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 2 

Summary  51 

In recent years, polygenic risk scores (PRS) have become an increasingly studied tool to capture the 52 

genome-wide liability underlying many human traits and diseases, hoping to better inform an individual’s 53 

genetic risk. However, a lack of adherence to previous reporting standards has hindered the translation of 54 

this important tool into clinical and public health practice with the heterogeneous underreporting of details 55 

necessary for benchmarking and reproducibility. To address this gap, the ClinGen Complex Disease 56 

Working Group and Polygenic Score (PGS) Catalog have collaborated to develop the 33-item Polygenic 57 

Risk Score Reporting Statement (PRS-RS). This framework provides the minimal information expected of 58 

authors to promote the internal validity, transparency, and reproducibility of PRS by requiring authors to 59 

detail the study population, statistical methods, and clinical utility of a published score. The widespread 60 

adoption of this framework will encourage rigorous methodological consideration and facilitate 61 

benchmarking to ensure high quality scores are translated into the clinic.  62 

  63 
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Introduction  64 

The predisposition to common diseases and traits arises from a complex interaction between genetic and 65 

nongenetic factors. During the past decade, international collaborations involving cataloged human genetic 66 

variation, and large cohorts of well-phenotyped individuals with matched genotype information have 67 

enabled the discovery of disease-associated genetic variants.1–4 In particular, genome-wide association 68 

studies (GWAS) have emerged as a powerful approach to identify disease- or trait-associated genetic 69 

variants, typically yielding summary statistics describing the magnitude (effect size) and statistical 70 

significance of association between an allele and the trait of interest.4,5 GWAS have been applied to a wide 71 

range of complex human traits and diseases, including height, blood pressure, cardiovascular disease, 72 

cancer, obesity, and Alzheimer’s disease.  73 

 74 

The associations identified via GWAS can quantify genetic predisposition to a heritable trait, which can be 75 

used to conduct disease risk stratification or predict prognostic outcomes and response to therapy.6,7 76 

Typically, information across many variants is used to form a weighted sum of allele counts across variants, 77 

where the weights reflect the magnitude of association between variant alleles and the trait or disease. 78 

These weighted sums can include up to millions of variants, and are frequently referred to as polygenic 79 

risk score(s) (PRS), or genetic or genomic risk score(s) (GRS), if they refer to disease risk; or, more 80 

generally, polygenic score(s) (PGS) when referring to any phenotype (see Box 1 for further discussion of 81 

nomenclature). While there is active development of algorithms to decide how many and which variants to 82 

include and how much to weigh them so as to maximize the proportion variance explained or the disease 83 

discrimination, there is an emerging consensus that the inclusion of variants beyond those meeting stringent 84 

GWAS significance levels can boost predictive performance. 8,9   85 

 86 
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Box 1. Definitions of relevant genetic risk prediction terms  

Polygenic Score(s) (PGS): a single value that estimates the genetic contribution to inter-individual 

variation in a trait. Typically calculated by summing the number of trait-associated alleles in an individual, 

weighted by per-allele effect sizes from a discovery GWAS. Sometimes referred to as a genetic score. 

Polygenic Risk Score(s) (PRS): a PGS which is used to estimate risk of disease or other clinically 

relevant outcomes (binary or discrete). Sometimes referred to as a genetic or genomic risk score (GRS). 

See categories of PRS below. 

Integrated Risk Model: a risk model combining PGS/PRS with other established risk factors, such as 

demographics (often age and sex), anthropometrics, biomarkers, and clinical measurements to estimate 

a specific disease risk.  

 

Categories of use for PRS and/or integrated risk models 

The addition of PRS to existing risk models has several potential applications, summarized below. In 

each, the aim of PRS integration is to improve individual or subgroup classification to the extent that there 

is clinical benefit. 

Disease Risk Prediction – used to estimate an individual’s risk of developing a disease, based on the 

presence of certain genetic and/or clinical variables. 

Disease Diagnosis – used to classify whether an individual has a disease, or a disease subtype, 

linked to a certain etiology based on the presence of certain genetic and/or clinical variables.8,10 

Disease Prognosis – used to estimate the risk of further adverse outcome(s) subsequent to diagnosis 

of disease.11 

Therapeutic – used to predict a patient or subgroup’s response to a particular treatment.12 

 87 

Frameworks have been developed to establish standards around the transparent, standardized, accurate, 88 

complete and meaningful reporting of scientific studies. Those relevant for development and validation of 89 

risk prediction models include PICOT13, TRIPOD14, STROBE15, STREGA16, and, notably, the Genetic Risk 90 

Prediction Studies (GRIPS) Statement17 which specifically address reporting of genetic risk prediction 91 

studies. However, no framework adequately addresses the emerging use of PRS in clinical care and 92 

disease prevention.  93 

 94 

It is time to update the GRIPS statement as PRS have become ubiquitous in genetic research while 95 

reporting remains heterogeneous, particularly in terms of transparency and enabling reproducibility. The 96 

methods utilised for PRS construction and risk-model development have become more diverse and 97 

sophisticated.18–20 Biobanks and large-scale consortia have become dominant, yet frequently have limited 98 

access to individual-level data. Standards for reporting genetic ancestry information have been developed1, 99 

and there is a push towards open data sharing as outlined in the FAIR (Findable, Accessible, Interoperable 100 

and Reusable) Data Principles.3,21 Finally, the rapid rise of direct-to-consumer assays and companies 101 
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(including 23andMe, Color, MyHeritage, etc.) providing PGS/PRS results to customers has vastly increased 102 

the scope and complexity of genetic risk information. The readiness of PRS for implementation varies 103 

among phenotypes, with only a few diseases like breast cancer 22–24 and coronary heart disease (CHD) 104 

having mature PRS with potential clinical utility (see Box 2 for additional discussion of CHD). These 105 

concomitant advances have resulted in healthcare systems developing new infrastructures to deliver 106 

genetic risk information, and the field now needs to develop standards for clinical applications of PRS.  107 

 108 

Box 2: Current CHD PRS and their potential uses  

While many PRS have been developed to predict CHD, they vary greatly in the computational methods 
used to develop them, the number of variants included (50–6,000,000), and the GWAS and cohorts used 
for PRS training. For example, the latest and currently most predictive CHD PRS use GWAS summary 
statistics from the CardiogramPlusC4D study 25, and mainly differ by the computational methods used to 
select the included variants (including LDpred26,27, lassosum28, and meta-scoring approaches29), and how 
they are combined into risk models. These PRS, however, may provide useful information for predicting 
risk of CHD being largely orthogonal to conventional risk factors (age, sex, blood pressure, cholesterol, 
BMI, smoking) as well as family history. Clinical applications may include: 
 

● Improved risk prediction for future adverse cardiovascular events when added to traditional risk 
models (including Framingham Risk Score30, Pooled Cohort Equations28,29, QRISK28 ). 

● Reclassification of risk categories often leading to recommendations related to risk-reducing 
treatments like statins.30–32 
 

While the data strongly suggest CHD PRS, by refining risk estimates, may improve patient outcomes, 
clinical utility through randomized clinical trials has yet to be conclusively established. We anticipate this 
is the future direction of PRS studies, and a number of clinical trials are underway.33 

 109 

At present, there are no uniformly agreed best practices for developing PRS nor any regulation or standards 110 

for reporting or assessing their clinical readiness. These deficiencies are barriers to PRS being interpreted, 111 

compared, and reproduced, and must be addressed to enable the application of PRS to improve clinical 112 

practice and public health. Here, the Clinical Genome Resource (ClinGen) Complex Disease Working 113 

Group and the Polygenic Score (PGS) Catalog jointly present reporting standards that address current PRS 114 

research and highlight a complementary centralized repository for PRS with the ClinGen-PGS Catalog joint 115 

Polygenic Risk Score Reporting Standards (PRS-RS). We outline a foundation for transparent, 116 

standardized, accurate, and clinically meaningful reporting on PRS development and validation in the 117 

literature to overcome these barriers.  118 
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 119 
 120 

Figure 1: Prototype of PRS development and validation process. Figure 1 displays prototypical steps 121 

for PRS construction, development, validation, and performance, with select aspects of the ClinGen PRS 122 

reporting guideline highlighted throughout. In PRS development, variants associated with a phenotype of 123 

interest, typically identified from a GWAS, are combined as a weighted sum of allele counts across variants. 124 

Methods for optimizing variant selection for a PRS (PRS Construction) are not shown. The PRS is tested 125 

in a risk model predicting the phenotype of interest and may be combined with other non-clinical variables. 126 

Collectively, all variables included in the risk model are referred to as the risk model parameters. After fitting 127 

procedures to select the best risk model, this model is validated in an independent sample. The 128 

performance of a model is demonstrated though risk score distribution, discrimination, predictive ability, 129 

and calibration. Though not displayed in the figure, these same results should also be reported for the 130 

training sample for comparison to the validation sample. In both training and validation cohorts, the 131 

phenotype of interest criteria, demographics, genotyping, and non-genetic variables should be reported 132 

(Table 1). 133 
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Results 134 

Updated PRS Reporting Guidelines 135 

This guideline aims to specify the minimal criteria needed to accurately interpret a PRS and reproduce 136 

results throughout the PRS development process, briefly illustrated in Figure 1. It applies to the 137 

development and validation studies for PRS that aim to predict disease, prognosis and response to 138 

therapies. Table 1 presents the full PRS-RS. 139 

 140 

Reporting on risk score background: As the PRS-RS are focused on future utility and implementation, 141 

authors must outline the study and target population and appropriate outcomes to understand what risk is 142 

measured. Authors should use the appropriate data needed to address the intended clinical use, with 143 

adequate documentation of dataset characteristics to inform understanding of the nuance in measured risk. 144 

For example, when developing a risk score, there can be disparities between the risk-score predicted 145 

clinical end-outcome (e.g., cardiovascular risk) and the measured phenotype of interest (e.g., LDL 146 

cholesterol) used in the analysis. If a surrogate outcome is used, this should be clearly stated with an 147 

explanation including the limitations of the study design or study recruitment method, in which the clinical 148 

end outcome was not measured.  149 

 150 

Reporting on populations: The “who, where, and when” of risk depend on the study population used to 151 

derive the risk model. Therefore, authors need to define and characterize the demographics of their study 152 

population, especially the age, sex, and ancestry composition. There are often inconsistent definitions and 153 

levels of detail associated with ancestry, and the transferability of genetic findings between different 154 

racial/ethnic groups can be limited. 1,8,34 It is essential for authors to define participants based on their self-155 

identified ancestry, with a standardized framework developed by the NHGRI-EBI GWAS Catalog to enable 156 

comparability between studies.1 While these three demographic variables are the most universally relevant, 157 

authors should provide sufficient level of detail for all relevant factors for the outcome of interest, especially 158 

if they are included in the final risk model under risk model parameter specifications.  159 

 160 
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Reporting on Methods: There are currently several methods that are commonly used to select variants 161 

and fine-tune weights. 7,18–20,35 As the performance and limitations of the risk score are dependent on these 162 

methods, authors must provide complete details including the source of genetic information (risk model 163 

genetic data acquisition) and inclusion/exclusion criteria (risk model parameter specifications). Once these 164 

parameters are defined, authors should describe the methods used to transform the raw data, often derived 165 

from GWAS summary statistics, to a sum of variants for their polygenic risk score estimation. Often authors 166 

will iterate through numerous models to find the optimal fit. Therefore, in addition to the estimation methods, 167 

it is important to detail the statistical model fitting procedure, including the measures used for the final model 168 

selection. 169 

 170 

Reporting on Risk Estimation: Translating the continuous PRS distribution to a risk estimate, whether 171 

absolute or relative, is highly dependent on assumptions about and limitations with the specific data set 172 

utilised. When describing the risk model type, authors should detail the time scale employed for prediction 173 

or the study period/follow-up time for a relative hazard model. Additionally, if relative risk is estimated, the 174 

reference group should be well described. These details should be described for the training set, as well as 175 

validation and sub-group analyses. The risk score calibration and discrimination should be described for all 176 

analyses, although their estimation and interpretation are most relevant for validation, preferably with an 177 

external validation set. Any differences in variable definitions between the training and validation sets 178 

should be described.          179 

 180 

Reporting on Model Parameters: Reporting actual estimates, not only the methods behind decision-181 

making, enables readers to gauge the relative value of an increase in performance against other trade-offs. 182 

Making the underlying PRS (variant alleles and derived weights) publicly available and submitting them to 183 

the PGS Catalog allows others to reuse existing models (with known validity) and enables direct 184 

benchmarking between different PRS for the same trait. The current mathematical form of most PRS—a 185 

linear combination of allele counts—facilitates model description and reproducibility. Future genomic risk 186 

models may have more complicated forms, e.g. allowing for non-linear epistatic and gene-environment 187 
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interactions. It will be important to describe these models in sufficient detail to allow their implementation 188 

by other researchers and clinical groups; this might entail sharing open-source code. 189 

 190 

Reporting on Interpretation: By explicitly describing the risk model’s interpretation and outlining potential 191 

limitations to the generalizability of their model, authors will empower readers and the wider community to 192 

better understand the risk score and its relative merits. Authors should justify the clinical relevance and risk-193 

score intended purpose, such as how the performance of their PRS compares to other commonly used risk 194 

metrics, either from previously published PRS or conventional risk calculators, such as the pooled cohort 195 

equations for estimating atherosclerotic cardiovascular disease risk.36 This is important — what indicates a 196 

“good” prediction can differ between outcomes and intended purposes.      197 

 198 

Lastly, we would like to reiterate the need for both methodological and data transparency. Deposition in a 199 

resource such as the PGS Catalog provides an invaluable resource for widespread adoption and 200 

improvement of a published PRS. Supplemental Table 1 provides additional reporting considerations on 201 

top of the minimal reporting framework in Table 1. Authors intending downstream clinical implementation 202 

should aim for the level of transparent and comprehensive reporting covered in both Table 1 and 203 

Supplemental Table 1, especially those related to discussing the interpretation, limitations, and 204 

generalizability of results.   205 

Compatibility with the PGS Catalog submission template  206 

The PGS Catalog (www.PGSCatalog.org; Lambert et al., 2019) provides access to PGS scores and related 207 

metadata to support the FAIR principles of data stewardship 21, enabling subsequent applications and 208 

assessments of PGS performance and best practices. The goals of the PGS Catalog align with ClinGen 209 

with slight differences in how the data is represented in the Catalog (link). Overall, there is a good 210 

agreement between the PRS-RS and PGS Catalog representation schema (field by field mapping outlined 211 

in Supplemental Table 2A), particularly with respect to how study participants are described. Reporting 212 

items in the PRS-RS that are not present in the PGS Catalog (Supplemental Table 2B) include descriptions, 213 

goals, limitations and intended uses of PRS predictions and implementation that are not essential to the 214 
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Catalog’s goal of indexing available published PGS with the metadata essential for interpretation and 215 

reproducibility. PRS described using the PRS-RS items contain sufficient detail for their addition to the PGS 216 

Catalog, as such we recommend that authors describe scores using the PRS-RS and submit them to the 217 

PGS Catalog upon publication. 218 

 219 

  220 

Box 3. Many papers lack sufficient detail for interpretation 

 

We carried out a iterature review (representative across a variety of diseases, risk score categories, and 

populations) to revise the PRS-RS (N=30). It revealed multiple reporting items with insufficient and/or 

missing details as well as variable details provided on methods, results, and discussion (Figure 2). 

Papers had insufficient detail for items related to study design and variables, particularly phenotype of 

interest (inclusion/exclusion criteria and control definitions) and ancestry (definition, distribution of 

participants). There was also insufficient detail and absent reporting for items needed to reproduce or 

critically assess the analytic validity of a PRS, including statistical validation model, risk score calibration, 

and data transparency and availability. We observed variable, often absent, discussion about the 

intended clinical purpose or utility of the score, and on how the PRS compared to standard of care. 

Papers also varied in their discussion of study limitations, particularly with regard to how the ancestry of 

the training and validation sets affected PRS generalizability. 

 

 
Figure 2. PRS-RS items with missing and insufficient detail. A total of 30 papers were reviewed. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. ; https://doi.org/10.1101/2020.04.23.20077099doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077099
http://creativecommons.org/licenses/by/4.0/


 11 

Discussion 221 

Polygenic risk scores have transformed human genetic research and emerged as potentially powerful tools 222 

for the translation of genomic discoveries into clinical and public health benefits. However, standardized 223 

and robust methods and reporting criteria are urgently needed in this area order to realize its potential. The 224 

heterogeneity in the reporting of PRS to date—including what to report and how to report it—highlights the 225 

challenges for accurate interpretation and confidence in PRS, especially with respect to assessing clinical 226 

readiness. (Box 3) Critical aspects of PRS studies, including ancestry, predictive ability, and 227 

transparency/availability of information needed to reproduce PRS, are frequently inadequately reported. 228 

Without these aspects, PRS cannot be rigorously assessed and compared, even within the same disease 229 

or recruitment cohorts. This underscores the need for a reporting standard with clear, specific definitions 230 

that conveys the meaningful aspects of PRS development and testing, which are critical to understanding 231 

PRS predictive ability and specificity for the intended target population and phenotype of interest. 232 

 233 

The ClinGen Complex Disease Working Group utilized an iterative review process incorporating previous 234 

standards, expert opinion and practical considerations to create an updated PRS-RS of 33 items, spanning 235 

PRS derivation, testing and validation steps (Table 1). The reporting guideline is complemented by the 236 

PGS Catalog (www.PGSCatalog.org), an online database that freely provides the underlying information 237 

necessary to calculate the polygenic score (e.g., variants and weights) and curates important meta-data on 238 

polygenic scores in structured, standardized formats. The PGS Catalog provides an open platform for 239 

implementing reporting standards and lays the foundation for assessing best practices in polygenic score 240 

research.  241 

 242 

ClinGen has incorporated multiple sources to create a guide that is flexible, pragmatic, and informed. 243 

Researchers using this guideline may identify fringe cases that are inadequately covered, and the guide 244 

may become dated as PRS research continues to mature. However, by updating previous standards, 245 

involving current leaders in the field, and adapting the framework pragmatically to the barriers observed in 246 

recent literature, we aimed to provide a comprehensive perspective on the topic. In comparison to the 247 

original GRIPS statement, PRS-RS has expanded on elements related to understanding the clinical validity 248 
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of PRS and consequent risk models. Items such as risk score predicted clinical end outcome (introduction) 249 

and risk score intended purpose (discussion) bookend our guideline with the intended clinical framing of 250 

PRS reporting. Most other items in PRS-RS are consistent with the original GRIPS items but are presented 251 

in greater detail for more accurately assessing the clinical validity of PRS when needed. For example, the 252 

GRIPS item called “study design and setting” has been split into “study design” and “study recruitment,” in 253 

acknowledgment of the importance of both distinct pieces of information in understanding study biases or 254 

limitations. 255 

 256 

While the scope of our work encompasses clinical validity, it does not address the additional requirements 257 

needed for clinical or public health utility, such as randomized trials with clinically meaningful outcomes, 258 

health economic evaluations, or feasibility studies. In addition, the translation of structured data elements 259 

into useful clinical parameters may not be direct. Two relevant examples are (i) the disease case definitions 260 

utilized in training or validation in any particular PRS study may deviate (sometimes substantially) from 261 

those utilized in any specific health system, and (ii) the definitions used for race/ancestry as outlined in the 262 

PGS and GWAS Catalog1 may also deviate from structured terms used to document ancestry information 263 

in clinical care. Such translation issues potentially limit generalizability to target populations and warrant 264 

further discussion. Nevertheless, we have emphasized the need for authors to be mindful of their intended 265 

purpose and target audience when discussing their findings. Additionally, while the principles of this work 266 

are clear, its scope does not include the complex commercial restrictions, such as intellectual property, that 267 

may be placed on published studies regarding the reporting or distribution of polygenic scores, or the 268 

underlying data thereof. This work can inform downstream regulation and transparency standards for PRS 269 

as a commercial clinical tool. 270 

 271 

The coordinated efforts of the ClinGen Complex Disease Working Group and PGS Catalog provide a set 272 

of compatible resources for researchers to deposit PRS information. The PGS Catalog provides an 273 

informatics platform with data integration and harmonization to other PGS as well as the source GWAS 274 

study through its sister platform, the GWAS Catalog.37 In addition, it provides a structured database of 275 

scores (variants and effect sizes) and metadata requested in PRS-RS. With these tools, PRS-RS can be 276 
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mandated by leading peer-reviewed journals and, consequently, the quality and rigor of PRS research will 277 

be elevated to a level which facilitates clinical implementation.  278 

 279 

While we have provided explicit recommendations on how to acknowledge study design limitations and 280 

their impact on the interpretation and generalizability of a PRS, future research should attempt to establish 281 

best practices to guide the field. In addition, future reporting guidelines should address important questions 282 

about clinical readiness, specifically about intended use and target populations to help ease translation into 283 

practice. While the working group has begun to address how changes in PRS practices should be 284 

accounted for when reporting a PRS, future research should attempt to create a reporting guideline that 285 

anticipates the consequences of new methods, such as deep learning. We encourage readers to visit the 286 

ClinGen complex disease website (https://clinicalgenome.org/working-groups/complex-disease/) for any 287 

future changes or amendments to the reporting guideline.  288 

Methods 289 

ClinGen Complex Disease Working Group  290 

The working group, founded by ClinGen in November 2018, comprised more than thirty experts with 291 

epidemiological, statistical, disease-domain specific, implementation science, actionability, and ELSI 292 

interests in polygenic risk score application. Members met twice a month to discuss current research, best 293 

practices, and limitations within their respective areas of expertise. As a result of these meetings, the 294 

workgroup decided to update previous genetic risk-score reporting standards17 to current PRS practices. 295 

This aim was finalized at the NHGRI Genomic Medicine XII: Genomics and Risk Prediction meeting in May 296 

2019 with input from the external scientific community in terms of mission, scope, and long-term objectives 297 

of the working group. Current descriptions of workgroup members and goals are available at: 298 

https://clinicalgenome.org/working-groups/complex-disease/ 299 

 300 

The Polygenic Score (PGS) Catalog 301 

The PGS Catalog was founded in 2019 by researchers at the University of Cambridge UK, European 302 

Bioinformatics Institute (EMBL-EBI) and Baker Institute, and developed as a sister resource to the NHGRI-303 
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EBI GWAS Catalog37. Its goal is to provide an open database of PGS and relevant metadata, so that 304 

published PRS/PGS can be distributed, applied, and evaluated in a rigorous and replicable manner in both 305 

research and clinical settings. It reports key information about how a PGS has been developed (e.g., variant 306 

selection and computational methods), information about the specific datasets used for PGS development 307 

and evaluation (e.g., sample size, ancestry, phenotype description), as well as the performance metrics 308 

reported during PGS evaluation (e.g., effect sizes, covariates, and/or classification metrics). These data 309 

are represented in a schema that links the Scores, Samples, and Performance Metrics presented in each 310 

PGS publication. The PGS Catalog is available at www.PGSCatalog.org; additional descriptions of the 311 

project, development, methods, full descriptions of the representation schema, along with links for PGS 312 

submission can be found in the documentation (www.pgscatalog.org/about/) and will be described in a 313 

future publication. (Lambert et al., in preparation)  314 

 315 

PRS Reporting Framework: Expert Guidelines Approach 316 

PRS-RS was developed in iterative phases utilizing previous standards, expert opinion, and a pragmatic 317 

literature review process. First, the entire expert working group created the initial framework draft by 318 

adapting previous genetic risk-score reporting standards to current PRS methodologies. This was followed 319 

by a second round of revisions using a literature review. These steps led to a series of proposed revisions 320 

that were finalized with the entire working group. Finally, PRS-RS and PGS Catalog fields were mapped 321 

onto one another, and definitions were modified to reflect shared language, when possible.  322 

 323 

Draft guidelines from previous guidelines  324 

The draft PRS-RS largely expanded on the GRIPS guidelines for genetic risk-prediction studies published 325 

in 2011.17 To create the preliminary framework, we relied on expert opinion, and were guided by the PICOT 326 

framework used to compare heterogeneous clinical trial outcomes.13  Our revisions focused on eliciting the 327 

individual components from previous standards that experts deemed independently important for 328 

transparent interpretation and reproducibility of a risk score (Supplemental Figure 1). We expanded the 329 

original GRIPS checklist of 25 items to 44 unique items, of which 33 items were needed for both training 330 

and validation cohorts. The majority of these additions were added to explicitly list discrete elements within 331 
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an individual GRIPS checklist item if those elements were determined by the work group to have significant 332 

impact in the interpretation of a PRS in terms of either analytic validity, clinical validity, or clinical utility. The 333 

PICOT framework did not add items to the reporting guidelines, but we did confirm that PICOT concepts 334 

were represented in the reporting guideline to facilitate downstream applications of comparing 335 

heterogeneous outcomes.   336 

 337 

PRS-RS revisions using literature review  338 

We used the PRS-RS checklist to curate original research articles on polygenic risk-score development or 339 

validation as a measure of pragmatism and clarity. Thirty-five papers were initially collected via the snowball 340 

sampling search based on their use of the term “polygenic risk score” and their research in human 341 

populations in preparation for the NHGRI Genomic Medicine XII meeting. Five papers were excluded from 342 

the review because they were not original articles, did not develop or validate a PRS, duplicated a previous 343 

study, or did not use genetic loci to construct their risk scores. Included articles spanned a variety of disease 344 

domains including Alzheimer’s disease, asthma, breast cancer, cerebrovascular event, colon cancer, 345 

coronary heart disease, depression, fracture risk, Parkinson’s disease, prostate cancer, and schizophrenia. 346 

In addition, articles were selected for variety in the risk score category (development vs. external validation; 347 

diagnostic vs. prognostic). Article references are available in the supplement. 348 

 349 

Two independent reviewers assessed each article using the draft PRS reporting framework. A 10-person 350 

volunteer subgroup of the larger working group met bi-weekly to resolve inter-reviewer discrepancies. If the 351 

subgroup was unable to reach a consensus, one of four expert reviewers from the working group was 352 

assigned to resolve discrepancies in a third review. This pilot of the reporting guideline on published PRS 353 

revealed pragmatic areas for revision. Similar items were combined if they did not individually contribute 354 

meaningful concepts for PRS interpretation. Items were removed if they did not contribute to overall 355 

interpretation of the risk-score performance or target application. Definitions were expanded and revised to 356 

address inconsistencies in inter-reviewer interpretation due to heterogeneous and vague reporting in the 357 

literature. Items were kept as discrete items if we observed substantially missing or insufficiently detailed 358 

reports on these items in the literature for transparency. When applicable, updated methodology was also 359 
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included in definitions. Finally, supplemental considerations were created to address fringe cases 360 

(Supplementary Table 1). Proposed reporting guideline revisions were ratified in monthly calls with the 361 

entire workgroup. This final 33-item PRS-RS is presented in Table 1.  362 

 363 

Papers were re-curated using the final reporting guideline. The majority of papers (25/30) were predicting 364 

risk of developing disease with a few characterizing prognostic outcomes. Nearly half of the papers (13/30) 365 

developed a novel risk score, while the other half either externally validated a previously published risk 366 

score (9/30) or both developed and externally validated the risk score (6/30). Two manuscripts modified a 367 

previously published score. The composition of the final published risk scores were limited to genetic 368 

variables for the majority of papers (25/30), with only five producing an integrated risk score.  369 

 370 

PRS-RS harmonization with PGS Catalog  371 

Two curators mapped reporting fields from the PGS Catalog onto the final PRS-RS guidelines. When 372 

possible, similar terminology was adopted between the two resources. A subset of fields in the PGS Catalog 373 

differ from PRS-RS due to restrictions in preserving integrity of the data infrastructure. The analogous 374 

ClinGen reporting item is listed in the PGS Catalog as a footnote to aid researchers, and this field mapping 375 

is available in the supplement (Supplementary Table 2). 376 
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Table 1. ClinGen PRS Reporting Guideline. 491 

Bold= training and validation, when applicable 492 

 493 

Introduction 

Article Type Specify whether authors are developing a risk score and/or externally validating a previously published PRS. When externally validating or 
combining previously published PRS, include identifier(s) of original PRS (PMID, PGS catalog ID). 

Risk Score Category Specify the risk score’s purpose as risk prediction, diagnostic, prognostic, or therapeutic (or combination of these). 

Risk Score Predicted 
Clinical End Outcome  

When describing the risk score purpose, include the clinical end outcome predicted by the final PRS model. If the predicted outcome is a 
clinical feature or endpoint within a specific disease, state the disease. Inclusion/exclusion criteria are specified in the methods.  

Methods: Study Design 

Study Design Include study design details including study type (e.g., cohort, case control, cross sectional), and whether the predicted clinical end outcome 
is defined by incidence or prevalence. State whether the data are primary or secondary data. If secondary analysis, include a reference to 
the original study. For PRS that combine samples from multiple studies, include this information for each study. 

Study Recruitment Stated or reference (if secondary analysis) recruitment details, such as method and years. 

Phenotype of Interest Provide the inclusion and exclusion criteria used to define the predicted clinical end outcome stated in the introduction. If the predicted 
outcome is a clinical feature or endpoint within a specific disease, provide the inclusion and exclusion criteria used to define that disease. 
Include details on how inclusion and exclusion information was ascertained (e.g., ICD codes, e-phenotyping algorithms, chart review, self-
report). Authors should explicitly state the number of cases and controls included. 
 
For dichotomous data, also include inclusion and exclusion criteria for defining the cases and controls. Transformation of continuous data 
into binary outcomes should be detailed for reproducibility. Authors should explicitly state the number of controls included. 

Methods: Variable Definitions 

Ancestry Include the distribution of ancestral background for all samples used to generate or evaluate a PRS, and the data source of this ancestry 
information (e.g., self-report, genotyping).  Ancestry information should be reported using the standardized framework developed by the 
NHGRI-EBI GWAS Catalog and ideally include detailed information beyond this when available. When combining samples from multiple 
studies, aggregate ancestral distribution information is sufficient. 
 
If genetic ancestry was considered, estimation methods should be detailed as well as discussing how this was utilized in analysis. 
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Geographic location should not be used as a proxy to infer ancestry information.  

Age Include the age distribution of the total data set used to generate a single PRS (whether a single sample set, or the summary of combined 
samples) using the mean, standard deviation and range. Provide the age distribution by case/control status, if applicable.  

Sex Include the sex distribution of the total data set used to generate a single PRS (whether a single sample set, or the summary of combined 
samples) using the counts and percentages of total sample. State if sex was inferred from self-report or genetic information. Provide the 
sex distribution by case/control status, if applicable. 

Risk Model Genetic 
Data Acquisition 

 

Provide method for acquiring genetic information (sequencing vs. genotyping) in the PRS sample, including information about genome build 
and technical details of the assay. If imputing, specify the populations on the imputation panel, and provide the imputation quality for SNPs 
included in PRS. Report any imputation quality filters to exclude low quality imputation SNPs. 

Risk Model Parameter 
Specifications 

Explicitly state all terms used in the final risk model, including SNPs and any non-genetic variables. Authors should detail inclusion/exclusion 
criteria for all SNPs and other variables in the final model.  
 
Statistical procedures for selecting SNPs from a GWAS for inclusion in the final PRS model are provided in the “Statistical Model Fitting 
Procedure.” Provide a reference for discovery GWAS and whether any adjustments were performed in the GWAS. 
 
If parameters were selected from another study, include reference (PMID, PGS catalog ID).  

Clinical variable 
definition(s) 

For any non-genetic variables included in the risk model, provide inclusion and exclusion criteria to define each variable, along with data 
source for that information (e.g., ICD codes, e-phenotyping algorithms, chart review, self-report). Indicate whether the variable is 
dichotomous or continuous. 

Missing Data Authors should explicitly state how missing data were handled for all variables included in the model, genetic and non-genetic.  

Sub-Analyses For any sub-analyses performed, provide inclusion and exclusion criteria used to stratify or subset the sample, any cut-offs used with 
justification provided, and the data source for this information (e.g., ICD codes, e-phenotyping algorithms, chart review, self-report). 
Explicitly state the number of cases included in the sub-analyses. 

Methods: Analysis 

Polygenic Risk Score 
Estimation 

 

Describe the statistical methods used to calculate risk score, primarily how the genetic data are transformed into a single score from 
individual risk variants. This includes information on how variants were weighted, and how the weights were derived.  

Statistical Model Fitting 
Procedure 

 
 

State the fitting procedure utilized to select the final version of the model. Details should include criteria for inclusion of SNPs (such as 
effect size or P-value threshold), if model was selected for optimal performance, and if so, the measures used to assess performance. 
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Risk Model Type Detail statistical methods used to estimate risk, either relative or absolute, from the continuous risk score distribution. Authors should detail 
if risk is cumulative or cross-sectional, as well as the appropriate comparison groups if relative risk presented. 
 
Report time until predicted risk (eg. 5-year, 10-year, lifetime). In a relative hazard model, the study period or follow up time may be used. 
In an absolute risk model, state the time until predicted event. Authors should be careful not to simply report total length of study. 

Risk Score Calibration Describe measures used to assess calibration of the risk score and whether any variables were included beyond the risk score in this 
analysis.  

Risk Score 
Discrimination 

Describe measures used to assess discrimination of the risk score and whether any variables were included beyond the risk score in this 
analysis.  

Statistical Validation 
Model 

Outline procedures utilized to validate the risk score, including whether validation was performed, and the specific statistical model used 
during validation, especially if different than those used in the training set. Other details should include whether validation was internal or 
with an external validation set. Authors should include how missing data were handled. 

Statistical Subgroup 
Analyses 

For any sub-analyses performed, include details about statistical procedures specific to that subgroup that differ from the main analysis.  

Results 

Risk Score 
Distribution 

Include a general description of the distribution of the risk score, as well as model fit measures. This details the continuous distribution 
output directly from the risk model.  

Risk Score Predictive 
Ability 

State if risk model output is in terms of absolute or relative risk. If relative risk, include information about the reference population in respect 
to all relevant variables. It should be explicitly stated if the risk measure has been adjusted for other variables as previously defined in 
methods.  
 
If relative risk, include information about the reference population and risk score distribution in the general population. For absolute risk, 
include the prevalence/incidence of the predicted outcome in the general population.  
 
Enough detail should be included to enable readers to compute measures of risk score predictive ability such as AUC, sensitivity, specificity, 
PPV, NPV.  

Risk Score 
Discrimination 

Include metrics assessing discrimination of the risk score and whether other variables are included beyond the risk score in this analysis.  

Risk Score Calibration Include metrics assessing calibration of the risk score and whether other variables are included beyond the risk score in this analysis. 

Risk Score Validation Report all measures (predictive ability, distribution, discrimination, calibration) conducted in a validation set (either internal or external).  
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Subgroup Analyses For any subgroup analyses, report all measures (predictive ability, distribution, discrimination, calibration). 

Discussion 

Risk Model 
Interpretation 

Summarize the risk score in terms of what it predicts, how well, and in whom. The predicted outcome predicted should be consistent with 
the introduction. Explicitly mention the performance of the risk model beyond non-genetic risk factors if non-genetic factors were included 
in the model. Target population should reflect the sample used in risk model development and validation (eg. ancestry, age, sex, other 
characteristics). 

Limitations Outline limitations in interpreting results. This includes, but is not limited to, study design restrictions, ascertainment biases, the distribution 
participant-level traits (ancestry, age, comorbidities), accuracy/specificity of phenotype data, and any statistical considerations. In addition, 
make note of any unknown reporting items from previous sections. Authors should consider and discuss the impact of these limitations on 
the interpretation of the risk score and any downstream replication needed. 

Generalizability Discuss which populations this score may be applied to and explicitly address any issues with generalizability beyond the included 
populations. Discuss whether the risk score has been externally validated, or if the sample is limited with respect to ancestry, age, or other 
variables. 

Risk Score Intended 
Purpose 

Discuss whether there is an intended clinical purpose or utility to the score. If so, discuss the “clinic readiness” and next steps with respect 
to the interpretation, limitations, and generalizability of the model. Discuss how the predictive ability of the model is benchmarked against 
current standard of care or other published work (such as existing PRS) on predicting the outcome of interest. If not, discuss why the PRS 
should not be used for clinical purposes.  

Data Transparency and 
Availability 

Information sufficient to calculate the PRS and/or risk model on external samples should be made available. For genetic variables this 
would include information about the variants (e.g., rsID, chromosomal location, effect allele, and the effect weight) that comprise the score; 
PRS with this information can be published in the PGS Catalog for findability and to promote re-use and comparison with other established 
scores. Weights for non-genetic variables should also be provided to make the risk model calculable in the same way.  

 494 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. ; https://doi.org/10.1101/2020.04.23.20077099doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077099
http://creativecommons.org/licenses/by/4.0/

