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Abstract

Currently, novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid
spread of the virus has created pandemic, and countries all over the world are struggling with a surge
in COVID-19 infected cases. Scientists are working on estimating or predicting infection trajectory
for the COVID-19 confirmed cases, which will be useful for future planning and policymaking
to effectively cope with the disease. There are no drugs or other therapeutics approved by the
US Food and Drug Administration to prevent or treat COVID-19: information on the disease is
very limited and scattered even if it exists. This motivates the use of data integration, combining
data from diverse sources and eliciting useful information with a unified view of them. In this
paper, we propose a Bayesian hierarchical model that integrates global data to estimate COVID-
19 infection trajectories. Due to information borrowing across multiple countries, the proposed
growth curve models provide a powerful predictive tool endowed with uncertainty quantification.
They outperform the existing individual country-based models. Additionally, we use countrywide
covariates to adjust infection trajectories. A joint variable selection technique has been integrated
into the proposed modeling scheme, which aimed to identify the possible country-level risk factors
for severe disease due to COVID-19.
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1 Introduction

Since Thursday, March 26, 2020, the US leads the world in terms of the cumulative num-

ber of infected cases for a novel coronavirus, COVID-19. On this day, a dashboard provided

by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University

(https://systems.jhu.edu/-) reported that the numbers of the confirmed, death, and recovered

from the virus in the US are 83,836, 1,209, and 681, respectively. Figure 1 displays daily infection

trajectories describing the cumulative numbers of infected cases for eight countries (US, Spain,

Italy, UK, Brazil, China, India, and South Korea), spanning from January 22nd to May 1st, which

accounts for 101 days. The dotted vertical lines on the panel mark certain historical dates that will

be explained. As seen from the panel, the US has been a late-runner until March 11th in terms

of the infected cases, but the growth rate of the cases had suddenly skyrocketed since the day,

and eventually excelled the forerunner, China, just in two weeks, on March 26th. Figure 2 shows

the cumulative infected cases for 40 countries on May 1st: on the day, the number of cumulative

infected cases for the US was 1,103,461, nearly five times of that of Spain, 227,762.
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Figure 1: Daily trajectories for cumulative numbers of COVID-19 infections for eight countries (US,
Spain, Italy, UK, Brazil, China, India, and South Korea) from January 22nd to May 1st. (Data
source: Johns Hopkins University CSSE)
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Figure 2: Cumulative numbers of infected cases for 40 countries on May 1st. (x-axis are scaled with
squared root for visualization purpose.) The red dashed vertical lines represents 1,103,461 cases.

Since the COVID-19 outbreak, there have been numerous research works to better understand

the pandemic in different aspects (Gao et al., 2020; Jia et al., 2020; Liu et al., 2020; Peng et al.,

2020; Qiang Li, 2020; Remuzzi and Remuzzi, 2020; Sheng Zhang, 2020; Yang et al., 2020). Some

of the recent works from statistics community are as follows. Sheng Zhang (2020) focused on a

serial interval (the time between successive cases in a chain of transmissions) and used the gamma

distribution to study the transmission on Diamond Princess cruise ship. Peng et al. (2020) proposed

the generalized susceptible exposed infectious removed model to predict the inflection point for the

growth curve, while Yang et al. (2020) modified the proposed model and considered the public

health interventions in predicting the trend of COVID-19 in China. Liu et al. (2020) proposed

a differential equation prediction model to identify the influence of public policies on the number

of patients. Qiang Li (2020) used a symmetrical function and a long tail asymmetric function to

analyze the daily infections and deaths in Hubei and other places in China. Remuzzi and Remuzzi

(2020) used an exponential model to study the number of infected patients and patients who need

intensive care in Italy. One of the major limitations of these works is that the researches are confined

by analyzing data from a single country, thereby neglecting the global nature of the pandemic.

One of the major challenges in estimating or predicting an infection trajectory is the hetero-
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geneity of the country populations. It is known that there are four stages of a pandemic: visit

economictimes.indiatimes.com/-. The first stage of the pandemic contains data from people with

travel history to an already affected country. In stage two, we start to see data from local trans-

mission, people who have brought the virus into the country transmit it to other people. In the

third stage, the source of the infection is untraceable. In stage four the spread is practically un-

controllable. In most of the current literature, estimation or prediction of the infection trajectory

is based on a single country data where the status of the country falls into one of these four stages.

Hence, such estimation or prediction may fail to capture some crucial changes in the shape of the

infection trajectory due to a lack of knowledge about the other stages. This motivates the use of

data integration (Huttenhower and Troyanskaya, 2006; Lenzerini, 2002) which combines data from

different countries and elicits a solution with a unified view of them. This will be particularly useful

in the current context of the COVID-19 outbreak.

Recently, there are serious discussions all over the world to answer the crucial question: “even

though the current pandemic takes place globally due to the same virus, why infection trajectories of

different countries are so diverse?” For example, as seen from Figure 1, the US, Italy, and Spain have

accumulated infected cases within a short period of time, while China took a much longer time since

the onset of the COVID-19 pandemic, leading to different shapes of infection trajectories. It will be

interesting to find a common structure in these infection trajectories for multiple countries, and to

see how these trajectories are changing around this common structure. Finally, it is significant to

identify the major countrywide covariates which make infection trajectories of the countries behave

differently in terms of the spread of the disease.

2 Significance

The rapid spread of coronavirus has created pandemic, and countries all over the world are strug-

gling with a surge in COVID-19 infected cases. Scientists are working on estimating the infection

trajectory for future prediction of cases, which will be useful for future planning and policymaking.

We propose a hierarchical model that integrates worldwide data to estimate COVID-19 infection

trajectories. Due to information borrowing across multiple countries, the proposed growth curve

model will be a powerful predictive tool endowed with uncertainty quantification. Additionally,
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we use countrywide covariates to adjust curve fitting for the infection trajectory. A joint variable

selection technique has been integrated into the modeling scheme, which will identify the possible

reasons for diversity among the country-specific infection curves.

3 Our Contribution

There are three major classes of infectious disease prediction models: (i) differential equation

models, (ii) time series models, and (iii) the statistical models. The differential equation models

describe the dynamic behavior of the disease through differential equations allowing the laws of

transmission within the population. The popular models include the SI, SIS, SIR, and SEIR

models (Hethcote, 2000; Korobeinikov, 2004; Tiberiu Harko, 2014). These models are based on

assumptions related to S (susceptible), E (exposed), I (infected), and R (remove) categories of the

population. Time series based prediction models such as ARIMA, Grey Model, Markov Chain

models have been used to describe dependence structure over of the disease spread over time (Hu

et al., 2006; Reza Yaesoubi, 2011; Rushton et al., 2006; Shen X, 2013; Zhirui He, 2018). On

the other hand, statistical models, so-called phenomenological models, which follow certain laws

of epidemiology (Clayton and Hills, 2013; Thompson et al., 2006) are widely used in real-time

forecasting for infection trajectory or size of epidemics in early stages of pandemic (Fineberg and

Wilson, 2009; Hsieh, 2009; Pell et al., 2018). Statistical models can be easily extended to the

framework of hierarchical models (multilevel models) to analyze data within a nested hierarchy,

eventually harnessing the data integration (Browne et al., 2006; Hill, 1965; Stone and Springer,

1965; Tiao and Tan, 1965). In this paper, we use Bayesian hierarchical models so that data

integration and uncertainty analysis (Malinverno and Briggs, 2004) are possible in a unified way.

Specifically, we use the Richards growth curve model (Richards, 1959). The novelties of our

method are as follows: we (i) use a flexible hierarchical growth curve model to global COVID-19

data, (ii) integrate information from multiple countries for estimation and prediction purposes, (iii)

adjust for country-specific covariates, and (iv) perform covariate selection to identify the important

reasons to explain the differences among the country-wise infection trajectories. We demonstrate

that our proposed models perform better than an individual country-based model.
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3.1 Richards growth curve models

Richards growth curve model (Richards, 1959), so-called the generalized logistic curve (Nelder,

1962), is a growth curve model for population studies in situations where growth is not symmetrical

about the point of inflection (Anton and Herr, 1988; Seber and Wild, 2003). The curve was widely

used to describe various biological processes (Werker and Jaggard, 1997), but recently adapted in

epidemiology for real-time prediction of outbreak of diseases; examples include SARS (Hsieh, 2009;

Hsieh et al., 2004), dengue fever (Hsieh and Chen, 2009; Hsieh and Ma, 2009), pandemic influenza

H1N1 (Hsieh, 2010), and COVID-19 outbreak (Wu et al., 2020).

There are variant reparamerized forms of the Richards curve in the literature (Birch, 1999; Cao

et al., 2019; Causton, 1969; Kahm et al., 2010), and we shall use the following form in this research

f(t; θ1, θ2, θ3, ξ) = θ1 · [1 + ξ · exp{−θ2 · (t− θ3)}]−1/ξ, (1)

where θ1, θ2, and θ3 are real numbers, and ξ is a positive real number. The utility of the Richards

curve (1) is its ability to describe a variety of growing processes, endowed with strong flexibility due

to the shape parameter ξ (Birch, 1999): analytically, the Richards curve (1) (i) becomes the logistic

growth curve (Tsoularis and Wallace, 2002) when ξ = 1, and (ii) converges to Gompertz growth

curve (Gompertz, 1825) as the ξ converges to zero from positive side of real numbers. (Gompertz

curve is g(t; θ1, θ2, θ3) = θ1 ·exp [− exp {−θ2 · (t−θ3)}].) But it is also known that estimation of ξ is

a complicated problem (Wang et al., 2016), and we resort to a modern sampling scheme, elliptical

slice sampler (Murray et al., 2010), to estimate the ξ. (See SI Appendix for more detail.)

Figure 3 illustrates roles of the four parameters of the Richards curve (1). The curves on left

panel is obtained when (θ1, θ2, θ3) = (10000, 0.2, 40), while varying the ξ to be 1× 10−13(≈ 0), 0.5,

and 1, respectively. The right panel pictorially describes the roles of (θ1, θ2, θ3): θ1 represents the

asymptote of the curve; θ2 is related to a growth rate (analytically, the derivative of logarithm of

the curve (1) at t = θ3 is θ2/2.); and θ3 sets the displacement along the x-axis. (For more technical

detail for the parameters, refer to (Birch, 1999).)

In epidemiological modeling, the Richards curve (1) can be used as a parametric curve describ-

ing infection trajectories shown in the Figure 1. In this context, each of the parameters can be

interpreted as follows: θ1 represents the final epidemic size (that is, the maximum cumulative num-
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ber of infected cases across the times); θ2 represents infection rate; and θ3 represents a lag phase

of the trajectory. (The shape parameter ξ seems to have no clear epidemiological meaning (Wang

et al., 2012).) We shall revisit more detailed interpretations of the parameter in Subsection 4.5.

Figure 3: Description of the Richards growth curve model. The curve is obtained when (θ1, θ2, θ3) =
(10000, 0.2, 40). The left panel is obtained by changing the ξ to be 1×10−13, 0.5, and 1, respectively.
The right panel describes the roles the three parameters in epidemiological modeling: θ1 represents
final epidemic size; θ2 is an infection rate; and θ3 is a lag phase.

4 Results

4.1 Benefits from the information borrowing

We investigate the predictive performance of three Bayesian models based on the Richards growth

curve. We start with the individual country-based model (here we use only the single country

data) which has been widely used in the literature (M1). Next, we extend the previous model

to a hierarchical model by utilizing the infection trajectories of all the 40 countries (M2). A

limitation of M2 is that it lacks certain countrywide adjustments in estimating the trajectories

where the borrowing information takes place uniformly across all the countries although those

countries are heterogeneous in terms of aspects like socioeconomic, health environment, etc.. Next,

we further upgrade this model by adding country-specific covariates in a hierarchical fashion (M3).

(For technical description for the three models, see the Subsection 6.3.) Eventually, borrowing

information across the 40 countries takes place in these two hierarchical models, M2 and M3, but
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not in the individual country-based model M1.

For evaluation criteria, we calculate the mean squared error (MSE) (Wasserman, 2013) associ-

ated with the extrapolated infection trajectory for each of the 40 countries. Training and test data

are designated as follows: given that yk = (yk,1, · · · , yk,T )> is an infection trajectory of the k-th

country spanning for T days since January 22nd, and d is the chosen test-day, then (i) the training

data is set by the trajectory spanning for T−d days since January 22nd (that is, (yk,1, · · · , yk,T−d)),

and (ii) the test data is set by the d recent observations (that is, (yk,T−d+1, · · · , yk,T )).

For the two hierarchical models M2 and M3, the MSE is averaged over the 40 countries:

MSEd =
1

40 · d

40∑
k=1

T∑
r=T−d+1

(yk,r − y∗k,r)2,

where yk,r is the actual value for the cumulative confirmed cases of the k-th country at the r-th

time point, and y∗k,r is the forecast value: more concretely, y∗k,r is the posterior predictive mean

given the information from 40 countries. For the non-hierarchical modelM1, the y∗k,r in the MSEd

is acquired by using the data from the k-th country .
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Figure 4: Comparison of the MSE obtained by the three models,M1,M2, andM3, averaged over
the 40 countries: short-term (left) and long-term predictions (right). A smaller value for the MSE
indicates a better predictive performance.

For each of the short-term test-days (d = 5, 6, 7, 8, 9, 10) and long-term test-days (d =

20, 22, 24, 26, 28), we report the median of the MSEd’s from 20 replicates. The results are shown in

Figure 4. From the panel, we see that (1) the predictive performances of two hierarchical models,
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M2 and M3, are universally better than that of M1 across the number of test-days; and (2) the

performance of M3 is marginally better than M2. Based on the outcomes, we shall conclude that

information borrowing has improved the predictive accuracy in terms of MSE. We present all the

results in the consequent subsections based on the model M3. A similar result is found in the

Clemente problem from (Efron, 2010) where the James-Stein estimator (James and Stein, 1992)

better predicts then an individual hitter-based estimator in terms of the total squared prediction

error.

4.2 COVID-19 travel recommendations by country

Centers for Disease Control and Prevention (CDC) categorizes countries into three levels by as-

sessing the risk of COVID-19 transmission, used in travel recommendations by country (Visit

www.cdc.gov/-): Level 1, Level 2, and Level 3 indicate the Watch Level (Practice Usual Pre-

cautions), Alert Level (Practice Enhanced Precautions), and Warning Level (Avoid Nonessential

Travel), respectively.

We categorize the 40 countries into the three levels according to their posterior means for the

final epidemic size (that is, θ1 of the Richards curve (1)). Grouping criteria are as follows: (1) Level

1 (estimated total number is no more than 10,000 cases); (2) Level 2 (estimated total number is

between 10,000 and 100,000 cases); and (3) Level 3 (estimated total number is more than 100,000

cases).

Figure 5 displays results of posterior inference for the θ1 by country, based on the model M3.

Countries on the y-axis are ordered from the severest country (US) to the least severe country

(Finland) in the magnitude of the posterior means. The red horizontal bars on the panel represent

the 95% credible intervals, describing uncertainty for the estimation.

Base on the results, there are 12 countries categorized as Level 3: US, Brazil, Spain, UK,

Italy, Russia, France, Pakistan, Germany, Peru, Qatar, and Iran. This list is similar to the list of

countries labeled with the Warning Level designated by CDC except that China has been excluded,

while Brazil, Pakistan, Peru, and Qatar have been included (on May 4th). There are 22 countries

categorized as Level 2 (from Canda to South Korea), and 6 countries categorized as Level 1 (from

Philippine to Finland).
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Figure 5: Estimation results for the final epidemic size for 30 countries. Grey dots (•) represent
the cumulative numbers of infected cases for 40 countries on May 1st; red dots (•) and horizontal
bars (−) represent the posterior means and 95% credible intervals for the θ1 of the 40 countries.
Vertical red dotted line indicates the 1, 474, 526 cases, the posterior mean for the US.

4.3 Extrapolated infection trajectories and flat time points

Figure 7 displays the extrapolated infection trajectory (posterior mean for the Richards curve (1))

for the US. The posterior mean of the final epidemic size is 1,474,526 cases. The scenario that

‘millions’ of Americans could be infected was also warned by a leading expert in infectious diseases

(Visit a related news article www.bbc.com/-). It is known that prediction of an epidemic trend

from limited data during early stages of the epidemic is often futile and misleading (Hsieh et al.,

2004). Nevertheless, estimation of a possible severity havocked by the COVID-19 outbreak is an

important task when considering the seriousness of the current pandemic situation.

A crucial question is when this trajectory gets flattened. To that end, we approximate a time

point where an infection trajectory levels off its value, showing a flattening pattern after the time

point. The following is the definition of the flat time point which we use in this paper:

Definition 4.1. Given the Richards curve f(t; θ1, θ2, θ3, ξ) (1) and some small ε > 0, the flat time
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point tflat,ε is defined as the solution of the equation θ1 − ε = f(t; θ1, θ2, θ3, ξ):

tflat,ε = θ3 −
1

θ2
· log

[
1

ξ
·
{(

θ1

θ1 − ε

)ξ
− 1

}]
, ε > 0.

𝑡𝑓𝑙𝑎𝑡,𝜀=100

Figure 6: Illustration of flat time point. The exemplary infection trajectory is obtained by the
Richards curve when (θ1, θ2, θ3, ξ) = (10000, 0.2, 40, 0.5). A flat time point tflat,ε is approximately
63 (vertical red dashed line). The vertical difference between the θ1 and the function value of
Richards curve evaluated at tflat,ε is ε = 100 (cases).

Specifically speaking, the flat time point tflat,ε is the time point whereat only ε number of

infected cases can maximally take place to reach the final epidemic size θ1, after the time point

tflat,ε. Figure 6 depicts an exemplary infection trajectory obtained by the Richards curve (1) with

(θ1, θ2, θ3, ξ) = (10000, 0.2, 40, 0.5). In this case, a flat time point tflat,ε is approximately 63 when

ε = 100. The choice of ε > 0 depends on the situation of a country considered: for China which

already shows flattening phase (refer to Figure 1) in the infection trajectory, ε = 1 (case) can be

safely used, but for US one may use ε = 1, 000 (cases) or larger numbers.

For the US, the posterior means of the flat time points tflat,ε are May 26th, July 4th, August

11th, and September 18th when corresponding ε’s are chosen by 100,000, 10,000, 1,000, and 100,

respectively. It is important to emphasize that the extrapolated infection trajectory is real-time

prediction of COVID-19 outbreaks (Fineberg and Wilson, 2009; Wang et al., 2012) based on ob-

servations tracked until May 1st. Certainly, incorporation of new information such as compliance

with social distancing or advances in medical and biological sciences for this disease will change the

inference outcomes.

10

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.04.23.20077065doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077065


May 1
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September 18August 11July 4May 26

Figure 7: Extrapolated infection trajectory for the US based on the model M3. Posterior mean
of the maximum number of cumulative infected cases is 1,474,526 cases. Posterior means for the
flat time points are tflat,ε=100,000=May 26th, tflat,ε=10,000=July 4th , tflat,ε=1,000=August 11th, and
tflat,ε=100=September 18th.

Figure 8 show the extrapolated infection trajectories for Italy, UK, and Brazil. Posterior

means of the final epidemic size are as follows: (1) for the Italy, 227,496 cases; (2) for the

UK, 241,162 cases; and (3) for the Brazil, 499,526 cases. Flat time points are estimated by:

(1) for the Italy, tflat,ε=10,000=May 15th, tflat,ε=1,000=June 20th, and tflat,ε=100=July 26th; (2)

for the UK, tflat,ε=10,000=June 2nd, tflat,ε=1,000=July 8th, and tflat,ε=100=August 13th; and (3)

for the Brazil, tflat,ε=100,000=June 19th, tflat,ε=10,000=August 9th, tflat,ε=1,000=September 27th, and

tflat,ε=100=November 14th. Results for other countries are included in the SI Appendix.
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May 1January 22
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May 1January 22
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Figure 8: Extrapolated infection trajectory for the Italy (top), UK (middle), and Brazil (bot-
tom). Flat time points are estimated by: (1) for the Italy, tflat,ε=10,000=May 15th, tflat,ε=1,000=June
20th, and tflat,ε=100=July 26th; (2) for the UK, tflat,ε=10,000=June 2nd, tflat,ε=1,000=July 8th, and
tflat,ε=100=August 13th; and (3) for the Brazil, tflat,ε=100,000=June 19th, tflat,ε=10,000=August 9th,
tflat,ε=1,000=September 27th, and tflat,ε=100=November 14th.
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4.4 Global trend for the COVID-19 outbreak

Figure 9 displays the extrapolated infection trajectory for grand average over 40 countries obtained

from the model M3. Technically, this curve is acquired by extrapolating the Richards curve by

using the intercept terms in linear regressions (3). The grey dots on the panel are historical infection

trajectories for 40 countries. Posterior means for the final epidemic size is 113,189 cases. Posterior

means for the flat time points are tflat,ε=1,000=May 30th and tflat,ε=100=June 22nd.

May 1

January 22

113,189 cases

June 22May 30

Figure 9: Extrapolated infection trajectory for grand average over 40 countries obtained from
the model M3. Grey dots are historical infection trajectories for 40 countries spanning from
January 22nd to May 1st. Posterior means for the flat time points are tflat,ε=1,000=May 30th and
tflat,ε=100=June 22nd.

4.5 Identifying risk factors for severe disease due to COVID-19

COVID-19 is a new disease and there is very limited information regarding risk factors for this

severe disease. There is no vaccine aimed to prevent the transmission of the disease because there

is no specific antiviral agent is available. It is very important to find risk factors relevant to the

disease. Reliable and early risk assessment of a developing infectious disease outbreak allow for

policymakers to make swift and well-informed decisions that would be needed to ensure epidemic

control.
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CDC described High-Risk Conditions based on currently available information and clinical

expertise (For more detail, visit www.cdc.gov/-): those at higher risk for infection, severe illness,

and poorer outcomes from COVID-19 include

• People 65 years and older;

• People who live in a nursing home or long-term care facility;

• People with chronic lung disease or moderate to severe asthma;

• People who are immunocompromised, possibly caused by cancer treatment, smoking, bone

marrow or organ transplantation, immune deficiencies, poorly controlled HIV or AIDS, and

prolonged use of corticosteroids and other immune weakening medications;

• People with severe obesity (body mass index of 40 or higher);

• People with diabetes;

• People with chronic kidney disease undergoing dialysis;

• People with liver disease.

The modelM3 involves three separated linear regressions whose response and coefficient vector

are given by θl and βl, respectively (l = 1, 2, 3). (See the equation (3)) The sparse horseshoe

prior (Carvalho et al., 2009, 2010) is imposed for each of the coefficient vectors which makes the

model equipped with covariates analysis. That way, we can identify key predictors explaining the

heterogeneity of shapes existing in infection trajectories across 40 countries, and this can be further

used in finding risk factors for severe disease due to COVID-19. The results are in table 1 1.

Table 1: Important predictors explaining θl, l = 1, 2, 3

Final epidemic size (θ1) Infection rate (θ2) Lag phase (θ3)
Insuf phy act(+) Points of Entry(−) Dis to China(+)
Testing num COVID19(+) Alcohol consumers total(+) Alcohol cons rec(−)
Testing popu COVID19(−) Alcohol cons rec(+) Median age(−)
Overweight(+) Air pollution(+) Alcohol consumers total(−)
MCV1 immun(−) Life expect total 60(+) Testing num COVID19(−)
Testing confirm COVID19(+) Popu density(+) Life expect total 60(−)
Pol3 immun(−) Laboratory(−) Cigarette smoke(−)
Hib3 immun(−) Heavy drinking total(+) Tuberculosis case(−)
Tempe avg(−) Cigarette smoke(+) Total over 65(−)
Alcohol cons rec(+) Tobacco smoke(+) Tobacco smoke(−)

NOTE: the table shows 10 interesting covariates for each parameter. They are listed with“covariate
name (sign)” where the sign is taken from the posterior mean for the corresponding coefficient. See
SI Appendix for a detailed explanation for the listed covariates.
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The followings are general guidelines on how covariates on the Table 1 can be interpreted in

the current context of pandemic.

• The parameter θ1 represents final epidemic size. A larger number of θ1 indicates that a

country has (can have) more COVID-19 infected patients in the country. A covariate with

plus sign (+) (or minus sign (−)) is a factor associated with an increase (or decrease) of the

total infected cases.

• The parameter θ2 represents infection rate. A larger number of θ2 implies a faster spread of

the virus around the country. A covariate with plus sign (+) (or minus sign (−)) is a factor

associated with a rapid (or slow) spread of the virus.

• The parameter θ3 represents lag phase of the infection trajectory. The larger the value of θ3

the later the trajectory begins to accumulate infected cases, leading to a later onset of the

accumulation. A covariate with plus sign (+) (or minus sign (−)) is a factor associated with

delaying (or bring forward) the onset of the accumulation.

Now, based on the aforementioned guideline, we shall interpret the Table 1 in detail. (The

reasoning reflects our subjectivity, and disease expert should decipher precisely.)

As for the parameter θ1, insufficient physical activity has been selected as one of the important

risk factors which may increase the final epidemic size of a country: this implies that certain govern-

ment policies such as social distancing or remote work system can help decrease the final epidemic

size. Additionally, intense immunization coverage on measles, Polio, and Haemophilus Influenzae

type B can reduce the final epidemic size. Poor general health status of a population (Jennifer

Beam Dowd, 2020) such as overweight and alcohol addiction can increase the epidemic size. (visit

related news article www.cidrap.umn.edu/-.) Certain testing information is also associated with

the epidemic size, which can be further researched in retrospective studies in swift policymaking for

a future pandemic. Finally, the average temperature is negatively related to the epidemic size. (See

a WHO report for the relationship between climate change and infectious diseases www.who.int/-.)

Turning to the parameter θ2, a rigorous fulfillment of general obligations at point of entry

is chosen as one of the significant predictors in reducing the infection rate. Additionally, poor

smoking and alcoholic behaviors of a country population are risk factors that may increase the

infection rate. Demographically, it has been found that densely populated countries or countries

where life expectancy is relatively high are more venerable to the rapid disease transmission among

people. Among national environmental status, poor air condition which may negatively influence

people’s respiratory system is found to be a risk factor increasing the infection rate.
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Finally, moving to the parameter θ3, geological distance from China is an important covariate

delaying the onset of the infected cases. The lag of onset is also graphically observed from the

Figure 1: time point whereat South Korea begins to accumulate the infected cases is relatively

earlier than those of the US, UK, etc. Similar to θ2, heavier alcohol drinking and tobacco use may

result in an earlier onset of the accumulation of the infected patients, thereby bringing forward the

infection trajectory. Having larger numbers of median age and elderly people of a population can

shorten the lag phase. Finally, conducting frequent testing for the COVID-19 helps detect infected

patients, followed by the earlier accumulation for the confirmed cases.

5 Discussions

It is important to emphasize that, while medical and biological sciences are on the front lines of

beating back COVID-19, the true victory relies on advance and coalition of almost every academic

field. However, information about COVID-19 is limited: there are currently no vaccines or other

therapeutics approved by the US Food and Drug Administration to prevent or treat COVID-19

(on April 13, 2020). Although numerous research works are progressed by different academic field,

the information about COVID-19 is scattered around different disciplines, which truly requires

interdisciplinary research to hold off the spread of the disease.

The real-time forecast during early stages of the pandemic may results in premature inference

outcomes (Hsieh et al., 2004), but it should not demoralize predictive analysis as the entire human

race is currently threatened by unprecedented crisis due to COVID-19 pandemic. To improve the

predictive accuracy, data integration from multiple countries is a key notion, which is closely related

to borrowing information. The motivation of using the borrowing information is to make use of

indirect evidence (Efron, 2010) to enhance the predictive performance: for example, to extrapolate

the infection trajectory for the US, the information not only from the US (direct evidence) but also

from other countries (indirect evidence) are utilized to better predict the trajectory for the US.

Further, to render the information borrowing endowed with uncertainty quantification, Bayesian

argument is inevitable, inducing sensible inferences and decisions for users (Lindley, 1972).

The results demonstrated the superiority of our approach compared to an existing individ-

ual country-based model. Our research outcomes can be thought even more insightful given that
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we have not employed information about disease-specific covariates. That being said, using more

detailed information such as social mixing data, precise hospital records, or patient-specific infor-

mation will further improve the performance of our model. Moreover, integration of epidemiological

models with these statistical models will be our future topic of research.

6 Materials and Methods

6.1 Research data

In this research, we analyze global COVID-19 data {yi,xi}Ni=1, obtained from N = 40 countries.

(Meanings for the vector notations, yi and xi, will be explained shortly later.) These countries are

most severely affected by the COVID-19 in terms of the confirmed cases on May 1st, and listed on

Table 2: each country is contained in the table with format “country name (identifier)”, and this

identifier also indicates a severity rank, where a lower value indicates a severer status. The order

of the ranks thus coincides with the order of the countries named on the y-axis of the Figure 2.

Table 2: 40 countries on the research
Country (index i)

US (1), Spain (2), Italy (3), United Kingdom (4), France (5),
Germany (6), Russia (7), Iran (8), Brazil (9), China (10),
Canada (11), Belgium (12), Peru (13), Netherlands (14), India (15),
Switzerland (16), Portugal (17), Saudi Arabia (18), Sweden (19), Ireland (20),
Pakistan (21), Singapore (22), Chile (23), Israel (24), Austria (25),
Japan (26), Qatar (27), Poland (28), United Arab Emirates (29), Romania (30),
South Korea (31), Indonesia (32), Denmark (33), Philippines (34), Norway (35),
Czechia (36), Australia (37), Malaysia (38), Egypt (39), Finland (40)

NOTE: Countries are listed with the form “country name (identifier)”. This identifier also
represents a severity rank. The rank is measured based on the accumulated number of the
confirmed cases on May 1st.

For each country i (i = 1, · · · , N), let yit denotes the number of accumulated confirmed cases for

COVID-19 at the t-th time point (t = 1, · · · , T ). Here, the time indices t = 1 and t = T correspond

to the initial and end time points, January 22nd and May 1st, respectively, spanning for T = 101

(days). The time series data yi = (yi1, · · · , yit, · · · , yiT )> is referred to as an infection trajectory

for the country i. Infection trajectories for eight countries (US, Spain, Italy, UK, Brazil, China,

India, and South Korea) indexed by i = 1, 2, 3, 4, 9, 10, 15, and 31, respectively, are displayed in
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the Figure 1. We collected the data from the Center for Systems Science and Engineering at the

Johns Hopkins University.

For each country i, we collected 45 covariates, denoted by xi = (xi1, · · · , xij , · · · , xip)> (p = 45).

The 45 predictors can be further grouped by 6 categories: the 1st category : general country and

population distribution and statistics; the 2nd category : general health care resources; the 3rd

category : tobacco and alcohol use; the 4th category : disease and unhealthy prevalence; the 5th cat-

egory : testing and immunization statistics; and the 6th category : international health regulations

monitoring. The data sources are the World Bank Data (https://data.worldbank.org/-), World

Health Organization Data (https://apps.who.int/-), and National Oceanic and Atmospheric Ad-

ministration (https://www.noaa.gov/-). Detailed explanations for the covariates are described in

SI Appendix.

6.2 Bayesian hierarchical Richards model

We propose a Bayesian hierarchical model based on the Richards curve (1), which is referred to as

Bayesian hierarchical Richards model (BHRM), to accommodate the COVID-19 data {yi,xi}Ni=1.

(Although the model is based on the Richards curve, the idea can be generalized to any choice for

growth curves.) Ultimately, a principal goal of the BHRM is to establish two functionalities:

(a) [Extrapolation] uncover a hidden pattern from the infection trajectory for each country i,

that is, yi = (yi1, · · · , yiT )>, through the Richards growth curve f(t; θ1, θ2, θ3, ξ) (1), and

then extrapolate the curve.

(b) [Covariates analysis] identify important predictors among the p predictors x = (x1, · · · , xp)>

that largely affect on the shape the curve f(t; θ1, θ2, θ3, ξ) in terms of the three curve param-

eters.

A hierarchical formulation of the BHRM is given as follows. First, we introduce an additive

independently identical Gaussian error to each observation {yit}N,Ti=1,t=1, leading to a likelihood

part:

yit = f(t; θ1, θ2, θ3, ξ) + εit, εit ∼ N (0, σ2), (i = 1, · · · , N, t = 1, · · · , T ), (2)

where f(t; θ1i, θ2i, θ3i, ξi) is the Richards growth curve (1) which describes a growth pattern of

infection trajectory for the i-th country. Because each of the curve parameters (θ1, θ2, θ3) has its
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own epidemiological interpretations, we construct three separate linear regressions:

θli = αl + x>i βl + εli, εli ∼ N (0, σ2
l ), (i = 1, · · · , N, l = 1, 2, 3), (3)

where βl = (βl1, · · · , βlj , · · · , βlp)> is a p-dimensional coefficient vector corresponding to the l-th

linear regression.

For the shape parameter ξ, we assume the standard log-normal prior:

ξi ∼ log N (0, 1), (i = 1, · · · , N). (4)

The motivation of choosing the log-normal prior (4) for the ξi is that the prior puts effectively

enough mass on the region (0, 3) where most of the estimates for the ξi (i = 1, · · · , N) concentrated

on. Additionally, Gaussianity prior assumption makes it possible to employ the elliptical slice

sampler (Murray et al., 2010) in sampling from the full conditional posterior distribution of the ξi.

To impose a continuous shrinkage effect (Bhadra et al., 2019) on each of the coefficient vectors,

we adopt to use the horseshoe prior (Carvalho et al., 2009, 2010):

βlj |λlj , τlj , σ2
l ∼ N (0, σ2

l τ
2
l λ

2
lj), λlj , τlj ∼ C+(0, 1), (l = 1, 2, 3, j = 1, · · · , p). (5)

Finally, improper priors (Gelman et al., 2004) are used for the intercept terms and error variances

terms in the model:

αl ∼ π(α) ∝ 1, σ2, σ2
l ∼ π(σ2) ∝ 1/σ2, (l = 1, 2, 3). (6)

See SI Appendix for a posterior computation for the BHRM (2) – (6).

6.3 Technical expressions for three models M1, M2, and M3

Technical expressions for the three models, M1, M2, and M3, compared in Subsection 4.1 are

given as follows:

M1 is an individual country-based model (nonhierarchical model) that uses infection trajec-
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tory for a single country y = (y1, · · · , yT )>. The model is given by

yt = f(t; θ1, θ2, θ3, ξ) + εt, εt ∼ N (0, σ2), θl ∼ N (αl, σ
2
l ), ξ ∼ log N (0, 1), (t = 1, · · · , T, l = 1, 2, 3),

where f(t; θ1, θ2, θ3) is the Richards growth curve (1), and improper priors (Gelman et al.,

2004) are used for error variances and intercept terms as (6).

M2 is a Bayesian hierarchical model without using covariates, which uses infection trajectories

from N countries, {yi}Ni=1. This model is equivalent to BHRM (2) – (6) with removed

covariates terms in (3).

M3 is the BHRM (2) – (6).
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Supporting Information Appendix

Appendix A Tables for covariates

Table 3: Category of covariates.

Category Covariates (index)

General country and Total over 65 (1), Female per (2), Median age (5),
population distribution Birth rate (6), Life expect total 60 (14),
and statistics Dis to China (40), Popu density (44), Tempe avg (45)
Health care resources Physician (3), Doc num per (12), Hosp bed (13)
Tobacco and alcohol use Alcohol cons rec (7), Alcohol cons unrec (8),

Alcohol consumers total (9), Heavy drinking total (10),
Alcohol death total (11), Tobacco smoke (34),
Cigarette smoke (35)

Disease and unhealth Underweight total (4), Blood glucose (30),
prevalence Cholesterol (31), Insuf phy act (32), Overweight (33),

Air pollution (36), Air pollution death (37),
Air pollution DALYs (38), Tuberculosis case (39),

Testing and immunization Dtt dtp immun (15), HepB3 immun (16), Hib3 immun (17),
statistics MCV1 immun (18), MCV2 immun (19), PCV3 immun (20),

Pol3 immun (21), Testing num COVID19 (41),
Testing confirm COVID19 (42), Testing popu COVID19 (43)

International Health Zoonotic Events (22), Food Safety (23), Laboratory (24),
Regulations monitoring Human Resources (25), Health Service Provision (26),

Risk Communication (27), Points of Entry (28),
Radiation Emergencies (29)

NOTE: Covariates are listed with the form “predictor name (index)”. Predictor names are
abbreviated.
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Table 4: General country and population distribution and statistics.

Covariates (index j) Explanation

Total over 65 (1) Population ages 65 and above (% of total population) in 2018.
Female per (2) The percentage of female in the population in 2018.
Median age (5) Population median age in 2013.
Birth rate (6) Crude birth rate (per 1000 population) in 2013.
Life expect total 60 (14) Life expectancy at age 60 (years) in 2016.
Dis to China (40) Calculated by the R function distm based on the average

longitude and latitude.
Popu density (44) Population density (people per sq.km of land area) in 2018.
Tempe avg (45) The average temperature in February and March in the captain

of each country (we choose New York for US and Wuhan for
China, due to the severe outbreak in the two cities).

Table 5: Health care resources.
Covariates (index j) Explanation

Physician (3) The number of physicians (per 1000 people) between
2015 and 2018.

Doc num per (12) The number of medical doctors (per 10000 population)
in 2016.

Hosp bed (13) Average hospital beds (per 10000 population) from
2013 to 2015.

Table 6: Tobacco and alcohol use.
Covariates (index j) Explanation

Alcohol cons rec (7) Recorded alcohol consumption per capita (15+) (in litres of
pure alcohol), three-year average between 2015 and 2017.

Alcohol cons unrec (8) Unrecorded alcohol consumption per capita (15+) (in litres
of pure alcohol) in 2016.

Alcohol consumers total (9) Alcohol consumers past 12 months (those adults who
consumed alcohol in the past 12 months) (% of total) in 2016.

Heavy drinking total (10) Age-standardized estimates of the proportion of adults (15+
years) (who have had at least 60 grams or more of pure alcohol
on at least one occasion in the past 30 days) in 2016.

Alcohol death total (11) Alcohol-attributable death (% of all-cause deaths in
total) in 2016.

Tobacco smoke (34) Age-standardized rates of prevalence estimates for daily
smoking of any tobacco in adults (15+ years) in 2013.

Cigarette smoke (35) Age-standardized rates of prevalence estimates for daily
smoking of any cigarette in adults (15+ years) in 2013.
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Table 7: Disease and unhealthy prevalence.

Covariates (index j) Explanation

Underweight total (4) Crude estimate of percent of adults with underweight
(BMI < 18.5) in 2016.

Blood glucose (30) Age-standardized percent of 18+ population with raised fasting
blood glucose (≥7.0 mmol/L or on medication) in 2014.

Cholesterol (31) Percentage of 25+ population with total cholesterol ≥ 240 mg/dl
(6.2 mmol/l) in 2008.

Insuf phy act (32) Age-standardized prevalence of insufficient physical activity
(% of adults aged 18+) in 2016.

Overweight (33) Age-standardized prevalence of overweight among adults
(BMI ≥ 25) (% of adults aged 18+) in 2016.

Air pollution (36) Concentrations of fine particulate matter (PM2.5) in 2016.
Air pollution death (37) Age-standardized ambient air pollution attributable death rate

(per 100000 population) in 2016.
Air pollution DALYs (38) Age-standardized ambient air pollution attributable Disability-

adjusted life year (DALYs) (per 100000 population) in 2016.
Tuberculosis case (39) Incidence of tuberculosis (per 100000 population per year) in 2018.

Table 8: Testing and immunization statistics.

Covariates (index j) Explanation

Diphtheria tetanus toxoid and pertussis Diphtheria tetanus toxoid and pertussis third-dose
third-dose immunization (15) (DTP3) immunization coverage (% of total

1-year-olds) in 2018.
Hepatitis B third-dose Hepatitis B third-dose (HepB3) immunization coverage
immunization (16) (% of total 1-year-olds) in 2018.
Haemophilus influenzae type B Haemophilus influenzae type B third-dose (Hib3)
third-dose immunization (17) immunization coverage (% of total 1-year-olds) in 2018.
Measles-containing-vaccine Measles-containing-vaccine first-dose (MCV1)
first-dose immunization (18) immunization coverage (% of total 1-year-olds)

in 2018.
Measles-containing-vaccine Measles-containing-vaccine second-dose (MCV2)
second-dose immunization (19) immunization coverage (% of total nationally

recommended age) in 2018.
Pneumococcal conjugate vaccines Pneumococcal conjugate vaccines third-dose (PCV3)
third-dose immunization (20) immunization coverage (% of total 1-year-olds) in 2018.
Polio third-dose immunization (21) Polio (Pol3) third-dose immunization coverage

(% of total 1-year-olds) in 2018.
Testing num COVID19 (41) The number of COVID-19 testing cases

(ourworldindata.org/- collect the data and the data dates
are between Febrary and March on several media).

Testing confirm COVID19 (42) The total number of confirmed cases on
the same day with testing num divided by the
covariate Testing num COVID19 (41).

Testing popu COVID19 (43) The covariate Testing num COVID19 (41) divided
by covariate Total popu (2).
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Table 9: International health regulations (IHR) monitoring framework.

Covariates (index j) Explanation

Zoonotic Events (22) Scores that show whether mechanisms for detecting
and responding to zoonoses and potential zoonoses are
established and functional in 2018.

Food Safety (23) Scores that show whether mechanisms are established
and functioning for detecting and responding to
foodborne disease and food contamination in 2018.

Laboratory (24) Scores that show the availability of laboratory
diagnostic and confirmation services to test for priority
health threats in 2018.

Human Resources (25) Scores that show the availability of human resources
to implement IHR Core Capacity.

Health Service Provision (26) Scores that show an immediate output of the inputs
into the health system, such as the health workforce,
procurement and supplies, and financing in 2018.

Risk Communication (27) Scores that show mechanisms for effective risk
communication during a public health emergency
are established and functioning in 2018.

Points of Entry (28) Scores that show whether general obligations
at point of entry are fulfilled (including for
coordination and communication) to prevent the
spread of diseases through international traffic in 2018.

Radiation Emergencies (29) Scores that show whether mechanisms are established
and functioning for detecting and responding to
radiological and nuclear emergencies that may constitute
a public health event of international concern in 2018.

NOTE 1: The International health regulations, or IHR (2005), represent an agreement be-
tween 196 countries including all WHO Member States to work together for global health
security. Through IHR, countries have agreed to build their capacities to detect, assess, and
report public health events. WHO plays the coordinating role in IHR and, together with its
partners, helps countries to build capacities. (https://www.who.int/ihr/about/-)

NOTE 2: IHR monitoring framework was developed, which represents a consensus among
technical experts from WHO Member States, technical institutions, partners and WHO.
(https://www.who.int/ihr/procedures/-)
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Appendix B Posterior computation

We illustrate a full description of a posterior computation for the BHRM (2) – (6) by using a

Markov chain Monte Carlo (MCMC) simulation (Robert and Casella, 2013). To start with, for

illustration purpose, we shall use vectorized notations for the likelihood part (2), regression part

(3), and its coefficients part (5):

yi|θ1i, θ2i, θ3i, ξi, σ
2 ∼ NT (fi(θ1i, θ2i, θ3i, ξi), σ

2I), (i = 1, · · · , N),

θl|αl,βl, σ2
l ∼ NN (1αl + Xβl, σ

2
l I), (l = 1, 2, 3),

βl|τl,λl, σ2
l ∼ Np(0, σ2

l τ
2
l Λl), (l = 1, 2, 3).

The T -dimensional vector yi = (yi1, · · · , yit, · · · , yiT )> (i = 1, · · · , N) is the observed infection

trajectory for the country i across the times. The notation f(θ1i, θ2i, θ3i, ξi) (i = 1, · · · , N) is

T -dimensional vector that describes the Richard curves across the times:

f(θ1i, θ2i, θ3i, ξi) = (f(1; θ1i, θ2i, θ3i, ξi), . . . , f(T ; θ1i, θ2i, θ3i, ξi))
>, (i = 1, · · · , N).

The vectors θl = (θl1, · · · , θlN )> (l = 1, 2, 3) and ξ = (ξ1, · · · , ξN )> are N -dimensional vectors for

the four parameters of the Richards curve (1) across the N countries.

The matrix X is N -by-p design matrix whose i-th row vector is given by the p predictors

xi = (xi1, · · · , xip)> ∈ Rp, (i = 1, · · · , N). The notation I stands for an identity matrix. Before

implementing, it is recommended that each of column vectors of the design matrix X is standardized

(Armagan et al., 2013; Tibshirani, 1996): that is, each column vector has been centered, and then

columnwisely scaled so that each column vector has mean zero and unit l2 Euclidean norm.

The p-dimensional vector βl = (βl1, · · · , βlp)> (l = 1, 2, 3) denotes p coefficients from the l-th

regression. The vector λl = (λl1, · · · , λlp)> (l = 1, 2, 3) is p-dimensional vector for the local-scale

parameters, and the matrix Λl is p-by-p diagonal matrix Λl = diag(λ2
l1, · · · , λ2

lp) (l = 1, 2, 3). The

τl (l = 1, 2, 3) is referred to as the global-scale parameter (Carvalho et al., 2010).

Under the formulation of BHRM (2) – (6), our goal is to sample from the full joint posterior

distribution π(θ1,θ2,θ3, ξ, σ
2,Ω1,Ω2,Ω3|y1:N ) where Ωl = {αl,βl,λl, τl, σ2

l } (l = 1, 2, 3), whose

proportional part is given by

{ N∏
i=1

NT (yi|fi(θ1i, θ2i, θ3i, ξi), σ
2I)

}{ 3∏
l=1

NN (θl|1αl + Xβl, σ
2
l I)Np(βl|0, σ2

l τ
2
l Λl)π(λl)π(τl)π(σ2

l )

}

·
{ N∏
i=1

log N (ξi|0, 1)

}
π(σ).
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To sample from the full joint density, we use a Gibbs sampler (Casella and George, 1992) to exploit

conditional independences among the latent variables induced by the hierarchy. The following

algorithm describes a straightforward Gibbs sampler

Step 1. Sample θ1 from its full conditional distribution

π(θ1|−) ∼ NN (Σθ1{(1/σ2)r + (1/σ2
l )(1α1 + Xβ1)},Σθ1),

where Σθ1 = {(1/σ2)H + (1/σ2
l )I}−1 ∈ RN×N . Here, the vector r is a N -dimensional vector

which is given by r = (y>1 h(θ21, θ31, ξ1), . . . ,y>Nh(θ2N , θ3N , ξN ))> such that the T -dimensional

vector h(θ2i, θ3i, ξi) (i = 1, · · · , N) is obtained by

h(θ2i, θ3i, ξi) = (h(1; θ2i, θ3i, ξi), . . . , h(T ; θ2i, θ3i, ξi))
>,

where h(t; θ2, θ3, ξ) = [1 + ξ · exp{−θ2 · (t− θ3)}]−1/ξ.

Step 2. Sample θ2i and θ3i, i = 1, · · · , N , independently from their full conditional distribu-

tions. Proportional parts of the distributions are given by

π(θ2i|−) ∝ exp

(
− 1

2σ2
‖yi − f(θ1i, θ2i, θ3i, ξi)‖22 −

1

2σ2
2

(θ2i − α2 − x>i β2)2

)
,

π(θ3i|−) ∝ exp

(
− 1

2σ2
‖yi − f(θ1i, θ2i, θ3i, ξi)‖22 −

1

2σ2
3

(θ3i − α3 − x>i β3)2

)
.

Here, ‖ · ‖2 indicates the l2-norm. Note that the two conditional densities are not known in

closed forms because two parameters, θ2i and θ3i, participate to the function f(θ1i, θ2i, θ3i, ξi)

in a nonlinear way. We use the Metropolis algorithm (Andrieu et al., 2003) with Gaussian

proposal densities within this Gibbs sampler algorithm.

Step 3. Sample ξi, i = 1, · · · , N , independently from its full conditional distribution. Pro-

portional parts of the distributions are given by

π(ξi|−) ∝ exp

(
− 1

2σ2
‖yi − f(θ1i, θ2i, θ3i, ξi)‖22

)
· log N (ξi|0, 1). (A.1)

Note that the density (A.1) is not expressed in a closed form distribution. Because the

shape parameter ξi is supported on (0,∞) and participates in the Richards curve (1) as an

exponent, sampling from the density needs a delicate care, where by we employed the elliptical

slice sampler (Murray et al., 2010).

Step 4. Sample σ2 from its full conditional distribution

π(σ2|−) ∼ IG
(
NT

2
,
1

2

N∑
i=1

‖yi − f(θ1i, θ2i, θ3i, ξi)‖22
)
.
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Step 5. Sample αl, l = 1, 2, 3, independently from their full conditional distributions

π(αl|−) ∼ N1(1>(θl −Xβl)/N, σ
2
l /N).

Step 6. Sample βl, l = 1, 2, 3, independently from conditionally independent posteriors

π(βl|−) ∼ Np(Σβl
X>(θl − 1αl), σ

2
l Σβl

),

where Σβl
= [X>X + Λ−1

∗l ]−1 ∈ Rp×p, Λl = diag(λ2
l1, · · · , λ2

lp) ∈ Rp×p, and Λ∗l = τ2Λl.

Step 7. Sample λlj , l = 1, 2, 3, j = 1, · · · , p, independently from conditionally independent

posteriors

π(λlj |−) ∼ N (βlj |0, σ2
l τ

2
l λ

2
lj) · {1/(1 + λ2

lj)}.

Note that the densities π(λlj |−) (l = 1, 2, 3, j = 1, · · · , p) are not expressed in closed forms:

we use the slice sampler (Neal, 2003).

Step 8. Sample τl, l = 1, 2, 3, independently from conditionally independent posteriors

π(τl|−) ∼ Np(βl|0, σ2
l τ

2
l Λl) · {1/(1 + τ2

l )}.

Note that the densities π(τl|−) (l = 1, 2, 3) are not expressed in closed forms: we use the slice

sampler (Neal, 2003).

Step 9. Sample σ2
l , l = 1, 2, 3, independently from their full conditionally distributions

π(σ2
l |−) ∼ IG

(
N + p

2
,
‖θl − 1αl −Xβl‖22 + β>l Λ−1

∗l βl
2

)
.

B.1 Elliptical slice sampler for Step 3

To start with we shall use the variable change (η = log ξ) to the right hand side of (A.1):

π(ηi|−) ∝ L(ηi) · N (ηi|0, 1), (i = 1, · · · , N), (A.2)

such that L(ηi) = exp{−‖yi − f(θ1i, θ2i, θ3i, e
ηi)‖22/(2σ2)} corresponds to a likelihood part.

Now, we use the elliptical slice sampler (ESS) (Murray et al., 2010; Nishihara et al., 2014)

to sample from η
(s+1)
i ∼ π(ηi|−) (A.2) (i = 1, · · · , N) that exploits the Gaussian prior measure.

Conceptually, ESS and the Metropolis-Hastings (MH) algorithm (Chib and Greenberg, 1995) are

similar: both methods are comprised of two steps: proposal step and criterion step. A difference
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between the two algorithms arises in the criterion step. If the new candidate does not pass the

criterion, then MH takes the current state as the next state: whereas, ESS re-proposes a new candi-

date until rejection does not take place, rendering the algorithm rejection-free. Further information

for ESS is referred to the original paper (Murray et al., 2010). After ESS has been employed, the

realized ηi needs to be transformed back through ξ = eη. Algorithm 1 illustrates the full description

of algorithms: to avoid notation clutter, the index i is omitted.

Algorithm 1: Elliptical slice sampler to sample from π(ξ|−)

Circumstance : At the Step 3 of the s-th iteration of the Gibbs sampler.
Input : Current state ξ(s).
Output : A new state ξ(s+1).
1. Variable change (η = log ξ): η(s) = log ξ(s).
2. Implement elliptical slice sampler;

a. Choose an ellipse : ν ∼ N1(0, 1).

b. Define a criterion function:

α(η, η(s)) = min{L(η)/L(η(s)), 1} : R→ [0, 1],

where L(η) = exp{−‖y− f(θ1, θ2, θ3, e
η)‖22/(2σ2)}.

c. Choose a threshold and fix: u ∼ U [0, 1].

d. Draw an initial proposal η∗:

φ ∼ U(−π, π]

η∗ = η(s) cos φ+ ν sin φ

e. if ( u < α(η∗, η(s)) ) { η(s+1) = η∗ } else {
Define a bracket : (φmin, φmax] = (−π, π].

while ( u ≥ α(η∗, η(s)) ) {
Shrink the bracket and try a new point :
if ( φ > 0 ) φmax = φ else φmin = φ
φ ∼ U(φmin, φmax]

η∗ = η(s) cos φ+ ν sin φ
}
η(s+1) = η∗

}

4. Variable change (ξ = eη): ξ(s+1) = exp η(s+1).

Appendix C Infection trajectories for the top 20 countries

The file includes extrapolated infection trajectories for the top 20 countries that are most severely

affected by the COVID-19.

32

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.04.23.20077065doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077065

	Introduction
	Significance
	Our Contribution
	Richards growth curve models

	Results
	Benefits from the information borrowing
	COVID-19 travel recommendations by country
	Extrapolated infection trajectories and flat time points
	Global trend for the COVID-19 outbreak
	Identifying risk factors for severe disease due to COVID-19

	Discussions
	Materials and Methods
	Research data
	Bayesian hierarchical Richards model
	Technical expressions for three models M1, M2, and M3

	Tables for covariates
	Posterior computation
	Elliptical slice sampler for Step 3

	Infection trajectories for the top 20 countries

