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Abstract 

Multimodality datasets are becoming increasingly common in various domains to provide 

complementary information for predictive analytics. In health care, diagnostic imaging of different 

kinds contains complementary information about an organ of interest, which allows for building a 

predictive model to accurately detect a certain disease. In manufacturing, multi-sensory datasets 

contain complementary information about the process and product, allowing for more accurate 

quality assessment. One significant challenge in fusing multimodality data for predictive analytics 

is that the multiple modalities are not universally available for all samples due to cost and 

accessibility constraints. This results in a unique data structure called Incomplete Multimodality 

Dataset (IMD) for which existing statistical models fall short. We propose a novel Incomplete-

Multimodality Transfer Learning (IMTL) model that builds a predictive model for each sub-cohort 

of samples with the same missing modality pattern, and meanwhile couples the model estimation 

processes for different sub-cohorts to allow for transfer learning. We develop an Expectation-

Maximization (EM) algorithm to estimate the parameters of IMTL and further extend it to a 

collaborative learning paradigm that is specifically valuable for patient privacy preservation in 

health care applications of the IMTL. We prove two advantageous properties of IMTL: the ability 

for out-of-sample prediction and a theoretical guarantee for a larger Fisher information compared 

with models without transfer learning. IMTL is applied to diagnosis and prognosis of the 

Alzheimer’s Disease (AD) at an early stage of the disease called Mild Cognitive Impairment (MCI) 

using incomplete multimodality imaging data. IMTL achieves higher accuracy than competing 
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1. Introduction 

Multimodality datasets are becoming increasingly common in various domains to provide 

complementary information for predictive analytics. For example, in health care, images of 

different types such as structural magnetic resonance imaging (MRI) and fludeoxyglucose positron 

emission tomography (FDG-PET) provide complementary information about the organ of interest, 

which allows for building a predictive model to accurately diagnosing a certain disease (Jack et al. 

2009; Lowe et al. 2009; Clark et al. 2011). In manufacturing, data collected from multiple different 

types of sensors provide complementary information about the process and product, allowing for 

more accurate assessment of process and product quality (Basir and Yuan 2007).  

One important challenge for integration of multimodality datasets in building a predictive model 

is that the multiple different modalities are not universally available for all the samples. Take the 

diagnosis of the Alzheimer’s disease (AD) – a fatal neurological disorder – using multimodality 

images as an example. Figure 1 shows the special “incomplete multimodality dataset (IMD)” we 

are focusing on in this paper, which includes three complementary image modalities, i.e., MRI, 

FDG-PET, and amyloid-PET for detection of AD at an early stage of the disease called Mild 

Cognitive Impairment (MCI) (Jack et al. 2012). In the recently published expert consensus criteria 

by the National Institute of Aging and Alzheimer’s Association, the use of multimodality images 

for early detection of AD has been highly recommended (Albert et al. 2011). In Figure 1, each 

sub-cohort consists of patients who have the same availability of modalities. Different sub-cohorts 

have different missing modality patterns. The reasons for the existence of IMD are multifold: some 

imaging equipment such as PET is costly and only available in limited clinics; some modalities 
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are not accessible to patients due to insurance coverage; it is not safe to put patients with some 

pre-existing conditions through a certain imaging examination.  

 

Figure 1.  An example of the incomplete multimodality dataset (IMD), in which MRI, FDG-PET, 

and amyloid-PET are considered as three modalities. Columns within each modality represent 

features extracted from the image. Each sub-cohort consists of patients with the same availability 

of modalities.  

 

If we applied existing methods to model IMD, there would be three options.  

1) Filling in missing data using some imputation algorithms (He et al. 2017; Ordóñez Galán et 

al. 2017). Because an IMD dataset misses the entire modality/modalities not individual features 

within a modality, there are too many missing values to fill in. The resulting dataset may have 

poor quality and thus negatively affecting performance of the subsequent predictive model 

based on this dataset.  

2) Separate modeling (SM). Since each sub-cohort has different availability for the modalities, 

SM builds a separate predictive model for each sub-cohort using the available 

modality/modalities within that sub-cohort. The limitation of SM is obvious: because each 

model can only use the data specific to the corresponding sub-cohort, sample size shortage 

may prevent building a robust model.  

3) All available data modeling (AADM). To build a model for each sub-cohort 𝑙 , one can 

incorporate data from another sub-cohort 𝑙′ whose available modalities include those in 𝑙. For 

example, to build a model for sub-cohort 2, one can combine the data of MRI and PDG-PET 

MRI FDG-PET Amyloid-PET

Sub-cohort 4

Sub-cohort 3

Sub-cohort 2

Sub-cohort 1
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in sub-cohort 3. Because all the available data is used regardless of which sub-cohort the data 

resides in, this approach is called AADM. Compared with SM, AADM alleviates the sample 

size shortage. However, it requires data pooling from different sub-cohorts. In reality, different 

sub-cohorts likely correspond to different health institutions or hospitals, data pooling is not 

easy due to the concern of patient privacy. Furthermore, it is known that AADM may not 

produce statistical consistent estimators; when it is used to estimate a covariance matrix, the 

estimate may not be positive definite (Little and Rubin 2002).   

In this paper, we propose a novel Incomplete-Multimodality Transfer Learning (IMTL) model 

to tackle the limitations of existing methods. IMTL models all the sub-cohorts simultaneously 

under a unified framework. In this way, knowledge obtained from the modeling of each sub-cohort 

can be “transferred” to help the modeling of other sub-cohorts. This makes IMTL a transfer 

learning model. Compared with SM, IMTL is not limited by the sample size of each sub-cohort. 

Compared with AADM, IMTL estimates model parameters in an integrated manner, which 

overcomes the limitations of AADM in the lack of positive definiteness and consistency guarantees. 

Furthermore, we propose two algorithms for parameter estimation of IMTL: with and without data 

pooling. The latter is a computational framework that includes iterative communication between a 

global learner and local learners residing within each sub-cohort/institution. This allows for 

between-institutional collaborative model estimation without the need for data pooling. This is 

particularly important for patient privacy preservation in health care applications of IMTL. Finally, 

we would like to stress that although IMTL is developed in the context of multimodality data in 

health care, it can be effortlessly extended to other non-medical domains that fusion of 

multimodality datasets is common and much needed, including but not limited to manufacturing 

(Basir and Yuan 2007) and transportation (Xia, Li, and Shan 2013).  
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The remainder of the paper is organized as follows: Sec. 2 provides a literature review. Sec. 3 

presents the development of IMTL. Sec. 4 investigates unique properties of IMTL. Sec. 5 presents 

case studies. Sec. 6 is the conclusion. 

2. Literature review 

This paper primarily intersects with the research area of statistical and machine learning models 

using data missed in chunks of modalities, termed as IMD in this paper. To our best knowledge, 

this area only has limited work. In what follows, we review each related paper in detail.  

Yuan et al. (2012) proposed an incomplete multisource feature learning method (iMSF), which 

used an 𝑙21 penalty to enforce same features within each modality to be selected across different 

sub-cohorts. One limitation of iMSF is that it cannot do “out-of-sample prediction”. That is, if a 

modality-wise missing pattern is not included in training data, iMSF cannot make a prediction on 

new samples with that missing pattern. Also, the 𝑙21 enabled feature selection scheme is most 

effective if different modalities have little correlation. To overcome the limitations of iMSF, Xiang 

et al. (2014) proposed an incomplete source-feature selection (ISFS) model. The main idea was to 

estimate a set of common coefficients across different sub-cohorts and specific coefficients to 

account for the uniqueness of each sub-cohort. To gain this flexibility, ISFS needs to estimate 

many parameters.      

Thung et al. (2014) developed a matrix completion method, which selected samples and features 

in the original dataset to produce a smaller dataset. This was done by using the group-lasso based 

multitask learning algorithm twice on features and samples, respectively. Then, standard missing 

data imputation algorithms were applied to the reduced dataset and classifiers were built on the 

imputed data. While the proposed idea of data reduction is novel, imputation would still have to 

be used.  
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Liu et al. (2017) proposed a view-aligned hypergraph learning (VAHL) method. VAHL divided 

the dataset into several views according to the availability of different modalities. A hypergraph 

of subjects was constructed on each view. Then, the hypergraphs were fused by a view-aligned 

regularizer under a classification framework. VAHL had a novel perspective of exploiting subject 

relationship using hypergraphs to naturally get around the issue of missing modalities. Also 

because of this “subject” perspective, the model has to be re-trained from scratch every time new 

data are becoming available. Also, VAHL has many parameters to estimate. 

Li et al. (2014) proposed a deep learning (DL) framework specifically for imaging data. The 

basic idea was to train a 3-D convolutional neutral network (CNN) to establish a voxel-wise 

mapping from an MRI image to an FDG-PET image based on a dataset with both images available. 

Then, the CNN could be used to create a “pseudo” FDG-PET from an MRI image for any patient 

whose FDG-PET is missing. To perform diagnosis or prognosis for a patient, both MRI and FDG-

PET (real or pseudo) would be used. This work represents one of the pioneers that introduced DL 

into imaging-based AD research. On the other hand, because MRI measures brain structure and 

FDG-PET measures brain function, crafting one from the other may not be biologically valid even 

though this is possible from a pure data-driven perspective. Further, there is a concern of 

uncertainty propagation as the uncertainty in establishing the voxel-wise mapping between MRI 

and FDG-PET will propagate to the uncertainty of the pseudo FDG-PET, which further affects the 

diagnosis and prognosis based on the pseudo FDG-PET. Also, this approach was developed to 

model two image modalities and is not directly applicable to datasets with more than two 

modalities and complicated missing patterns (e.g., Figure 1).  

In summary, limited work has been done to develop statistical models for IMD data. All the 

above-reviewed models, despite their specific weakness, share some common limitations: 1) Most 
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models cannot do out-of-sample prediction, which limits broader utilization; 2) Model estimation 

needs data pooling from different sub-cohorts. If the sub-cohorts correspond to different health 

institutions, which is typically the case, protection of patient privacy is a concern. Also, the 

institutions have to establish data sharing agreement before the modeling can take place, which is 

a lengthy process if not impossible. 3) While showing empirically good performance on specific 

datasets, there is a lack of theoretical study on why the performance is guaranteed.  

3. Development of the Incomplete-Multimodality Transfer Learning (IMTL) model 

For notational simplicity, we present our model development in the context of three modalities, 

while the model is generalizable to other numbers of modalities. For example, the three modalities 

can be MRI, FDG-PET and amyloid-PET as shown in Figure 1. Note that in Figure 1, we assume 

that MRI is available to patients in all the sub-cohorts. This is a valid assumption because MRI is 

in the standard care of AD. Under this structure, there are four patient sub-cohorts corresponding 

to different availabilities of the modalities: MRI alone; MRI & FDG-PET; MRI & amyloid-PET; 

all three modalities.  

Let 𝑘 be the index for modalities, 𝑘 = 1,2,3; 𝑙 be the index for sub-cohorts, 𝑙 = 1,2,3,4; and 𝑖 

be the index for samples/patients, 𝑖 = 1,… , 𝑛. Denote the sample size of each sub-cohort by 𝑛𝑙. 

∑ 𝑛𝑙
4
𝑙=1 = 𝑛. Furthermore, let 𝐱𝑖

(𝑘𝑙)
 contain features in modality 𝑘 for patient 𝑖 in sub-cohort 𝑙. Let 

𝑦𝑖
(𝑙)

 be the response variable for patient 𝑖 in sub-cohort 𝑙. We propose two IMTL models, one for 

a continuous response (i.e., a predictive model) and the other for a binary response (i.e., a 

classification model). Both models are useful in disease diagnosis and prognosis. For example, in 

diagnosis, 𝑦𝑖
(𝑙)

 can be a binary variable indicating existence of the disease or a continuous variable 

representing disease severity. In prognosis, 𝑦𝑖
(𝑙)

 can be a binary variable indicating death or 

progression to a more advanced stage by a pre-specified future time point or a continuous variable 
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representing the severity the disease will advance into at a future time point or time to 

death/progression.  

3.1. IMTL predictive model 

1) Formulation and estimation  

Consider the joint distribution of 𝑦𝑖
(𝑙)

, 𝐱𝑖
(2𝑙)

, and  𝐱𝑖
(3𝑙)

 given 𝐱𝑖
(1𝑙)

 to be multivariate normal, i.e.,  

(𝑦𝑖
(𝑙), 𝐱𝑖

(2𝑙) , 𝐱𝑖
(3𝑙)) | 𝐱𝑖

(1𝑙) ∼ 𝑀𝑉𝑁 (𝛍(𝐱𝑖
(1𝑙)) ,    𝚺).                                   (1) 

Here, we consider 𝐱𝑖
(1𝑙)

 (e.g., features of MRI) to be fixed covariates instead of random variables 

based on the aforementioned assumption that MRI is in the standard clinical care of AD and thus 

available to all the patients. While 𝐱𝑖
(1𝑙)

 could be considered as random in the most general 

formulation, doing so would need a joint distribution of (𝑦𝑖
(𝑙), 𝐱𝑖

(2𝑙) , 𝐱𝑖
(3𝑙), 𝐱𝑖

(1𝑙)  ), which requires 

more parameters to be estimated than the proposed formulation in (1), such as the mean vector and 

variance-covariance matrix of 𝒙𝑖
(1𝑙)

 as well as the covariances between 𝒙𝑖
(1𝑙)

 and (𝒙𝑖
(2𝑙) , 𝒙𝑖

(3𝑙), 𝑦𝑖
(𝑙)

).  

In (1), 𝛍(∙) is a vector function of covariates. Although 𝛍(∙) can take any form in theory, we 

focus on a linear function in this paper, i.e.,  

𝛍(𝐱𝑖
(1𝑙)
) = (𝐱𝑖

(1𝑙)
𝛃1 + 𝛽0, 𝐱𝑖

(1𝑙)
𝐀2 + 𝐛2, 𝐱𝑖

(1𝑙)
𝐀3 + 𝐛3), 

where 𝛃1, 𝛽0, 𝐀2, 𝐛2, 𝐀3, 𝐛3 are coefficients. The covariance matrix 𝚺 in (1) can be written in a 

more explicit format to include sub-matrices of covariances between the response and each 

modality and between the modalities, i.e.,  

𝚺 = (

𝜎𝑦
2 𝚺𝑦2 𝚺𝑦3

𝚺2𝑦 𝚺22 𝚺23
𝚺3𝑦 𝚺32 𝚺33

),                                                                (2) 
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Let 𝚯 = (𝚺, 𝛃1, 𝛽0, 𝐀2, 𝐛2, 𝐀3, 𝐛3) contain all the unknown parameters for the model in (1). 

Furthermore, let D𝑚𝑖𝑠  and D𝑜𝑏𝑠 contain the missing and observed data corresponding to the data 

structure in Figure 1, respectively. That is,  

D𝑚𝑖𝑠 = {{𝐱𝑖
(21) , 𝐱𝑖

(31)}
𝑖=1

𝑛1
, {𝐱𝑖

(32)}
𝑖=1

𝑛2
, {𝐱𝑖

(24)}
𝑖=1

𝑛4
}  and  D𝑜𝑏𝑠 =

{{𝐱𝑖
(11), 𝑦𝑖

(1)}
𝑖=1

𝑛1
, {𝐱𝑖

(12) , 𝐱𝑖
(22) , 𝑦𝑖

(2)}
𝑖=1

𝑛2
, {𝐱𝑖

(13) , 𝐱𝑖
(23) , 𝐱𝑖

(33), 𝑦𝑖
(3)}

𝑖=1

𝑛3
, {𝐱𝑖

(14) , 𝐱𝑖
(34) , 𝑦𝑖

(4)}
𝑖=1

𝑛4
}. Then, 

we can write down the complete-data log-likelihood function, i.e.,  

𝑙(𝚯;D𝑜𝑏𝑠 , D𝑚𝑖𝑠) = −𝑛 𝑙𝑜𝑔|𝚺| − ∑ ∑ (𝑦𝑖
(𝑙) − 𝐱𝑖

(1𝑙)𝛃1 − 𝛽0 , 𝐱𝑖
(2𝑙) − 𝐱𝑖

(1𝑙)𝐀2 − 𝐛2, 𝐱𝑖
(3𝑙) −

𝑛𝑙
𝑖=1

4
𝑙=1

𝐱𝑖
(1𝑙)𝐀3 − 𝐛3)𝚺

−1(𝑦𝑖
(𝑙) − 𝐱𝑖

(1𝑙)𝛃1 − 𝛽0 , 𝐱𝑖
(2𝑙) − 𝐱𝑖

(1𝑙)𝐀2 − 𝐛2, 𝐱𝑖
(3𝑙) − 𝐱𝑖

(1𝑙)𝐀3 − 𝐛3)
𝑇

.           (3)           

Since 𝑙(𝚯; D𝑜𝑏𝑠 , D𝑚𝑖𝑠) includes missing data, we resort to the Expectation-Maximization (EM) 

algorithm. The general EM framework includes an E-step and an M-step. The E-step is to find the 

expectation of the complete-data log-likelihood function with respect to the missing data given the 

observed data and the current parameter estimates. In our case, the E-step is to find 

𝐸
D𝑚𝑖𝑠| D𝑜𝑏𝑠,𝚯(𝑡)

(𝑙(𝚯;D𝑜𝑏𝑠 , D𝑚𝑖𝑠)),                                           (4) 

where 𝚯(𝑡) contains the parameter estimates obtained at the 𝑡-th iteration. Then, the M-step is to 

update the parameter estimates by maximizing the expectation in the E-step, i.e.,  

𝚯(𝑡+1) = argmax
𝚯

    𝐸
D𝑚𝑖𝑠| D𝑜𝑏𝑠,𝚯(𝑡)

(𝑙(𝚯; D𝑜𝑏𝑠 , D𝑚𝑖𝑠)).                          (5) 

The two steps are iterated until convergence. The challenges in using the general EM framework 

are to derive the expectation and solve the maximization for a specific model (e.g., IMTL in our 

case). In what follows, we will develop the details of the E-step and M-step for IMTL.  
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E-step: 

When the likelihood function is based on a distribution in the exponential family, Little and 

Rubin (2002) showed that the E-step becomes finding expectations of sufficient statistics. Our 

likelihood function is based on a multivariate normal distribution in (1). Therefore, the goal of our 

E-step is to find the sufficient statistics associate with (1) and derive their expectations. Let 𝑆 be a 

collection of the sufficient statistics. We find that 𝑆 includes the following elements: 

𝑆 =

{
 
 

 
 
𝐱𝑖
(21) , 𝐱𝑖

(31) , 𝐱𝑖
(32), 𝐱𝑖

(24), (
(𝐱𝑖

(21))𝑇𝐱𝑖
(21) (𝐱𝑖

(31))
𝑇

𝐱𝑖
(21)

(𝐱𝑖
(21))𝑇  𝐱𝑖

(31) (𝐱𝑖
(31))

𝑇

 𝐱𝑖
(31)

) ,

 (𝐱𝑖
(32))𝑇𝐱𝑖

(32) , (𝐱𝑖
(24)

)𝑇𝐱𝑖
(24)

}
 
 

 
 

. 

Furthermore, we need to derive the expectation of each element contained in 𝑆. For example, focus 

on (𝐱𝑖
(21), 𝐱𝑖

(31)) first. We can derive that  

(𝐱̃𝑖
(21), 𝐱̃𝑖

(31)) ≜ 𝐸[(𝐱𝑖
(21), 𝐱𝑖

(31))|𝐱𝑖
(11), 𝑦𝑖

(1), 𝚯(𝑡)] 

                    = (𝐱𝑖
(11)𝐀2

(𝑡) + 𝐛2
(𝑡), 𝐱𝑖

(11)𝐀3
(𝑡) + 𝐛3

(𝑡)) +  (𝚺2𝑦
(𝑡), 𝚺3𝑦

(𝑡))(𝜎𝑦
(𝑡)2)

−1
(𝑦𝑖

(1) − 𝐱𝑖
(11)𝛃1

(𝑡) − 𝛽0
(𝑡)
),                  (6)                        

Here, we only show the result and have to skip the derivation process due to space limit. Similarly, 

the expectations of 𝐱𝑖
(32) and 𝐱𝑖

(24)
 can be obtained as follows:  

𝐱̃𝑖
(32) ≜ 𝐸[𝐱𝑖

(32)|𝐱𝑖
(12), 𝐱𝑖

(22), 𝑦𝑖
(2),𝚯(𝑡)] 

          = 𝐱𝑖
(12)

𝛃1
(𝑡)
+ 𝛽0

(𝑡)
+ (𝚺3𝑦

(𝑡)
, 𝚺32

(𝑡))(
𝜎𝑦
(𝑡)2 𝚺𝑦2

(𝑡)

𝚺2𝑦
(𝑡)

𝚺22
(𝑡)
)

−1

(
𝑦𝑖
(2)
−𝐱𝑖

(12)
𝛽1
(𝑡)
−𝛽0

(𝑡)

𝐱𝑖
(22)

−𝐱𝑖
(12)

𝐀2
(𝑡)
−𝐛2

(𝑡)),                                                  (7) 

𝐱̃𝑖
(24) ≜ 𝐸[𝐱𝑖

(24)|𝐱𝑖
(14), 𝐱𝑖

(34), 𝑦𝑖
(4),𝚯(𝑡)] 

       = 𝐱𝑖
(14)𝛃1

(𝑡) + 𝛽0
(𝑡) + (𝚺2𝑦

(𝑡), 𝚺23
(𝑡))(

𝜎𝑦
(𝑡)2 𝚺𝑦3

(𝑡)

𝚺3𝑦
(𝑡)

𝚺33
(𝑡)
)

−1

(
𝑦𝑖
(4)
−𝐱𝑖

(14)
𝛃1
(𝑡)
−𝛽0

(𝑡)

𝐱𝑖
(34)

−𝐱𝑖
(14)

𝐀3
(𝑡)
−𝐛3

(𝑡)).                                                  (8)    

Using (6) -(8), we can further derive the expectations of the 2nd-order elements in 𝑆 as: 
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𝐸 [(
(𝐱𝑖

(21))𝑇𝐱𝑖
(21) (𝐱𝑖

(31))
𝑇

𝐱𝑖
(21)

(𝐱𝑖
(21))𝑇  𝐱𝑖

(31) (𝐱𝑖
(31))

𝑇

 𝐱𝑖
(31)

)| 𝐱𝑖
(11), 𝑦𝑖

(1), 𝚯(𝑡) ] = 

(
(𝐱̃𝑖

(21)
)𝑇𝐱̃𝑖

(21)
(𝐱̃𝑖

(31)
)𝑇𝐱̃𝑖

(21)

(𝐱̃𝑖
(21)

)𝑇𝐱̃𝑖
(31)

(𝐱̃𝑖
(31)

)𝑇𝐱̃𝑖
(31)

) + (
𝚺22|𝑦
(𝑡)

𝚺23|𝑦
(𝑡)

𝚺32|𝑦
(𝑡)

𝚺33|𝑦
(𝑡)

),                                                    (9) 

𝐸 [(𝐱𝑖
(24)

)
𝑇

𝐱𝑖
(24)

|𝐱𝑖
(14)

, 𝐱𝑖
(34)

, 𝑦𝑖
(4)
,  𝚯(𝑡)] = (𝐱̃𝑖

(24)
)𝑇𝐱̃𝑖

(24)
+ 𝚺22|3y

(𝑡)
,                                       (10) 

𝐸 [ (𝐱𝑖
(32))

𝑇

𝐱𝑖
(32)|𝐱𝑖

(12) , 𝐱𝑖
(22) , 𝑦𝑖

(2),𝚯(𝑡)] = (𝐱̃𝑖
(32)

)𝑇𝐱̃𝑖
(32)

+ 𝚺33|2y
(𝑡)

,                                       (11) 

where  

(
𝚺22|𝑦
(𝑡)

𝚺23|𝑦
(𝑡)

𝚺32|𝑦
(𝑡)

𝚺33|𝑦
(𝑡)

) = (
𝚺22
(𝑡)

𝚺23
(𝑡)

𝚺32
(𝑡)

𝚺33
(𝑡)
) − (

𝚺2𝑦
(𝑡)

𝚺3𝑦
(𝑡)) (𝜎𝑦

(𝑡)2)
−1

(𝚺𝑦2
(𝑡) 𝚺𝑦3

(𝑡)
), 

𝚺22|3y
(𝑡)

= 𝚺22
(𝑡)
− (𝚺2y

(𝑡), 𝚺23
(𝑡))(

𝜎𝑦
(𝑡)2

𝚺𝑦3
(𝑡)

𝚺3𝑦
(𝑡) 𝚺33

(𝑡)
)

−1

(
𝚺𝑦2
(𝑡)

𝚺32
(𝑡)), 

𝚺33|2y
(𝑡)

= 𝚺33
(𝑡)
− (𝚺3y

(𝑡), 𝚺32
(𝑡))(

𝜎𝑦
(𝑡)2 𝚺𝑦2

(𝑡)

𝚺2𝑦
(𝑡) 𝚺22

(𝑡)
)

−1

(
𝚺𝑦3
(𝑡)

𝚺23
(𝑡)). 

Next, we plug the derived expectations of the sufficient statistics, i.e., (6)-(11), into the expected 

complete-data log-likelihood function in (4).  Through some algebra, (4) can be written as 

𝐸
D𝑚𝑖𝑠| D𝑜𝑏𝑠,𝚯(𝑡)

(𝑙(𝚯;D𝑜𝑏𝑠 , D𝑚𝑖𝑠)) = 

−𝑛 𝑙𝑜𝑔|𝚺| − ∑ ∑ (𝑦𝑖
(𝑙) − 𝐱𝑖

(1𝑙)𝛃1 − 𝛽0 , 𝒙̃𝑖
(2𝑙) − 𝐱𝑖

(1𝑙)𝐀2 − 𝐛2, 𝒙̃𝑖
(3𝑙) − 𝐱𝑖

(1𝑙)𝐀3 −
𝑛𝑙
𝑖=1

4
𝑙=1

𝐛3)𝚺
−1(𝑦𝑖

(𝑙) − 𝐱𝑖
(1𝑙)𝛃1 − 𝛽0 , 𝒙̃𝑖

(2𝑙) − 𝐱𝑖
(1𝑙)𝐀2 − 𝐛2, 𝒙̃𝑖

(3𝑙) − 𝐱𝑖
(1𝑙)𝐀3 − 𝐛3)

𝑇

−

𝑡𝑟

(

  
 
𝚺−1

(

 
 
𝑛4 (

0 𝟎 𝟎

𝟎 𝚺22|3y
(𝑡)

𝟎

𝟎 𝟎 𝟎

) + 𝑛2 (

0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 𝚺33|2y
(𝑡)

) + 𝑛1(

0 𝟎 𝟎

𝟎 𝚺22|𝑦
(𝑡)

𝚺23|𝑦
(𝑡)

𝟎 𝚺32|𝑦
(𝑡)

𝚺33|𝑦
(𝑡)

)

)

 
 

)

  
 

 .             (12) 
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In (12), a notational trick is used, i.e., 𝐱̃𝑖
(𝑘𝑙)

 is used to represent the data 𝐱𝑖
(𝑘𝑙)

 no matter if the data 

is observed or missing, 𝑘 = 2,3; 𝑙 = 1, … ,4. When the data is observed, e.g., 𝐱𝑖
(22)

, we make 

𝐱̃𝑖
(22) = 𝐱𝑖

(22)
. When the data is missing, e.g.,  𝐱𝑖

(21)
, the expression of 𝐱̃𝑖

(21)
 is given in (6). The 

reason for using this notational trick is to facilitate the maximization in the M-step, which will 

become apparent in the following discussion. 

M-step: 

Split the parameter set 𝚯 into two subsets: (𝛃1, 𝛽0, 𝐀2, 𝐛2, 𝐀3, 𝐛3) and 𝚺. The maximization 

problem can be solved by taking the partial derivative of the expectation in (12) with respect to 

each subset and equating the partial derivative to zero, i.e., 

𝜕 𝐸
D𝑚𝑖𝑠| D𝑜𝑏𝑠,𝚯(𝑡)

(𝑙(𝚯;D𝑜𝑏𝑠,D𝑚𝑖𝑠))

𝜕 (𝛃1,𝛽0,𝐀2,𝐛2,𝐀3,𝐛3)
= 0, and 

𝜕 𝐸
D𝑚𝑖𝑠| D𝑜𝑏𝑠,𝚯(𝑡)

(𝑙(𝚯;D𝑜𝑏𝑠,D𝑚𝑖𝑠))

𝜕 𝚺
= 0. 

Instead of directly solving these equations, which is computationally involved, we take an indirect 

approach by first obtaining the least square estimators for the coefficients in the following three 

regressions:  

{

𝑦𝑖
(𝑙)
~ 𝐱𝑖

(1𝑙)𝛃1 + 𝛽0

𝐱̃𝑖
(2𝑙)~𝐱𝑖

(1𝑙)𝐀2 + 𝐛2

 𝐱̃𝑖
(3𝑙)~𝐱𝑖

(1𝑙)𝐀3 + 𝐛3

. 

The least square estimators are: 
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{
 
 
 

 
 
 (

𝛽0
(𝑡+1)

𝛃1
(𝑡+1)

) = (∑ ∑ (1, 𝐱𝑖
(1𝑙))

𝑇

(1, 𝐱𝑖
(1𝑙))

𝑛𝑙
𝑖=1

4
𝑙=1 )

−1

∑ ∑ (1,𝐱𝑖
(1𝑙))

𝑇

𝑦𝑖
(𝑙)𝑛𝑙

𝑖=1
4
𝑙=1

(
𝐛2
(𝑡+1)

𝐀2
(𝑡+1)

) = (∑ ∑ (1, 𝐱𝑖
(1𝑙))

𝑇

(1, 𝐱𝑖
(1𝑙))

𝑛𝑙
𝑖=1

4
𝑙=1 )

−1

∑ ∑ (1,𝐱𝑖
(1𝑙))

𝑇

𝐱̃𝑖
(2𝑙)𝑛𝑙

𝑖=1
4
𝑙=1

(
𝐛3
(𝑡+1)

𝐀3
(𝑡+1)

) = (∑ ∑ (1, 𝐱𝑖
(1𝑙))

𝑇

(1, 𝐱𝑖
(1𝑙))

𝑛𝑙
𝑖=1

4
𝑙=1 )

−1

∑ ∑ (1,𝐱𝑖
(1𝑙))

𝑇

𝐱̃𝑖
(3𝑙)𝑛𝑙

𝑖=1
4
𝑙=1

.                    (13) 

It is not hard to show that these estimators are equivalent to the optimal solutions for 

(𝛃1, 𝛽0, 𝐀2, 𝐛2, 𝐀3, 𝐛3)  in the M-step. Furthermore, let 𝐳𝑖
(𝑙)
= (𝑦𝑖

(𝑙) − 𝐱𝑖
(1𝑙)𝛃1

(𝑡+1) −

𝛽0
(𝑡+1) , 𝐱̃𝑖

(2𝑙) − 𝐱𝑖
(1𝑙)𝐀2

(𝑡+1) − 𝐛2
(𝑡+1) , 𝐱̃𝑖

(3𝑙) − 𝐱𝑖
(1𝑙)𝐀3

(𝑡+1) − 𝐛3
(𝑡+1)).  Then, we can obtain the 

optimal solution for 𝚺 as  

𝚺(𝑡+1) =
1

𝑛
{∑ ∑ (𝐳𝑖

(𝑙)
)
𝑇

𝐳𝑖
(𝑙)𝑛𝑙

𝑖=1
4
𝑙=1 + 𝑛4 (

0 𝟎 𝟎

𝟎 𝚺22|3y
(𝑡)

𝟎

𝟎 𝟎 𝟎

) + 𝑛2(

0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 𝚺33|2y
(𝑡)

) +

                   𝑛1(

0 𝟎 𝟎

𝟎 𝚺22|𝑦
(𝑡)

𝚺23|𝑦
(𝑡)

𝟎 𝚺32|𝑦
(𝑡)

𝚺33|𝑦
(𝑡)

)}.                                                                                           (14)             

2) Prediction 

At the convergence of the above EM iterations, we can obtain the estimated parameters 𝚯̂ =

(𝚺̂, 𝛃̂1, 𝛽̂0, 𝐀̂2, 𝐛̂2, 𝐀̂3, 𝐛̂3). Then, these parameters can be used to predict on new samples. Consider 

a new sample 𝑖∗. Depending on what available modality/modalities this sample has, we can use 

the following model to predict the response variable of the sample:  

𝑦̂𝑖∗ = 𝐱𝑖∗
(11)

𝛃̂1 + 𝛽̂0,                                                                                 if 𝑖∗ ∈ 𝑠𝑢𝑏 − 𝑐𝑜ℎ𝑜𝑟𝑡 1; 

𝑦̂𝑖∗ = 𝐱𝑖
(12)(𝛃̂1 − 𝐀̂2𝚺̂22

−1𝚺̂2𝑦) + 𝐱𝑖
(22)𝚺̂22

−1𝚺̂2𝑦 + (𝛽̂0 − 𝐛̂2𝚺̂22
−1𝚺̂2𝑦),      if 𝑖

∗ ∈ 𝑠𝑢𝑏 − 𝑐𝑜ℎ𝑜𝑟𝑡 2;                               
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𝑦̂𝑖∗ = 𝐱𝑖∗
(13) (𝛃̂1 − (𝐀̂2, 𝐀̂3) (

𝚺̂22 𝚺̂23
𝚺̂32 𝚺̂33

)

−1

(
𝚺̂2𝑦

𝚺̂3𝑦
)) + (𝐱𝑖∗

(23), 𝐱𝑖∗
(33)) (

𝚺̂22 𝚺̂23
𝚺̂32 𝚺̂33

)

−1

(
𝚺̂2𝑦

𝚺̂3𝑦
) + 

      (𝛽̂0 − (𝐛̂2, 𝐛̂3) (
𝚺̂22 𝚺̂23
𝚺̂32 𝚺̂33

)

−1

(
𝚺̂2𝑦

𝚺̂3𝑦
)),                                       if 𝑖∗ ∈ 𝑠𝑢𝑏 − 𝑐𝑜ℎ𝑜𝑟𝑡 3; 

𝑦̂𝑖∗ = 𝐱𝑖∗
(14)(𝛃̂1 − 𝐀̂3𝚺̂33

−1𝚺̂3𝑦) + 𝐱𝑖∗
(34)𝚺̂33

−1𝚺̂3𝑦 + (𝛽̂0 − 𝐛̂3𝚺̂33
−1𝚺̂3𝑦),   if 𝑖

∗ ∈ 𝑠𝑢𝑏 − 𝑐𝑜ℎ𝑜𝑟𝑡 4.                      

3.2. IMTL classification model 

In a classification model, 𝑦𝑖
(𝑙)

 can take the values of 0 or 1 that represent two classes. Within 

each class, consider the joint distribution  𝐱𝑖
(2𝑙)

 and  𝐱𝑖
(3𝑙)

 given 𝐱𝑖
(1𝑙)

 to be multivariate normal, 

i.e.,  

(𝐱𝑖
(2𝑙) , 𝐱𝑖

(3𝑙))|𝐱𝑖
(1𝑙) , 𝑦𝑖

(𝑙) = 1 ∼ 𝑀𝑉𝑁(𝛍1(𝐱𝑖
(1𝑙)), 𝚺),                                           (15) 

(𝐱𝑖
(2𝑙) , 𝐱𝑖

(3𝑙))|𝐱𝑖
(1𝑙) , 𝑦𝑖

(𝑙) = 0 ∼ 𝑀𝑉𝑁(𝛍0(𝐱𝑖
(1𝑙)), 𝚺),                                          (16) 

where the class-specific means are linear functions of 𝐱𝑖
(1𝑙)

, i.e.,    

𝛍1(𝐱𝑖
(1𝑙)) = (𝐱𝑖

(1𝑙)𝐀2 + 𝐛21, 𝐱𝑖
(1𝑙)𝐀3 + 𝐛31), and 

𝛍0(𝐱𝑖
(1𝑙)) = (𝐱𝑖

(1𝑙)𝐀2 + 𝐛20, 𝐱𝑖
(1𝑙)𝐀3 + 𝐛30). 

The same covariance matrix, 𝚺 = (
𝚺22 𝚺23
𝚺32 𝚺33

), is assumed for the two classes. Furthermore, we 

consider the distribution of 𝑦𝑖
(𝑙)

 given 𝐱𝑖
(1𝑙)

 to be Bernoulli, i.e.,   

𝑦𝑖
(𝑙) = 1|𝐱𝑖

(1𝑙)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
1

1+ exp {−𝐱𝑖
(1𝑙)

𝛃1−𝛽0}
).                                         (17) 

Let 𝚯̃ = (𝚺̃, 𝛃1, 𝛽0, 𝐀2, 𝐛21, 𝐛20, 𝐀3, 𝐛31 , 𝐛30) contain the unknown parameters for the model in 

(15)-(17). We can write down the complete-data log-likelihood function, i.e.,  
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𝑙 (𝚯̃;D𝑜𝑏𝑠, D𝑚𝑖𝑠) = −𝑛 log |𝚺| + ∑ ∑ (𝑦𝑖
(𝑙) (𝐱𝑖

(2𝑙)
− 𝐱𝑖

(1𝑙)
𝐀2 − 𝐛21, 𝐱𝑖

(3𝑙)
−  𝐱𝑖

(1𝑙)
𝐀3 −

𝑛𝑙
𝑖=1

4
𝑙=1

𝐛31) 𝚺
−1 (𝐱𝑖

(2𝑙)
− 𝐱𝑖

(1𝑙)
𝐀2 − 𝐛21, 𝐱𝑖

(3𝑙)
− 𝐱𝑖

(1𝑙)
𝐀3 − 𝐛31)

𝑇

 + (1 − 𝑦𝑖
(𝑙)
) (𝐱𝑖

(2𝑙)
− 𝐱𝑖

(1𝑙)
𝐀2 − 𝐛20, 𝐱𝑖

(3𝑙)
−

𝐱𝑖
(1𝑙)
𝐀3 − 𝐛30) 𝚺

−1 (𝐱𝑖
(2𝑙)

− 𝐱𝑖
(1𝑙)
𝐀2 − 𝐛20, 𝐱𝑖

(3𝑙)
− 𝐱𝑖

(1𝑙)
𝐀3 − 𝐛30)

𝑇

) + 𝑦𝑖
(𝑙) (𝐱𝑖

(1𝑙)
𝛃1 + 𝛽0) − log (1 +

exp (𝐱𝑖
(1𝑙)
𝛃1 + 𝛽0)).                                                                                                                                   (18) 

Equation (18) can be decomposed into a logistic regression and a conditional multivariate normal 

distribution. As a result, we can estimate (𝛃1, 𝛽0) and the remaining parameters in 𝚯̃ separately. 

Specifically, (𝛃1, 𝛽0) are coefficients of the logistic regression model: 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑦𝑖
(𝑙) = 1)) = 𝐱𝑖

(1𝑙)𝛃1 + 𝛽0. 

This model does not involve missing data, which means that (𝛃1, 𝛽0)  can be estimated by 

iteratively reweighted least squares (IRLS) estimation.  

Furthermore, let 𝚯 be the parameters in 𝚯̃ excluding (𝛃1, 𝛽0). 𝚯 can be estimated by a similar 

EM algorithm to the predictive model in Sec. 3.1. Please see Appendix B for the formula in the 

EM algorithm and in the classification models on new samples.   

3.3. Collaborative model estimation without data pooling 

One reason leading to generation of IMD data in health care applications is that each sub-cohort 

corresponds to a different institution. The availability of modalities varies across the different 

institutions due to accessibility and cost. In the IMTL models proposed in Sec. 3.1-3.2, model 

estimation is assumed to happen at a centralized place into which the data from different 

institutions (i.e., sub-cohorts) have been deposited. This requires a multi-institutional data sharing 

agreement – a process known to be time- and effort-intensive. A more commonly encountered 

scenario is that different institutions would like to collaborate on model estimation without having 

to share their respective patients’ data. In this section, we address the latter scenario by proposing 
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a computational framework for model estimation. This framework uses the same equations as 

those in Sec. 3.1-3.2, but it computes the equations at the E-step locally at each institution because 

each equation only involves the data from a single institution. This is shown as the four vertical 

rectangular boxes in Figure 2. For example, equation (6) in the E-step computes the expectations 

of two missing modalities in sub-cohort 1,  𝐱𝑖
(21)

 and 𝐱𝑖
(31)

, which only involve the data from sub-

cohort 1, 𝐱𝑖
(11)

 and 𝑦𝑖
(1)

. This nice “local” property also holds for other equations in the E-step. At 

the M-step, the proposed framework combines the locally computed results in a centralized place, 

which is shown as the horizontal rectangular box at the top of Figure 2. Because these results do 

not reveal the raw data in each institution, patient privacy is preserved within each institution. The 

key idea of this computational framework is to consider the M- and E-steps as a global and a local 

learner, respectively. The global learner resides in a centralized place while the local learners reside 

 

 

Figure 2.  A computational framework for collaborative model estimation of IMTL without data 

pooling from different sub-cohorts.  
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in each sub-cohort. A local learner can only “see” the data within the respective sub-cohort and 

performs computation locally. Results from the local computation, not the data, are sent to the 

global learner to be combined.  

Compared with the centralized model estimation in Sec. 3.1-3.2, this computational framework 

involves communications between the global and local learners. As a result, there may be loss of 

efficiency due to limited communication bandwidth. On the other hand, this problem can be 

potentially mitigated because the computations of local learners can be performed in parallel.   

3.4. Generalization to M modalities 

The presentation of IMTL in Sec. 3.1-3.3 was within the context of three modalities based on 

the consideration of notational simplicity. In this section, we provide the steps of extending IMTL 

to the general case of 𝑀 modalities: 1) Given a multimodality dataset from an application, subjects 

(a.k.a. samples) are grouped into sub-cohorts with each sub-cohort having a different pattern of 

missing modalities. 2) Depending on the type of the response variable, one can decide if the 

problem to be tackled is regression or classification. For a regression problem, a multivariate 

normal distribution can be assumed for the modalities and the response. For a classification 

problem, a multivariate normal distribution can be assumed for the modalities and a Bernoulli 

distribution can be assumed for the response. For most applications, there is at least one modality 

available across all the sub-cohorts. If this is the case, the aforementioned distributions can be 

modified into conditional distributions given the available modality. Next, one can write down the 

complete-data log-likelihood function under the distribution assumption. 3) In the E-step of the 

EM algorithm, the key is to identify the sufficient statistics of the log-likelihood function, which 

include the missing modalities in each sub-cohort, the quadratic term of each missing modality, 

and pair-wise products between the missing modalities in that sub-cohort (if there is more than one 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.23.20077412doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077412


18 

 

missing modality). Then, one can derive expectations of the sufficient statistics given the observed 

data and parameter estimates from the previous iteration. Further, these expected sufficient 

statistics are plugged into the expected complete-data log-likelihood function, which will be 

maximized in the M-step. 4) In the M-step, an intuitive but mathematically-involved approach is 

to equate the 1st-order partial derivative of each parameter to zero and solve the parameter-wise 

simultaneous equations to update the parameter set. Alternative approaches can be developed to 

solve the maximization problem easier, depending on the form of the log-likelihood function. For 

example, in the three-modality case, we used a notational trick, which allowed us to convert the 

maximization into the solving of least square estimations.  

Computational complexity: The proposed EM algorithm for IMTL estimation has analytical 

solutions in the E-step and M-step. Therefore, the computational complexity primarily comes from 

the iterations between the two steps until convergence. The complexity of EM iterations has been 

well-studied in the literature. Furthermore, within the E-step, since there are no iterations but just 

arithmetic operations based on derived mathematical formula, the complexity primarily depends 

on how many expectations to compute. Given 𝑀 modalities, the total number of sub-cohorts with 

missing modalities is 𝐿 = 2𝑀−1 − 1. Within each sub-cohort, there are two types of expectations 

to compute, including the mean vector and variance-covariance matrix of the missing features. 

Therefore, the complexity of the E-step can be considered as 2(2𝑀−1 − 1). Within the M-step, the 

complexity primarily depends on how many parameters to estimate. Suppose each modality has 𝑝 

features. The total number of parameters is 
1

2
(𝑀 − 1)2𝑝2 + (𝑀 − 1)𝑝2 +

5

2
(𝑀 − 1)𝑝 + 𝑝 + 2.  
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4. Properties of IMTL 

In this section, we discuss two unique properties of IMTL: 1) the ability for out-of-sample 

prediction; 2) a theoretical guarantee for a larger Fisher information compared with models without 

transfer learning, which explains the superiority of IMTL from a theoretical point of view.  

4.1. Ability for out-of-sample prediction 

Definition: Let 𝐷𝑡𝑟 denote a training set. Suppose the training samples can be divided into 𝐿 

sub-cohorts, where each sub-cohort corresponds to a different missing modality pattern in 

{𝒫1, . . . , 𝒫𝐿}. Let 𝑖∗ be a sample in a test set, whose missing modality pattern is 𝒫(𝑖∗). Assume 

𝒫(𝑖∗) ∉ {𝒫1, . . . , 𝒫𝐿}. If a model trained on 𝐷𝑡𝑟 can be used predict 𝑖∗, the model is called capable 

of out-of-sample prediction.  

For example, a training set can include only sub-cohorts 1, 2, and 4 in Fig. 1 while the test set 

includes sub-cohort 3. It is obvious that the two competing methods to IMTL, i.e., SM and AADM, 

cannot do out-of-sample prediction. In contrast, IMTL is capable of out-of-sample prediction. 

Next, we provide an illustrative proof for this capability of IMTL. We focus on the predictive 

model in Sec. 3.1. Also, for notational simplicity, each modality is assumed to contain one feature.  

Consider a sample 𝑖∗ in the test set who belongs to sub-cohort 3. To predict the response variable 

of this sample, (19) will be used, i.e.,   

𝑦̂𝑖∗
(3)
= 𝑥𝑖∗

(13) (𝛽̂1 − (𝐴̂2, 𝐴̂3) (
Σ̂22 Σ̂23
Σ̂32 Σ̂33

)

−1

(
Σ̂2y

Σ̂3y
)) + (𝑥𝑖∗

(23) , 𝑥𝑖∗
(33)) (

Σ̂22 Σ̂23
Σ̂32 Σ̂33

)

−1

(
Σ̂2y

Σ̂3y
) + (𝛽̂0 −

(𝑏̂2, 𝑏̂3) (
Σ̂22 Σ̂23
Σ̂32 Σ̂33

)

−1

(
Σ̂2y

Σ̂3y
)).                                                                                                                   (19)                      

The parameters of the model in (19) are estimated from a training set that includes only sub-cohorts 

1, 2, and 4 but not 3. It is easy to understand why estimation of other parameters is possible except 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.23.20077412doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077412


20 

 

Σ23. Intuitively, since Σ23 is the covariance between features in modalities 2 and 3, one would 

expect to have at least some training data from sub-cohort 3, which have both modalities 2 and 3 

available, in order to estimate Σ23 . However, this is not our case. Therefore, the key to 

demonstrating that IMTL can do out-of-sample prediction is to demonstrate that the estimation for 

Σ23 is possible by IMTL even without any data from sub-cohort 3 in the training set. To show this, 

consider the estimation for Σ23 by the EM algorithm. At convergence, it can be derived that Σ23 

can be estimated by (20). The detailed derivation is skipped due to space limit.  

  Σ̂23 =  
1

𝑛−𝑛1−𝑛̃2−𝑛̃4
(𝑛̃1 − 𝑛1)Σ̂2𝑦(𝜎̂𝑦

2)
−1
Σ̂𝑦3 + 

1

𝑘2
∑ (𝑥𝑖

(22) − 𝑥𝑖
(12)𝐴̂2 − 𝑏̂2) (𝑦𝑖

(2) − 𝑥𝑖
(12)(𝛽̂1 −

𝑛2
𝑖=1

       𝐴̂2Σ̂22
−1Σ̂2𝑦) − 𝑥𝑖

(22)
Σ̂22
−1Σ̂2𝑦 − (𝛽̂0 − 𝑏̂2 Σ̂22

−1Σ̂2𝑦)) Σ̂𝑦3 +
1

𝑘3
∑ (𝑥𝑖

(34)
− 𝑥𝑖

(14)
𝐴̂3 − 𝑏̂3)(𝑦𝑖

(4)
−

𝑛4
𝑖=1

𝑥𝑖
(14)(𝛽̂1 − 𝐴̂3Σ̂33

−1Σ̂3𝑦) − 𝑥𝑖
(34)Σ̂33

−1Σ̂3𝑦 − (𝛽̂0 − 𝑏̂3 Σ̂33
−1Σ̂3𝑦)) Σ̂𝑦2 ,                                                              (20) 

where  

𝑘2 = 𝜎̂𝑦
2 − Σ̂𝑦2Σ̂22

−1Σ̂2𝑦 , 

𝑘3 = 𝜎̂𝑦
2 − Σ̂𝑦3Σ̂33

−1Σ̂3𝑦 ,  

𝑛̃1 = ∑
(𝑦𝑖

(1)
−𝑥𝑖

(11)
𝛽̂1−𝛽̂0)

2

𝜎̂𝑦
2

𝑛1
𝑖=1 ,  

𝑛̃2 = ∑ (𝑥𝑖
(22) − 𝑥𝑖

(12)𝐴̂2 − 𝑏̂2)
2

(Σ̂22
−1 +

1

𝑘2
Σ̂22
−1Σ̂2𝑦Σ̂𝑦2Σ̂22

−1) −
1

𝑘2
∑ (𝑥𝑖

(22) − 𝑥𝑖
(12)𝐴̂2 −

𝑛2
𝑖=1

𝑛2
𝑖=1

𝑏̂2)
𝑇

(𝑦𝑖
(2) − 𝑥𝑖

(12)𝛽̂1 − 𝛽̂0)Σ̂𝑦2Σ̂22
−1 ,   

𝑛̃4 = ∑ (𝑥𝑖
(34) − 𝑥𝑖

(14)𝐴̂3 − 𝑏̂3)
2

(Σ̂33
−1 +

1

𝑘3
Σ̂33
−1Σ̂3𝑦Σ̂𝑦3Σ̂33

−1)
𝑛4
𝑖=1  −

1

𝑘3
∑ Σ̂33

−1Σ̂3𝑦(𝑦𝑖
(4) −

𝑛2
𝑖=1

𝑥𝑖
(14)𝛽̂1 − 𝛽̂0)(𝑥𝑖

(34) − 𝑥𝑖
(14)𝐴̂3 − 𝑏̂3).  

Equation (20) indicates that although training data from sub-cohort 3 are not available, Σ23 can 

be estimated indirectly through a summation of three parts: The first part, (𝑛̃1 −

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.23.20077412doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077412


21 

 

𝑛1)Σ̂2𝑦(𝜎̂𝑦
2)
−1
Σ̂𝑦3, contributes to estimating the covariance between modalities 2 and 3 through 

exploiting their respective covariances with 𝑦. The second part leverages the training data in sub-

cohort 2, and contributes to estimating Σ23 by exploring the covariance between residual modality 

2 and residual modality 3. Here, residual modality 2 is modality 2 after factoring out modality 1; 

residual modality 3 is the residual of the response variable regressing on modalities 1 and 2. Both 

residual modalities are computed using the training data in sub-cohort 2. Similarly, the third part 

leverages the training data in sub-cohort 4, and contributes to estimating Σ23 by exploring the 

covariance between residual modality 2 and residual modality 3 that are computed on the training 

data in sub-cohort 4. 

Furthermore, we can explain why estimation of Σ23  without sub-cohort 3 is possible from 

another angle. Using the Law of Total Covariance, Σ23  can be decomposed as Σ23 = Σ23|𝑦 +

Σ2𝑦Σ𝑦3 𝜎𝑦
2⁄ . We cannot estimate Σ23|𝑦  due to the lack of sub-cohort 3. However, Σ2y, Σy3, and 𝜎𝑦

2 

in the second term on the right-hand side can be estimated using the available sub-cohorts. This 

means that the estimator for Σ23 will be biased. While it would be ideal to have data for sub-cohort 

3 to mitigate the bias in estimating Σ23, our simulation experiments in Sec. 5.1 show that the biased 

estimator performs well in prediction. In statistical models, biased estimators are used quite often 

and show good performance in prediction tasks.   

4.2. Fisher information performance 

The next section shows empirical evidence that IMTL outperforms SM and AADM, i.e., models 

without transfer learning. In this section, we would like to explain the performance improvement 

from a theoretical standpoint, particularly through comparing the Fisher information of parameter 

estimates from IMTL and SM/AADM. It is known that Fisher information characterizes the 

variance of a maximum likelihood estimate, and larger Fisher information means smaller variance. 
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It is our goal to find out if IMTL has larger Fisher information for some parameter estimates than 

SM/AADM, indicating more robust parameter estimation.  

For clarity of presentation, we focus on a two-modality case in deriving the Fisher information 

for IMTL, SM, and AADM. Modality 1 is available for all patients but modality 2 is missed for 

some patients. This divides the patients into two sub-cohorts: sub-cohort 1 has modality 1 available 

but misses modality 2; sub-cohort 2 has both modalities available. Following the notational 

convention in Section 3, let 𝑦𝑖
(𝑙), 𝑥𝑖

(1𝑙), 𝑥𝑖
(2𝑙)

 denote the response variable, feature in modality 1, 

and feature in modality 2 for patient 𝑖  in sub-cohort 𝑙 , 𝑙 = 1,2 . Assume one feature in each 

modality for notational simplicity. Let D𝑚𝑖𝑠  and D𝑜𝑏𝑠 contain the missing and observed data, i.e., 

D𝑚𝑖𝑠 = {𝑥𝑖
(21)}

𝑖=1

𝑛1
 and  D𝑜𝑏𝑠 = {{𝑥𝑖

(11), 𝑦𝑖
(1)}

𝑖=1

𝑛1
, {𝑥𝑖

(12), 𝑥𝑖
(22), 𝑦𝑖

(2)}
𝑖=1

𝑛2
}.  

To model this dataset, IMTL assumes a multivariate normal distribution of (𝑦𝑖
(𝑙), 𝑥𝑖

(2𝑙)) given 

𝑥𝑖
(1𝑙)

, i.e.,  

 (𝑦𝑖
(𝑙), 𝑥𝑖

(2𝑙)) | 𝑥𝑖
(1𝑙) ∼ 𝑀𝑉𝑁 (𝛍(𝑥𝑖

(1𝑙)) , 𝚺) , 𝑙 = 1,2,                           (21)           

where 𝛍(𝑥𝑖
(1𝑙)) = ( 𝑥𝑖

(1𝑙)
𝛽
1
+ 𝛽

0
, 𝑥𝑖

(1𝑙)
A2 + b2) and 𝚺 = (

𝜎𝑦𝑦 𝜎𝑦2
𝜎2𝑦 𝜎22

). To estimate the parameters 

of this IMTL model, a similar EM algorithm to that proposed in Section 3.1 can be used. To make 

predictions on new samples, we can derive the distributions of 𝑦𝑖
(1)| 𝑥𝑖

(11)
 and 𝑦𝑖

(2) | 𝑥𝑖
(12), 𝑥𝑖

(22)
 

from (21) and use them for predicting samples from sub-cohort 1 and 2, respectively.  

If SM is used to model this dataset, there will be two separate models for the two sub-cohorts. 

Since sub-cohort 2 has no missing modality, the model for sub-cohort 2 has the same form as (21) 

but with 𝑙 = 2  only. Sub-cohort 1 is separately modeled by a conditional distribution of the 

response variable given modality 1, i.e.,  
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(𝑦𝑖
(1) | 𝑥𝑖

(11) ∼ 𝑁(𝑥𝑖
(11)𝛼1 + 𝛼0 ,   𝜁𝑦

2).                                  (22) 

AADM is similar to SM in the sense that two separate models are built for the two sub-cohorts. 

These models take the same forms as those in SM. However, in estimating the model parameters 

for sub-cohort 1, AADM uses all available data which includes the data of modality 1 from both 

sub-cohort 1 and 2, since modality 1 is available for both sub-cohorts. Recall that in SM, only the 

data from sub-cohort 1 is used. To estimate the parameters of SM/AADM, maximum likelihood 

estimation can be used since no missing data is involved in the model formulation. To make 

predictions on new samples, we can use (22) directly if the sample is from sub-cohort 1, and derive 

and use 𝑦𝑖
(2) | 𝑥𝑖

(12), 𝑥𝑖
(22)

 if the sample is from sub-cohort 2.  

It can be seen from the above descriptions that IMTL, SM, and AADM share the same model 

for sub-cohort 2, but they estimate the model parameters in different ways. Theorem 1 compares 

the Fisher information of the parameter estimates for sub-cohort 2 by the three methods, 

specifically focusing on the estimates for the elements in the inverse-covariance matrix 𝛀 ≜

𝚺−1 = (
𝛺𝑦𝑦 𝛺𝑦2
𝛺2𝑦 𝛺22

).  

Theorem 1: Let 𝐼𝐼𝑀𝑅𝐿(𝛺22), 𝐼𝐼𝑀𝑅𝐿(𝛺2𝑦), 𝐼𝐼𝑀𝑅𝐿(𝛺𝑦𝑦)  be the Fisher information of the estimates 

for 𝛺22 , 𝛺2𝑦 , and 𝛺𝑦𝑦  under IMTL, respectively. Let 𝐼𝑆𝑀(∙)  and 𝐼𝐴𝐴𝐷𝑀(∙)  be the Fisher 

information of the estimates for the same parameters under SM and AADM, respectively. Then,  

𝐼𝐼𝑀𝑇𝐿(𝛺2𝑦) > 𝐼𝑆𝑀(𝛺2𝑦) = 𝐼𝐴𝐴𝐷𝑀(𝛺2𝑦), and  

𝐼𝐼𝑀𝑇𝐿(𝛺𝑦𝑦) > 𝐼𝑆𝑀(𝛺𝑦𝑦) = 𝐼𝐴𝐴𝐷𝑀(𝛺𝑦𝑦). 

Furthermore,  
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𝐼𝐼𝑀𝑇𝐿(𝛺22) > 𝐼𝑆𝑀(𝛺22) = 𝐼𝐴𝐴𝐷𝑀(𝛺22) under the condition that 

−𝑛1+2𝑝1+√(𝑛1−2𝑝1)
2+4𝑛1𝑝1

4𝑝1
<

𝜎2𝑦
2

𝜎22𝜎𝑦𝑦
,                                            (23) 

where 𝑛1 is the sample size of sub-cohort 1 and 𝑝1 is number of features in modality 1.  

Please see the proof in Appendix A. Theorem 1 shows that the Fisher information for the 

estimates of 𝛺2𝑦  and 𝛺𝑦𝑦   under IMTL is greater than SM/AADM unconditionally. This 

relationship holds for the estimate of 𝛺22 under the condition given in (22). This condition is 

worthy of further discussion. Specifically, if considering 𝑛1 and 𝑝1 to be fixed (i.e., the left side of 

(22) is a constant), Theorem 1 indicates that the correlation between modality 2 and the response 

variable must be sufficiently large (i.e., larger than the constant) in order for IMTL to have a larger 

Fisher information for the estimate of 𝛺22 than SM/AADM. This means that IMTL will be most 

effective when the modality with missing data is a significant predictor for the response. If the 

modality contains largely noise with little predictive value, IMTL may not perform as well as 

models without transfer learning because it runs the risk of transferring noise and thus hurting the 

model performance. This problem is known as “negative transfer” in the literature (Pan and Yang 

2010).  

5. Application case study 

In this section, we apply IMTL to simulated and real-world datasets. Simulation experiments are 

presented in Sec. 5.1, with purposes of demonstrating the out-of-sample prediction ability of 

IMTL, which the competing methods (i.e., SM and AADM) do not possess. Sec. 5.2 presents an 

application of AD diagnosis and prognosis of MCI patients using the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset. Here, “diagnosis” means detection of the existence of 

AD pathology in the brain of an MCI patient. “Prognosis” means prediction if an MCI patient will 
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progress to AD by a certain year of interest, e.g., 6 years. Both tasks are important for treatment 

and management of the patients.  

5.1. Simulation experiments 

1) Out-of-sample prediction by IMTL predictive model 

We conduct simulation experiments for the IMTL predictive model and classification model. 

For the predictive model, we first generate data for three modalities, i.e., 𝐱𝑖
(1𝑙)
, 𝐱𝑖
(2𝑙)
, 𝐱𝑖
(3𝑙)

, from a 

zero-mean multivariate normal distribution 𝑀𝑉𝑁(𝟎, 𝚺). The number of features in each modality 

is set to be 𝑝1 = 10, 𝑝2 = 𝑝3 = 5, which are close to the size of features in the real-world data 

presented in Sec. 5.1. All diagonal elements of 𝚺 are set to be one. 𝚺 includes two parts: within-

modality correlation and between-modality correlation. The former has been found to have little 

impact on the model performance and therefore is set to be 0.6. We investigate two settings for 

between-modality correlation: 0.6 and 0, which represent moderately strong correlation and no 

correlation. Furthermore, we investigate two training sample sizes: 300 and 150.  

Once the data for features are generated, we generate the response variable 𝑦(𝑙)  by a linear 

model, 𝑦𝑖
(𝑙)
= 𝐱𝑖

(1𝑙)
𝛃1 + 𝐱𝑖

(2𝑙)
𝛃2 + 𝐱𝑖

(3𝑙)
𝛃3 + 𝛽0 + 𝜖. Here, 𝛽0 = 2; elements in 𝛃1, 𝛃2, 𝛃3 are 

set to be 0.2; 𝜖~𝑁(0,1). Then, the simulated training data are equally separated into three sub-

cohorts, 𝑙 = 1, 2, 4, corresponding to sub-cohorts 1, 2, and 4 in Fig. 1. To obtain the incomplete 

modality pattern in each sub-cohort, we remove the training data of modalities 2 and 3 for sub-

cohort 1, remove modality 3 for sub-cohort 2, and remove modality 2 for sub-cohort 4. Because 

our intention of this experiment is to assess the out-of-sample prediction capability of IMTL, we 

generate data in a test data that includes only sub-cohort 3, i.e., all modalities are available. The 

sample size of the test set is 100.  
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IMTL is trained on the training set that includes only data from sub-cohorts 1, 2, and 4. Then, 

the trained model is used to predict on the test set that only includes samples from sub-cohort 3. 

The predicted response variables of the test set is compared with the true responses to compute a 

prediction mean square error (PMSE) and a Pearson correlation (PC). We repeat the entire 

experiment for 100 times. Table 1 summarizes the results. As expected, increasing the training 

sample size significantly improves PMSE and PC (p<0.001). The correlation between modalities 

also helps improves PMSE and PC (p<0.001). This is consistent with the theoretical discovery in 

Sec. 4.1, in which we found that the key to out-of-sample prediction was to be able to estimate Σ23 

from the training data. From (20), it is known that the estimation of Σ23  is affected by the 

correlation between modality 2 and 3. Even though the training data does not include samples with 

both modality 2 and 3 available, Σ23 can still be estimated indirectly by IMTL through exploiting 

the between-modality correlation and the relationship between modalities and the response 

variable.  

 

 

 
 

 

 

 

Table 1A Out-of-sample prediction accuracy on the test set with different training sample 

sizes (between-modality correlation is kept as 0.6 in both settings) 

 

Training size PMSE: 𝑎𝑣𝑒(𝑠𝑡𝑑) PC: 𝑎𝑣𝑒(𝑠𝑡𝑑) 

300 1.174 (0.175) 0.945  (0.010) 

150 1.469 (0.289) 0.931  (0.017) 
 

Table 1B Out-of-sample prediction accuracy on the test set with different between-

modality correlations (training sample size is kept as 300 in both settings) 

 

Between-modality 

correlation 

PMSE: 𝑎𝑣𝑒(𝑠𝑡𝑑) PC: 𝑎𝑣𝑒(𝑠𝑡𝑑) 

0.6 1.174 (0.175) 0.945  (0.010) 

0 1.300 (0.187) 0.866 (0.028) 
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2) Out-of-sample prediction by IMTL classification model 

 

The data generation process of this experiment is the same as the previous section except that 

we use a logistic regression model to link the response variable with predictors/features. 

Specifically, we first simulate a linear predictor 𝑧𝑖
(𝑙)
= 𝐱𝑖

(1𝑙)
𝛃1 + 𝐱𝑖

(2𝑙)
𝛃2 + 𝐱𝑖

(3𝑙)
𝛃3 + 𝛽0 + 𝜖 . 

Then, 𝑦𝑖
(𝑙)

 is generated from a Bernoulli distribution with success probability equal to 

1 (1 + 𝑒−𝑧𝑖
(𝑙)

)⁄  . Test accuracy is reported as the Area Under the Curve (AUC). Table 2 

summarizes the results. Doubling the training sample size does not seem to dramatically improve 

the AUC although this improvement is still statistically significant (p<0.001). The correlation 

between modalities also helps improve the AUC significantly (p<0.001).  

 

 
5.2. Early diagnosis and prognosis of AD 

1) Introduction to ADNI  

ADNI (http://adni.loni.ucla.edu) was launched in 2003 by the NIH, FDA, private pharmaceutical 

companies, and non-profit organizations, as a $60 million, 5-year public-private partnership. The 

primary goal of ADNI has been to test whether MRI, PET, other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of MCI and early 

AD. Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as well 

Table 2A Out-of-sample classification accuracy on the test set with different training sample 

sizes (between-modality correlation is kept as 0.6 in both settings) 

 

Training size AUC: 𝑎𝑣𝑒(𝑠𝑡𝑑) 
300 0.882 (0.037) 

150 0.832 (0.05) 
 

Table 2B Out-of-sample classification accuracy on the test set with different between-

modality correlations (training sample size is kept as 300 in both settings) 

 

Between-modality correlation AUC: 𝑎𝑣𝑒(𝑠𝑡𝑑) 

0.6 0.882 (0.037) 

0 0.781 (0.046) 
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as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is Michael 

W.Weiner, MD, VA Medical Center and University of California-San Francisco. ADNI is the 

result of efforts of many co-investigators from a broad range of academic institutions and private 

corporations, and subjects have been recruited from over 50 sites across the US and Canada. For 

up-to-date information, see http://www.adni-info.org/. 

2) Patient inclusion and diagnostic/prognostic end points 

 

Our study includes 214 MCI patients from ADNI through our collaborative intuition, Banner 

Alzheimer’s Institute (BAI), with which two co-authors are affiliated. BAI is a member of ADNI 

PET core (PI, William Jagust UC Berkeley). Multimodality image data include MRI, FDG-PET, 

amyloid-PET, which follow the IMD structure in Fig. 1. Each sub-cohort has the same sample 

size. For diagnosis, we use A𝛽  positivity is an indicator for high-risk AD. We follow the 

recommendation by Fleisher et al. (2011) and use a threshold of mean SUVR greater than or equal 

to 1.18 to define A𝛽 positivity. According to this criterion, there are 87 and 127 patients in class 1 

(high-risk) and 0 (otherwise). For prognosis, the purpose is to predict when an MCI patient will 

convert to AD. We searched the ADNI database for the 214 patients from the time when their 

imaging data were collected up to six years’ follow up, and found that 46 converted to AD, i.e., 

there are 46 converters (class 1) and 168 non-converters (class 0).  

3) Image processing and feature computation 

 

For MRI images, we use the FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) software to extract 

volumetric measurements for pre-defined regions of interest (ROIs). We focus on three ROIs 

including hippocampal, ventricle, and entorhinal volumes relative to intracranial volume. All three 

have been widely reported to be related to AD (Devanand et al. 2007; Thompson et al. 2004) . 

Both FDG-PET and amyloid-PET are PET images, so they share the same image processing step 
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in which we use SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) to spatially normalize each patient’s 

PET images into the common Montreal Neurological Institute (MNI) altas space. Then, we extract 

features from each type of PET image separately. From FDG-PET, the features include 

hypometabolic convergence index (HCI) (Chen et al. 2011), statistical region of interest (sROI) 

(Chen et al. 2010), and regional precuneus metabolism and posterior cingulate metabolism. All 

these features have been previously reported to be related to AD  (Bailly et al. 2015; Del Sole et 

al. 2008). From amyloid-PET, the features include SUVRs from six brain regions including orbital 

frontal cingulate, temporal cortex, anterior cingulate, posterior cingulate, parietal lobe, and 

precuneus. These regions are known to be associated with amyloid depositions and AD (Fleisher 

et al. 2011). Because the six SUVRs are highly correlated, we apply principal component analysis 

(PCA) and include the first PC as a feature for amyloid-PET. Note that IMTL assumes normal 

distributions of the features. In this application, this assumption naturally holds because each 

feature is an average of voxel-wise measurements within a brain region. Since many voxels are 

involved in generating the average, the Central Limit Theorem applies. Also, we generate normal 

Q-Q plots for the features and find that the normality assumption holds.    

4) Inclusion of clinical variables and feature screening 

 

We also include the following clinical variables which could potentially help the early diagnosis 

and prognosis of AD: age, gender, years of education, APOE e4 status, and cognitive test scores 

from several commonly used instruments such as mini-mental state examination (MMSE), AD 

assessment scale-cognitive (ADAS-Cog), clinical dementia rating (CDR), and auditory verbal 

learning test (AVLT). No patient has missing data for these clinical variables so they are used in 

the same way as MRI features in our model. Furthermore, we put all the features through a feature 
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screening module using the approach by (Fan and Lv 2008). Note that feature screening is only 

applied to the training set not the entire dataset to avoid overfitting. 

5) Application of IMTL 

Within each sub-cohort, the samples are divided into five folds. We combine four folds from 

each sub-cohort into a training set and use the remaining data as the test set. We apply IMTL to 

the training set and then use the trained model to predict on the test set. We exhaust all four-fold 

combinations in training, which produces a 5-fold cross validation procedure for evaluating the 

accuracy of IMTL. This process is repeated for 50 times. For comparison, two competing methods 

are applied on the same data: SA and AADM. Table 3 summarizes the results. IMTL has 

significantly higher AUC and sensitivity than both competing methods in both diagnosis and 

prognosis. Notably, competing methods have low AUC and sensitivity in prognosis. This is greatly 

improved by IMTL. Prognosis is more challenging than diagnosis because the former has a heavily 

imbalanced dataset (46 converters vs. 168 non-converters). Clearly, IMTL is more robust to 

sample imbalance. All models achieve a similar level of specificity. Finally, we show the 

contribution of each imaging feature to diagnosis and prognosis by plotting the percentage of times 

a feature is included in the IMTL model. The result is shown in Fig. 3. Hippocampal volume from 

MRI and the first PC of six SUVRs from amyloid-PET are almost always included in both 

diagnostic and prognostic models. This is consistent with findings in the literature that 

hippocampal atrophy and amyloid-PET SUVRs provide most important biomarkers for AD 

(Fleisher et al. 2011; Devanand et al. 2007). Other features that are selected for over 50% of the 

time include HCI, sROI and precuneus metabolism from FDG-PET for diagnosis; and ventricle 

volume from MRI and HCI and sROI from FDG-PET for prognosis. Clinical variables such as 
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age, APOE e4 status, MMSE, and CDR are more frequently selected. These variables have been 

widely reported to be related to AD.  

Table 3 Diagnostic and prognostic performance: ave (std) and p value for hypothesis testing 

that IMTL is better than a competing method 

 
 DIAGNOSIS PROGNOSIS 

 IMTL SM AADM IMTL SM AADM 

AUC 0.93(0.03) 0.86(0.06) 0.90(0.04) 0.85(0.05) 0.72(0.09) 0.78(0.07) 
  p<0.001 p<0.001  p<0.001 p<0.001 

SENSITIVITY 0.91(0.06) 0.84(0.09) 0.88(0.06) 0.96(0.09) 0.58(0.18) 0.76(0.17) 

  p<0.001 P=0.03  p<0.001 p<0.001 

SPECIFICITY 0.87(0.06) 0.82(0.06) 0.86(0.05) 0.85(0.05) 0.86(0.05) 0.86(0.05) 

  p<0.001 P=0.27  p=0.78 P=0.34 

 

 
Figure 3.  Percentage of times imaging features are included in IMTL over 5 fold cross-

validation and 50 repeated experiments. 

 

6. Conclusion 

In this paper, we proposed IMTL to build predictive and classification models for IMD data. We 

developed an EM algorithm for parameter estimation of IMTL and further extended it to achieve 

between-institutional collaborative model estimation without the need for data pooling. We 

demonstrated that IMTL was capable of out-of-sample prediction and proved that it had a larger 

Fisher information than models without transfer learning under mild conditions. This explained 

the superiority of IMTL from a theoretical standpoint. Simulation experiments demonstrated high 
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accuracy in using IMTL for out-of-sample prediction and classification. IMTL was applied to AD 

early diagnosis and prognosis, i.e., at the MCI stage, using incomplete multimodality imaging data. 

Significantly higher AUC and sensitivity were achieved in both diagnosis and prognosis compared 

with competing methods. Image features selected to include in the models were widely reported 

in the literature to be related to AD.  

This research has several limitations: First, IMTL assumes normal distributions of features. To 

make IMTL an appropriate choice for an application, feature normality needs to be checked. If the 

features do not follow a normal distribution, cox transformation may be used. Nevertheless, 

extension of IMTL to non-normal features provides a more general approach, and thus being an 

interesting future research direction. Second, this paper focuses on response variables that are 

either normal or binary. Extending the current modeling framework to other types of response 

variables will be valuable to address the need of various application domains. Third, IMTL 

assumes equal variance-covariance for the models in different sub-cohorts. This assumption can 

be relaxed to accommodate potential sub-cohort heterogeneity.  

Appendix 

A. Proof of Theorem 1 

Under IMTL, the complete-data log-likelihood function is: 

𝑙𝐼𝑀𝑇𝐿  = 𝑙𝐼𝑀𝑇𝐿
(1)

+ 𝑙𝐼𝑀𝑇𝐿
(2)

,                                                    (A-1) 

where 𝑙𝐼𝑀𝑇𝐿
(1)

 and 𝑙𝐼𝑀𝑇𝐿
(2)

 correspond to the two sub-cohorts, i.e.,  

𝑙𝐼𝑀𝑇𝐿
(1)

=
𝑛1

2
log|𝛀| −

1

2
∑ ( 𝑦𝑖

(1) −   𝑥𝑖
(11)𝛽1 − 𝛽0,𝑥𝑖

(21) − 𝑥𝑖
(11)A2 − b2)

𝑛1
𝑖=1 𝛀(

𝑦𝑖
(1)
−𝑥𝑖

(11)
𝛽1−𝛽0

𝑥𝑖
(21)

−𝑥𝑖
(11)

A2−𝑏2
),  

𝑙𝐼𝑀𝑇𝐿
(2)

=
𝑛2

2
log|𝛀| −

1

2
∑ (𝑦𝑖

(2) −   𝑥𝑖
(12)𝛽1 − 𝛽0 ,𝑥𝑖

(22) − 𝑥𝑖
(12)A2 − b2 )

𝑛2
𝑖=1 𝛀 (

𝑦𝑖
(2)
−𝑥𝑖

(12)
𝛽1−𝛽0

𝑥𝑖
(22)

−𝑥𝑖
(12)

A2−𝑏2
). 
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Because (A-1) includes missing data, computing the observed Fisher information needs to take the 

expectation of  D𝑚𝑖𝑠  given D𝑜𝑏𝑠 and the parameters. This follows from the discussion in Chapter 

7 of the book by Little and Rubin (2002) on Fisher information with missing data. Specifically, 

the observed Fisher Information for each element 𝛺𝑖𝑗 in 𝛀 is  

ℐ𝐼𝑀𝑇𝐿(𝛺𝑖𝑗) = 

                       −
𝜕2 𝐸

D𝑚𝑖𝑠| D𝑜𝑏𝑠,𝛀
(𝑙𝐼𝑀𝑇𝐿)

𝜕𝛺𝑖𝑗
2 − 𝐸

D𝑚𝑖𝑠| D𝑜𝑏𝑠,𝛀
{(

𝜕 𝑙𝐼𝑀𝑇𝐿

𝜕𝛺𝑖𝑗
)
2

} + (𝐸
D𝑚𝑖𝑠| D𝑜𝑏𝑠,𝛀

(
𝜕 𝑙𝐼𝑀𝑇𝐿

𝜕𝛺𝑖𝑗
))

2

.  

Applying this formula to 𝛺22, 𝛺2𝑦 , and 𝛺𝑦𝑦 , respectively, we can get 

ℐ𝐼𝑀𝑇𝐿(𝛺22) =
1

2
𝑛2𝜎22

2 + (2𝑛̃1 − 𝑛1)(𝜎2𝑦
2 𝜎𝑦𝑦⁄ )𝜎22 + 2(𝑛1 − 𝑛̃1)(𝜎2𝑦

2 𝜎𝑦𝑦⁄ )
2
−
1

2
𝑛1𝜎22

2 ,   (A-2) 

ℐ𝐼𝑀𝑇𝐿(𝛺2𝑦) =
1

2
𝑛
2
(𝜎22𝜎𝑦𝑦 + 𝜎2𝑦

2 )+
1

2
(𝑛1 − 𝑛̃1)𝜎22𝜎𝑦𝑦 +

1

2
(𝑛1 + 𝑛̃1)𝜎2𝑦

2 ,       (A-3) 

ℐ𝐼𝑀𝑇𝐿(𝛺𝑦𝑦) =
1

2
(𝑛1 + 𝑛2)𝜎𝑦𝑦

2 ,                                                      (A-4) 

where 

𝑛̃1 =
1

𝜎𝑦𝑦
∑ (𝑦𝑖

(1)
− 𝐱𝑖

(11)
𝛃1 − 𝛽0)

2
𝑛1
𝑖=1 . 

Under SM, the model for sub-cohort 2 and the corresponding log-likelihood function are the 

same as those by IMTL, i.e., 𝑙𝑆𝑀
(2)
= 𝑙𝐼𝑀𝑇𝐿

(2)
. However, sub-cohort 1 is modeled separately from sub-

cohort 2, as shown in (22), with corresponding log-likelihood function being 

𝑙𝑆𝑀
(1)
= −

𝑛1

2
log 𝜁

𝑦
2
−
1

2
∑ (𝑦𝑖

(1) −   𝑥𝑖
(11)𝛼1 − 𝛼0)

2

𝜁
𝑦
2⁄𝑛1

𝑖=1 . 

Taking the two sub-cohorts together, the log-likelihood function of SM is: 

𝑙𝑆𝑀  = 𝑙𝑆𝑀
(1)
+ 𝑙𝑆𝑀

(2)
. 

Since 𝑙𝑆𝑀 does not include any missing data, the observed Fisher information can be computed in 

the regular way (Little and Rubin (2002)), i.e.,  
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ℐ𝑆𝑀(𝛺22) =
1

2
𝑛2𝜎22

2 ,                                                                    (A-5) 

ℐ𝑆𝑀(𝛺2𝑦) =
1

2
𝑛
2
(𝜎22𝜎𝑦𝑦 +𝜎2𝑦

2 ),                                                (A-6) 

ℐ𝑆𝑀(𝛺𝑦𝑦) =
1

2
𝑛2𝜎𝑦𝑦

2 .                                                                    (A-7) 

Under AADM, the model for sub-cohort 1 has the same form as SM but with a different log-

likelihood function due to the incorporation of the data from sub-cohort 2, i.e.,  

𝑙𝐴𝐴𝐷𝑀
(1)

= −
𝑛1+𝑛1

2
log 𝜁

𝑦
2
−
1

2
∑ ∑ (𝑦𝑖

(𝑙)
−   𝑥𝑖

(1𝑙)𝛼1 −𝛼0)
2

𝜁
𝑦
2

⁄
𝑛𝑙
𝑖=1

2
𝑙=1 . 

Furthermore, due to the same reasons as SM, 𝑙𝐴𝐴𝐷𝑀
(2)

= 𝑙𝐼𝑀𝑇𝐿
(2)

. Taking the two sub-cohorts together, 

the log-likelihood function of AADM is: 

𝑙𝐴𝐴𝐷𝑀   = 𝑙𝐴𝐴𝐷𝑀
(1)

+ 𝑙𝐴𝐴𝐷𝑀
(2)

. 

It is not hard to recognize that the observed Fisher information of AADM has the same formula as 

SM in (A-5), (A-6), and (A-7). This is because computing the observed Fisher information of 𝛺22, 

𝛺2𝑦 , and 𝛺𝑦𝑦  only concerns the log-likelihood function of sub-cohort 2, which is the same for SM 

and AADM.  

Furthermore, we take the expectation of the observed Fisher information in each model with 

respect to 𝐷𝑜𝑏𝑠 , which produces the Fisher information. Comparing the Fisher information 

between IMTL and SM (or AADM), we have  

𝐼𝐼𝑀𝑇𝐿(𝜃22) − 𝐼𝑆𝑀(𝜃22) = (𝑛1 − 2𝑝1)(𝜎2𝑦
2 𝜎𝑦𝑦⁄ )𝜎22 + 2𝑝1(𝜎2𝑦

2 𝜎𝑦𝑦⁄ )
2
−

1

2
𝑛1𝜎22

2 ,             (A-8) 

𝐼𝐼𝑀𝑇𝐿(𝜃2𝑦) − 𝐼𝑆𝑀(𝜃2𝑦) = 𝑛1𝜎2𝑦
2 +

1

2
𝑝1|𝚺|,                       (A-9) 

𝐼𝐼𝑀𝑇𝐿(𝜃𝑦𝑦) − 𝐼𝑆𝑀(𝜃𝑦𝑦) =
1

2
𝑛1𝜎𝑦𝑦

2  .                                  (A-10) 
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The right-hand sides of (A-9) and (A-10) are positive, which means 𝐼𝐼𝑀𝑇𝐿(𝜃2𝑦) > 𝐼𝑆𝑀(𝜃2𝑦) and 

𝐼𝐼𝑀𝑇𝐿(𝜃𝑦𝑦) > 𝐼𝑆𝑀(𝜃𝑦𝑦) unconditionally. To make 𝐼𝐼𝑀𝑇𝐿(𝜃22) > 𝐼𝑆𝑀(𝜃22), the right-hand side of 

(A-8) needs to be positive, which means 

                         
−𝑛1+2𝑝1+√(𝑛1−2𝑝1)

2+4𝑛1𝑝1

4𝑝1
<

𝜎2𝑦
2

𝜎22𝜎𝑦𝑦
.                                              ∎  

B. IMTL classification model: formula for EM estimation and classification on new samples   

Here, we skip the details and present the result of derivations in the E-step and M-step. 

Specifically, the E-step derives the following expectations: 

(𝐱̃𝑖
(21), 𝐱̃𝑖

(31)) = 𝐸[(𝐱𝑖
(21), 𝐱𝑖

(31))|𝐱𝑖
(11), 𝑦𝑖

(1), 𝚯(𝑡)]       

                       = 𝑦𝑖
(1)(𝐱𝑖

(11)𝐀2
(𝑡) + 𝐛21

(𝑡), 𝐱𝑖
(11)𝐀3

(𝑡) + 𝐛31
(𝑡)) + (1 − 𝑦𝑖

(1))(𝐱𝑖
(11)𝐀2

(𝑡) + 𝐛20
(𝑡), 𝐱𝑖

(11)𝐀3
(𝑡) + 𝐛30

(𝑡)), 

𝐱̃𝑖
(32) = 𝐸[𝐱𝑖

(32)|𝐱𝑖
(12), 𝐱𝑖

(22), 𝑦𝑖
(2),𝚯(𝑡)] 

     = 𝑦𝑖
(2)(𝐱𝑖

(12)𝐀3
(𝑡) + 𝐛31

(𝑡)) + (1 − 𝑦𝑖
(2))(𝐱𝑖

(12)𝐀3
(𝑡) + 𝐛30

(𝑡)) + 𝚺32
(𝑡)(𝚺22

(𝑡))
−1
(𝐱𝑖

(22)
− 𝑦𝑖

(2)(𝐱𝑖
(12)𝐀2

(𝑡) + 𝐛21
(𝑡)) − (1 −

              𝑦𝑖
(2))(𝐱𝑖

(12)𝐀2
(𝑡) + 𝐛20

(𝑡))), 

𝐱̃𝑖
(24) = 𝐸[𝐱𝑖

(24)|𝐱𝑖
(14), 𝐱𝑖

(34), 𝑦𝑖
(4),𝚯(𝑡)] 

     = 𝑦𝑖
(4)(𝐱𝑖

(14)𝐀2
(𝑡) + 𝐛21

(𝑡)) + (1 − 𝑦𝑖
(4))(𝐱𝑖

(14)𝐀2
(𝑡) + 𝐛20

(𝑡)) +  𝚺23
(𝑡)(𝚺33

(𝑡))
−1
(𝐱𝑖

(34)
− 𝑦𝑖

(4)(𝐱𝑖
(14)𝐀3

(𝑡) + 𝐛31
(𝑡)) −

              (1 − 𝑦𝑖
(4))(𝐱𝑖

(14)𝐀3
(𝑡) + 𝐛30

(𝑡))). 

In the M-step, the parameters in 𝚯 can be updated as  

𝐀2
(𝑡+1)

= (∑ ∑ (𝐱𝑖
(1𝑙))

𝑇

𝐱𝑖
(1𝑙)𝑛𝑙

𝑖=1
4
𝑙=1 )

−1

∑ ∑ (𝐱𝑖
(1𝑙))

𝑇

𝐱̃𝑖
(2𝑙)𝑛𝑙

𝑖=1
4
𝑙=1 , 

𝐛21
(𝑡+1)

=
∑ ∑ 𝑦𝑖

(𝑙)
(𝐱̃𝑖
(2𝑙)

−𝐱𝑖
(1𝑙)

𝐀2
(𝑡+1)

)
𝑛𝑙
𝑖=1

4
𝑙=1

∑ ∑ (𝑦𝑖
(𝑙)
)

𝑛𝑙
𝑖=1

4
𝑙=1

, 

𝐛20
(𝑡+1)

=
∑ ∑ (1−𝑦𝑖

(𝑙)
)(𝐱̃𝑖

(2𝑙)
−𝐱𝑖

(1𝑙)
𝐀2
(𝑡+1)

)
𝑛𝑙
𝑖=1

4
𝑙=1

∑ ∑ (1−𝑦𝑖
(𝑙)
)

𝑛𝑙
𝑖=1

4
𝑙=1

, 

𝐀3
(𝑡+1)

= (∑ ∑ (𝐱𝑖
(1𝑙)
)
𝑇

𝐱𝑖
(1𝑙)𝑛𝑙

𝑖=1
4
𝑙=1 )

−1

∑ ∑ (𝐱𝑖
(1𝑙)
)
𝑇

𝐱̃𝑖
(3𝑙)𝑛𝑙

𝑖=1
4
𝑙=1 , 
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𝐛31
(𝑡+1)

=
∑ ∑ 𝑦𝑖

(𝑙)
(𝐱̃𝑖
(3𝑙)

−𝐱𝑖
(1𝑙)

𝐀3
(𝑡+1)

)
𝑛𝑙
𝑖=1

4
𝑙=1

∑ ∑ (𝑦𝑖
(𝑙)
)

𝑛𝑙
𝑖=1

4
𝑙=1

, 

𝐛30
(𝑡+1)

=
∑ ∑ (1−𝑦𝑖

(𝑙)
)(𝐱̃𝑖

(3𝑙)
−𝐱𝑖

(1𝑙)
𝐀3
(𝑡+1)

)
𝑛𝑙
𝑖=1

4
𝑙=1

∑ ∑ (1−𝑦𝑖
(𝑙)
)

𝑛𝑙
𝑖=1

4
𝑙=1

, 

𝚺(𝑡+1) =
1

𝑛
{∑ ∑ (𝑦𝑖

(𝑙)
(𝐱̃𝑖

(2𝑙)
− 𝐱𝑖

(1𝑙)
𝐀2
(𝑡+1)

− 𝐛21
(𝑡+1)

, 𝐱̃𝑖
(3𝑙)

− 𝐱𝑖
(1𝑙)
𝐀3
(𝑡+1)

− 𝐛31
(𝑡+1)

)
𝑇
(𝐱̃𝑖

(2𝑙)
−

𝑛𝑙
𝑖=1

4
𝑙=1

𝐱𝑖
(1𝑙)
𝐀2
(𝑡+1)

−  𝐛21
(𝑡+1)

, 𝐱̃𝑖
(3𝑙)

− 𝐱𝑖
(1𝑙)
𝐀3
(𝑡+1)

− 𝐛31
(𝑡+1)) + (1 − 𝑦𝑖

(𝑙))(𝐱̃𝑖
(2𝑙)

−  𝐱𝑖
(1𝑙)
𝐀2
(𝑡+1)

− 𝐛20
(𝑡+1)

, 𝐱̃𝑖
(3𝑙)

−

𝐱𝑖
(1𝑙)
𝐀3
(𝑡+1)

−   𝐛30
(𝑡+1))

𝑇
(𝐱̃𝑖

(2𝑙)
− 𝐱𝑖

(1𝑙)
𝐀2
(𝑡+1)

− 𝐛20
(𝑡+1)

, 𝐱̃𝑖
(3𝑙)

−   𝐱𝑖
(1𝑙)
𝐀3
(𝑡+1)

− 𝐛30
(𝑡+1)))+

  𝑛4 (
𝚺22
(𝑡)
− 𝚺23

(𝑡) (𝚺33
(𝑡))

−1
𝚺32
(𝑡)

𝟎

𝟎 𝟎
) + 𝑛2 (

𝟎 𝟎

𝟎 𝚺33
(𝑡)
− 𝚺32

(𝑡) (𝚺22
(𝑡))

−1
𝚺23
(𝑡)) + 𝑛1𝚺

(𝑡)}. 

At the convergence of the above EM iterations, we can obtain the estimated parameters 𝚯̂ =

(𝚺̂, 𝛃̂1, 𝛽̂0, 𝐀̂2, 𝐛̂21, 𝐛̂20, 𝐀̂3, 𝐛̂31, 𝐛̂30). These parameters can be used in a logistic regression model 

to predict on new samples. Consider a new sample 𝑖∗ . Depending on what available 

modality/modalities this sample has, i.e., which sub-cohort the sample belongs to, we can use the 

following model to predict the response variable of the sample:  

𝑃(𝑦𝑖∗
(1) = 1|𝐱𝑖∗

(11)
) = 𝑓(𝐱𝑖∗

(11)𝛃̂1 + 𝛽̂0),                                     if 𝑖
∗ ∈ 𝑠𝑢𝑏 − 𝑐𝑜ℎ𝑜𝑟𝑡1; 

𝑃(𝑦𝑖∗
(2) = 1|𝐱𝑖∗

(12) , 𝐱𝑖∗
(22)) = 𝑓 (𝐱𝑖∗

(12) (𝛃̂1 − 𝐀̂2𝚺̂22
−1(𝐛̂21 − 𝐛̂20)) + 𝐱𝑖∗

(22)𝚺̂22
−1(𝐛̂21 − 𝐛̂20) + 𝛽̂0 −

 
1

2
𝐛̂21
𝑇 𝚺̂22

−1𝐛̂21 +
1

2
𝐛̂20
𝑇 𝚺̂22

−1𝐛̂20),                                                  if 𝑖
∗ ∈ 𝑠𝑢𝑏 − 𝑐𝑜ℎ𝑜𝑟𝑡2;    

𝑃(𝑦𝑖
(3) = 1|𝐱𝑖∗

(13) , 𝐱𝑖∗
(23) , 𝐱𝑖∗

(33)) = 𝑓 (𝐱𝑖∗
(13) (𝛃̂1 − (𝐀̂2, 𝐀̂3)𝚺̂

−1  (
𝐛̂21−𝐛̂20
𝐛̂31−𝐛̂30

)) +

(𝐱𝑖∗
(23), 𝐱𝑖∗

(33))𝚺̂−1  (
𝐛̂21−𝐛̂20
𝐛̂31−𝐛̂30

) + 𝛽̂0 − 
1

2
(𝐛̂21, 𝐛̂31)𝚺̂

−1 (
𝐛̂21
𝐛̂31
) +

1

2
(𝐛̂20, 𝐛̂30)𝚺̂

−1 (
𝐛̂20
𝐛̂30
)),            if 

𝑖∗ ∈ 𝑠𝑢𝑏 − 𝑐𝑜ℎ𝑜𝑟𝑡3; 
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𝑃(𝑦𝑖
(4) = 1|𝐱𝑖∗

(14) , 𝐱𝑖∗
(34)) = 𝑓 (𝐱𝑖∗

(14) (𝛃̂1 − 𝐀̂3𝚺̂33
−1(𝐛̂31 − 𝐛̂30)) + 𝐱𝑖∗

(34)𝚺̂33
−1(𝐛̂31 − 𝐛̂30) + 𝛽̂0 −

 
1

2
𝐛̂31
𝑇 𝚺̂33

−1𝐛̂31 +
1

2
𝐛̂30
𝑇 𝚺̂33

−1𝐛̂30),                                                   if 𝑖
∗ ∈ 𝑠𝑢𝑏 − 𝑐𝑜ℎ𝑜𝑟𝑡4. 

𝑓(⋅) is the sigmoid function. 
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