SNPs driving the signal in each set are also shown. NSIG is the number

of SNPs crossing the nominal significance threshold. EMP1 is the empirical p-value attained by the

tested gene set. P is the p-value of the original single marker association, OR is the respective odds

ratio. A1 is the minor allele and A2 the major allele. F_A and F_U are the frequencies of the minor

allele in case and control samples respectively.

Gene set SNPs NSIG EMP1

Ligand-gated Ion Channel Signaling 683 66 0.000267

Chr SNP BP A1 F_A F_U A2 P OR Genes implicated

4 rs1391174 46072596 T 0.4892 0.4586 C 1.764e-05 1.131 GABRG1(0)

5 rs9790873 45291514 C 0.1535 0.1335 T 5.621e-05 1.177 HCN1(0)

9 rs2259639 101317401 T 0.2751 0.2982 C 0.0003612 0.8928 GABBR2(0)

9 rs1930415 101238974 T 0.2218 0.2424 C 0.0007006 0.8908 GABBR2(0)

11 rs949054 120795888 C 0.2241 0.2053 T 0.001281 1.118 GRIK4(0)

Gene set SNPs NSIG EMP1

Lymphocytes 799 50 0.00035

Chr SNP BP A1 F_A F_U A2 P OR Genes implicated

19 rs16986092 55433696 T 0.1158 0.09473 C 1.093e-06 1.251 NCR1(+9.257kb)|NLRP7(-1.18kb)

13 rs1933437 28624294 G 0.4183 0.3871 A 8.482e-06 1.138 FLT3(0)

3 rs2243123 159709651 C 0.2515 0.2759 T 0.0001167 0.8817 IL12A(0)|IL12A-AS1(0)

7 rs3801983 18683672 C 0.1928 0.2133 T 0.0003981 0.8808 HDAC9(0)

5 rs2230525 66478626 C 0.08431 0.07127 T 0.0005641 1.2 CD180(0)

Gene set SNPs NSIG EMP1

Cell Adhesion and Trans-synaptic Signaling 3290 292 0.00107

Chr SNP BP A1 F_A F_U A2 P OR Genes implicated

20 rs1002762 58580885 G 0.2305 0.2028 A 2.031e-06 1.178 CDH26(0)

21 rs2826825 22762779 G 0.376 0.3487 A 6.698e-05 1.126 NCAM2(0)

11 rs7925725 131449365 C 0.3709 0.3979 A 0.0001099 0.8921 NTM(0)

11 rs12224080 131816849 G 0.09841 0.08353 A 0.0002519 1.198 NTM(0)

3 rs6773575 77060574 C 0.0964 0.1126 A 0.000256 0.8407 ROBO2(0)
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